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fork()
• A function without any arguments

– ret = fork()

• Both parent process and child process continue to
execute the instruction following the fork()

• The return value indicates which process it is (parent or
child)

– ret > 0 (pid of child process): code running in the parent
process,

– ret == 0: code running in the newly-created child process
– ret == -1: an error or failure occurred when creating new

process

• Fun analogy: imaging you are a process after fork, but you 
don’t know if you are the child or parent process, as if you 
are running inside of a Matrix. But you can identify which 
process you are running, by looking up to the sky and see 
the ret value from fork() 

• Child process is a duplicate of its parent process and has
same

– instructions, data, stack

• Child and parents have different
– PIDs, memory spaces
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exec()
• exec(cmd, argv) replaces the current process image with a new 

process image specified by the path to an executable file.
– It does not return. It starts to execute the new program.

• There is a family of exec(), e.g., execl(), execvp()
– execl() takes a variable number of arguments that represent the 

program name and its arguments.
» int execl(const char *path, const char *arg, ..., NULL);

– execvp() takes an array of arguments instead of a variable-length 
argument list

» int execvp(const char *file, char *const argv[]);
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wait()
• Let the parent process wait for the completion of the

child process
– pid = wait()

• wait() suspends the execution of the calling process until 
one of its child processes terminates. 

– When a child process terminates, wait() retrieves its 
termination status and allows the system to clean up the 
resources associated with that child. If the parent does not 
call wait() to collect the child's exit status, the child 
becomes a zombie process, which means its PCB persists 
in the process table, even though it is no longer running.

» While zombie processes do not consume processor or 
memory resources, they occupy entries in the process 
table. The process table is of finite size, and if too many 
zombie processes accumulate, it can prevent new 
processes from being created.

– If there are multiple child processes, wait() does not allow 
the parent to specify which child process to wait for. 
waitpid(pid) is an advanced version of wait. It allows the 
parent process to specify which child process (or group of 
processes) it wants to wait for.

Parent

fork()

Parent

Childwait()
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L2 Summary

• Processes

– In OS, process is a running program and has an address space

– We use process API to create and manage processes

– fork() to duplicate a process, exec() to replace the command

• Threads:

– Multiple threads per process / address space

– Kernel threads are much more efficient than processes, but they’re still not cheap

– User-level threads are very efficient
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Race Condition
• Incrementing counter has 3 instructions in assembly 

code:

• ld w8, [x9]: Read the value of counter at memory 
address x9 into register w8

• add w8, w8, #0x1: increment the value of register w8 by 
1

• st w8, [x9]: write the new value of counter in register w8 
to memory address x9

• When both threads read the same value of counter 
before writing to it, counter is incremented only by 1 
instead of by 2!

• Note: threads in the same process share the same 
memory space, but have separate registers. So in both 
threads, [x9] refers to the same memory address at x9, 
but w8 refers to different registers in each thread.

counter++; 

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2
counter

st w8, [x9]

100
101

100
101
101

101
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Lock to Protect a Critical Section

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2
Count
Value
100
101

101
102
102Lock it

101

Lock it

• Critical section: a piece of code that accesses a shared resource, usually 

a variable or data structure

• Correctness of a concurrent program:

• Mutual exclusion: Only one thread in critical section at a time

• Progress (deadlock-free): If several simultaneous requests, must 

allow one to proceed

• Bounded waiting (starvation-free): Must eventually allow each waiting 

thread to enter
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Semaphores

• Semaphores were proposed by a Dutch computer scientist Dijkstra in late 60s

• Definition: a semaphore has a non-negative integer value and supports the following 
operations:

– sem_t sem or semaphore sem: Declare a semaphore

– sem_init(&sem, 0, N): Initialize the semaphore to any non-negative value

– sem_wait(&sem): also called down() or P(), an atomic operation that decrements it by 1 if 
non-zero. If the semaphore is equal to 0, go to sleep waiting to be signaled by another 
thread

– sem_post(&sem): also called signal(), up() or V(), an atomic operation that increments it by 1, 
and wakes up a waiting/sleeping thread, if any

• Semaphores are also called sleeping locks, since the waiting thread goes to sleep instead 
of spin-waiting

– If the waiting time is long, then sleeping is more efficient since the thread gives up the CPU 
to other threads, but incurs system call (kernel) overhead to go to sleep and wake up; if 
waiting time is short, then spinlock may be more efficient since it does not involve the kernel. 

