
CSC 256: Final Review

Zonghua Gu

Department of Computer Science,

Hofstra University

Lec 16.2

fork()
• A function without any arguments

– ret = fork()

• Both parent process and child process continue to
execute the instruction following the fork()

• The return value indicates which process it is (parent or
child)

– ret > 0 (pid of child process): code running in the parent
process,

– ret == 0: code running in the newly-created child process
– ret == -1: an error or failure occurred when creating new

process

• Fun analogy: imaging you are a process after fork, but you
don’t know if you are the child or parent process, as if you
are running inside of a Matrix. But you can identify which
process you are running, by looking up to the sky and see
the ret value from fork()

• Child process is a duplicate of its parent process and has
same

– instructions, data, stack

• Child and parents have different
– PIDs, memory spaces

Lec 16.3

exec()
• exec(cmd, argv) replaces the current process image with a new

process image specified by the path to an executable file.
– It does not return. It starts to execute the new program.

• There is a family of exec(), e.g., execl(), execvp()
– execl() takes a variable number of arguments that represent the

program name and its arguments.
» int execl(const char *path, const char *arg, ..., NULL);

– execvp() takes an array of arguments instead of a variable-length
argument list

» int execvp(const char *file, char *const argv[]);

Lec 16.4

wait()
• Let the parent process wait for the completion of the

child process
– pid = wait()

• wait() suspends the execution of the calling process until
one of its child processes terminates.

– When a child process terminates, wait() retrieves its
termination status and allows the system to clean up the
resources associated with that child. If the parent does not
call wait() to collect the child's exit status, the child
becomes a zombie process, which means its PCB persists
in the process table, even though it is no longer running.

» While zombie processes do not consume processor or
memory resources, they occupy entries in the process
table. The process table is of finite size, and if too many
zombie processes accumulate, it can prevent new
processes from being created.

– If there are multiple child processes, wait() does not allow
the parent to specify which child process to wait for.
waitpid(pid) is an advanced version of wait. It allows the
parent process to specify which child process (or group of
processes) it wants to wait for.

Parent

fork()

Parent

Childwait()

Lec 16.5

L2 Summary

• Processes

– In OS, process is a running program and has an address space

– We use process API to create and manage processes

– fork() to duplicate a process, exec() to replace the command

• Threads:

– Multiple threads per process / address space

– Kernel threads are much more efficient than processes, but they’re still not cheap

– User-level threads are very efficient

Lec 16.6

Race Condition
• Incrementing counter has 3 instructions in assembly

code:

• ld w8, [x9]: Read the value of counter at memory
address x9 into register w8

• add w8, w8, #0x1: increment the value of register w8 by
1

• st w8, [x9]: write the new value of counter in register w8
to memory address x9

• When both threads read the same value of counter
before writing to it, counter is incremented only by 1
instead of by 2!

• Note: threads in the same process share the same
memory space, but have separate registers. So in both
threads, [x9] refers to the same memory address at x9,
but w8 refers to different registers in each thread.

counter++;

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2
counter

st w8, [x9]

100
101

100
101
101

101

Lec 16.7

Lock to Protect a Critical Section

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2
Count
Value
100
101

101
102
102Lock it

101

Lock it

• Critical section: a piece of code that accesses a shared resource, usually

a variable or data structure

• Correctness of a concurrent program:

• Mutual exclusion: Only one thread in critical section at a time

• Progress (deadlock-free): If several simultaneous requests, must

allow one to proceed

• Bounded waiting (starvation-free): Must eventually allow each waiting

thread to enter

Lec 16.8

Semaphores

• Semaphores were proposed by a Dutch computer scientist Dijkstra in late 60s

• Definition: a semaphore has a non-negative integer value and supports the following
operations:

– sem_t sem or semaphore sem: Declare a semaphore

– sem_init(&sem, 0, N): Initialize the semaphore to any non-negative value

– sem_wait(&sem): also called down() or P(), an atomic operation that decrements it by 1 if
non-zero. If the semaphore is equal to 0, go to sleep waiting to be signaled by another
thread

– sem_post(&sem): also called signal(), up() or V(), an atomic operation that increments it by 1,
and wakes up a waiting/sleeping thread, if any

• Semaphores are also called sleeping locks, since the waiting thread goes to sleep instead
of spin-waiting

– If the waiting time is long, then sleeping is more efficient since the thread gives up the CPU
to other threads, but incurs system call (kernel) overhead to go to sleep and wake up; if
waiting time is short, then spinlock may be more efficient since it does not involve the kernel.

– Spinlock may cause starvation, e.g., if the waiting thread has higher priority than the signaler
thread under fixed priority scheduling (but not under round-robin scheduling).