– Spinlock may cause starvation, e.g., if the waiting thread has higher priority than the signaler 
thread under fixed priority scheduling (but not under round-robin scheduling).

8
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Deadlock
Resource

1

Resource
2

Wanted

Wanted

Held

Held

• Definition: A set of processes are said to be in a deadlock state 
when every process in the set is waiting for an event that can be 
caused only by another process in the set

• Conditions for Deadlock

• Mutual exclusion

– Only one process at a time can use a given resource

• Hold-and-wait

– processes hold resources allocated to them while waiting for
additional resources

• No preemption

– Resources cannot be forcibly removed from processes that are 
holding them; can be released only voluntarily by each holder

• Circular wait

– There exists a circle of processes such that each holds one or 
more resources that are being requested by next process in 
the circle Not a perfect analogy, just a fun image!

process 1 process 2
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Banker's algorithm: preliminaries

• Compute Need = Max – Allocation

• To determine if a process i can run to completion, compare two 
vectors:

– (Need)i: row i in the Need Matrix of unmet resource needs

– A: available resources vector A

– (Need)i <= A if Needij <= Aj   for all resource types j
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Banker’s algorithm

Algorithm CheckSafety() for checking to see if a state is safe:

1.  Compute Need = Max – Allocation

2.  Look for a process i that can run to completion by finding an unmarked row i with 
(Need)i ≤ A. If no such row exists, system will eventually deadlock since no process 
can run to completion

3.  Assume process i requests all resources it needs and finishes. Mark process i as 
completed, free all its resources and add the i-th row of Allocation to the Available 
vector

4.  Repeat steps 1 and 2 until either all processes are marked as completed (initial state 
is safe), or no process is left whose resource needs can be met (there is a deadlock, 
so initial state is unsafe).
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Video tutorial of Banker's algorithm I

• Deadlock avoidance https://www.youtube.com/watch?v=AvPjOyeJbBM

• Total resources: [8, 5, 9, 8]

https://www.youtube.com/watch?v=AvPjOyeJbBM
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Predicting Length of the Next CPU Burst

• Adaptive: Changing policy based on past behavior

– Works because programs have predictable behavior

» If program was I/O bound in recent past, it is likely to be I/O bound in future

• We can use exponential moving averaging 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1, where:

– 𝑥𝑛 is the new input data point

– 𝑡𝑛−1 is the previous exponential moving average

– 𝛼 is the smoothing factor (0<𝛼<1)

• 𝛼 large: fast update of n based on new input. 𝛼 = 1 → 𝑡𝑛 = 𝑥𝑛 is equal to the new input 
data point at each step

• 𝛼 small: slow update of n based on new input. 𝛼 = 0 → 𝑡𝑛 = 𝑡0 stays constant and not 
affected by new input data point

• Appropriate choice of 𝛼 lets 𝑡𝑛 track the input data points while smoothing out sensor noise
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Predicting Length of the Next CPU Burst: =0.5

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with 
initial guess 0 = 10, assuming =0.5

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.5∗6 + 0.5∗10 =
 8

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.5∗4 + 0.5∗8 = 6

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.5∗6 + 0.5∗6 = 6

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.5∗4 + 0.5∗6 = 5

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.5∗13 + 0.5∗5 =
 9

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.5∗13 + 0.5∗9 =
 11

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.5∗13 + 0.5∗11
 = 12

Time Series 101: Exponential Moving Average, A Visual Guide

https://www.youtube.com/watch?v=joHKNtPYtLo

https://www.youtube.com/watch?v=joHKNtPYtLo
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Predicting the Length of the Next CPU Burst: =0.1 or 0.9

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with initial guess 
0 = 10, assuming =0.1.

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.1∗6 + 0.9∗10 = 9.6

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.1∗4 + 0.9∗9.6 = 9.0

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.1∗6 + 0.9∗9.0 = 8.7

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.1∗4 + 0.9∗8.7 = 8.3

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.1∗13 + 0.9∗8.3= 8.7

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.1∗13 + 0.9∗8.7= 9.2

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.1∗13 + 0.9∗9.2= 9.5

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with initial guess 
0 = 10, assuming =0.9.

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.9∗6 + 0.1∗10 = 6.4

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.9∗4 + 0.1∗6.4 = 4.2

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.9∗6 + 0.1∗4.2 = 5.8

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.9∗4 + 0.1∗5.8 = 4.2

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.9∗13 + 0.1∗4.2 = 12.1

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.9∗13 + 0.1∗12.1 = 13.0

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.9∗13 + 0.1∗13.0 = 13.0

With low 𝛼 = 0.1, the EMA changes gradually and reacts slowly to new data, 
staying closer to the starting value.
With high 𝛼 = 0.9, the EMA responds quickly and closely tracks the latest data 
points.
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Lecture 5 Scheduling Conclusion

• FCFS Scheduling:
– Run jobs in the order of arrival
– Cons: Short jobs can get stuck behind long ones

• Round-Robin Scheduling: 
– Give each thread a small amount of CPU time when it executes; cycle between all ready 

threads
– Pros: Better for short jobs 

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least execution time/least remaining execution time
– Pros: Optimal (in terms of average response time) 
– Cons: Hard to predict execution time, Unfair

• Priority-Based Scheduling
– Each job is assigned a fixed priority

• Multi-Level Queue Scheduling
– Multiple queues of different priorities and scheduling algorithms

• Multi-Level Feedback Queue Scheduling:
– Automatic promotion/demotion of jobs between queues to approximate SJF/SRTF
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Summary of Schedulability Analysis Algorithms
Fixed-Priority Scheduling Dynamic Priority Scheduling

Optimal 

Scheduling 

Algorithm

Rate Monotonic (RM) 

Scheduling for implicit 

deadline taskset (D=T)

Deadline Monotonic 

(DM) Scheduling for 

constrained deadline 

taskset (D≤T)

Earliest Deadline First 

(EDF) Scheduling for 

implicit deadline taskset 

(D=T)

Earliest Deadline First 

(EDF) Scheduling for 

constrained deadline 

taskset (D≤T)

Schedulability 

Analysis 

Algorithm 

Utilization Bound (UB) test 

𝑈 = σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 𝑁(21/𝑁 −

1) (sufficient but not 

necessary condition) or

Response Time Analysis 

(RTA) (necessary and 

sufficient)

𝑅𝑖 = 𝐶𝑖 + ෍

∀𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

≤ 𝐷𝑖

RTA

Response Time Analysis 

(RTA) (necessary and 

sufficient)

𝑅𝑖

= 𝐶𝑖 + ෍

∀𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

≤ 𝐷𝑖

Utilization Bound (UB) 

test 𝑈 = σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 1 

(necessary and sufficient)

Density Bound test

∆ = σ𝑖
𝐶𝑖

min(𝐷𝑖,𝑇𝑖) 
≤ 1 

(sufficient but not 

necessary condition) 

or Demand Bound 

Function (not covered)

IMPORTANT
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PCP Blocking Time

push-through blocking

• Consider all lower-priority tasks (k∈lp(i)), and the semaphores they can lock (s)

• Select from those semaphores (s) with ceiling higher than or equal to 𝑝𝑟𝑖 𝑖 = 𝑃𝑖

• Take max length of all tasks (k)’s critical sections that lock semaphores (s)

• (The blocking time is valid even for a task that does not require any 
semaphores/critical sections, as it may experience push-through blocking.)


	Slide 1:  CSC 256: Final Review
	Slide 2: fork()
	Slide 3: exec()
	Slide 4: wait()
	Slide 5: L2 Summary
	Slide 6: Race Condition
	Slide 7: Lock to Protect a Critical Section
	Slide 8: Semaphores
	Slide 9: Deadlock
	Slide 10: Banker's algorithm: preliminaries
	Slide 11: Banker’s algorithm
	Slide 12: Video tutorial of Banker's algorithm I
	Slide 13: Predicting Length of the Next CPU Burst
	Slide 14: Predicting Length of the Next CPU Burst: =0.5
	Slide 15: Predicting the Length of the Next CPU Burst: =0.1 or 0.9
	Slide 16: Lecture 5 Scheduling Conclusion
	Slide 17: Summary of Schedulability Analysis Algorithms
	Slide 18: PCP Blocking Time