8

Lec 16.9

Deadlock
Resource

1

Resource
2

Wanted

Wanted

Held

Held

• Definition: A set of processes are said to be in a deadlock state
when every process in the set is waiting for an event that can be
caused only by another process in the set

• Conditions for Deadlock

• Mutual exclusion

– Only one process at a time can use a given resource

• Hold-and-wait

– processes hold resources allocated to them while waiting for
additional resources

• No preemption

– Resources cannot be forcibly removed from processes that are
holding them; can be released only voluntarily by each holder

• Circular wait

– There exists a circle of processes such that each holds one or
more resources that are being requested by next process in
the circle Not a perfect analogy, just a fun image!

process 1 process 2

Lec 16.10

Banker's algorithm: preliminaries

• Compute Need = Max – Allocation

• To determine if a process i can run to completion, compare two
vectors:

– (Need)i: row i in the Need Matrix of unmet resource needs

– A: available resources vector A

– (Need)i <= A if Needij <= Aj for all resource types j

Lec 16.11

Banker’s algorithm

Algorithm CheckSafety() for checking to see if a state is safe:

1. Compute Need = Max – Allocation

2. Look for a process i that can run to completion by finding an unmarked row i with
(Need)i ≤ A. If no such row exists, system will eventually deadlock since no process
can run to completion

3. Assume process i requests all resources it needs and finishes. Mark process i as
completed, free all its resources and add the i-th row of Allocation to the Available
vector

4. Repeat steps 1 and 2 until either all processes are marked as completed (initial state
is safe), or no process is left whose resource needs can be met (there is a deadlock,
so initial state is unsafe).

Lec 16.12

Video tutorial of Banker's algorithm I

• Deadlock avoidance https://www.youtube.com/watch?v=AvPjOyeJbBM

• Total resources: [8, 5, 9, 8]

https://www.youtube.com/watch?v=AvPjOyeJbBM

Lec 16.13

Predicting Length of the Next CPU Burst

• Adaptive: Changing policy based on past behavior

– Works because programs have predictable behavior

» If program was I/O bound in recent past, it is likely to be I/O bound in future

• We can use exponential moving averaging 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1, where:

– 𝑥𝑛 is the new input data point

– 𝑡𝑛−1 is the previous exponential moving average

– 𝛼 is the smoothing factor (0<𝛼<1)

• 𝛼 large: fast update of n based on new input. 𝛼 = 1 → 𝑡𝑛 = 𝑥𝑛 is equal to the new input
data point at each step

• 𝛼 small: slow update of n based on new input. 𝛼 = 0 → 𝑡𝑛 = 𝑡0 stays constant and not
affected by new input data point

• Appropriate choice of 𝛼 lets 𝑡𝑛 track the input data points while smoothing out sensor noise

Lec 16.14

Predicting Length of the Next CPU Burst: =0.5

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with
initial guess 0 = 10, assuming =0.5

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.5∗6 + 0.5∗10 =
 8

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.5∗4 + 0.5∗8 = 6

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.5∗6 + 0.5∗6 = 6

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.5∗4 + 0.5∗6 = 5

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.5∗13 + 0.5∗5 =
 9

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.5∗13 + 0.5∗9 =
 11

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.5∗13 + 0.5∗11
 = 12

Time Series 101: Exponential Moving Average, A Visual Guide

https://www.youtube.com/watch?v=joHKNtPYtLo

https://www.youtube.com/watch?v=joHKNtPYtLo

Lec 16.15

Predicting the Length of the Next CPU Burst: =0.1 or 0.9

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with initial guess
0 = 10, assuming =0.1.

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.1∗6 + 0.9∗10 = 9.6

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.1∗4 + 0.9∗9.6 = 9.0

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.1∗6 + 0.9∗9.0 = 8.7

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.1∗4 + 0.9∗8.7 = 8.3

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.1∗13 + 0.9∗8.3= 8.7

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.1∗13 + 0.9∗8.7= 9.2

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.1∗13 + 0.9∗9.2= 9.5

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with initial guess
0 = 10, assuming =0.9.

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.9∗6 + 0.1∗10 = 6.4

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.9∗4 + 0.1∗6.4 = 4.2

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.9∗6 + 0.1∗4.2 = 5.8

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.9∗4 + 0.1∗5.8 = 4.2

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.9∗13 + 0.1∗4.2 = 12.1

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.9∗13 + 0.1∗12.1 = 13.0

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.9∗13 + 0.1∗13.0 = 13.0

With low 𝛼 = 0.1, the EMA changes gradually and reacts slowly to new data,
staying closer to the starting value.
With high 𝛼 = 0.9, the EMA responds quickly and closely tracks the latest data
points.

Lec 16.16

Lecture 5 Scheduling Conclusion

• FCFS Scheduling:
– Run jobs in the order of arrival
– Cons: Short jobs can get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all ready

threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least execution time/least remaining execution time
– Pros: Optimal (in terms of average response time)
– Cons: Hard to predict execution time, Unfair

• Priority-Based Scheduling
– Each job is assigned a fixed priority

• Multi-Level Queue Scheduling
– Multiple queues of different priorities and scheduling algorithms

• Multi-Level Feedback Queue Scheduling:
– Automatic promotion/demotion of jobs between queues to approximate SJF/SRTF

Lec 16.17

Summary of Schedulability Analysis Algorithms
Fixed-Priority Scheduling Dynamic Priority Scheduling

Optimal

Scheduling

Algorithm

Rate Monotonic (RM)

Scheduling for implicit

deadline taskset (D=T)

Deadline Monotonic

(DM) Scheduling for

constrained deadline

taskset (D≤T)

Earliest Deadline First

(EDF) Scheduling for

implicit deadline taskset

(D=T)

Earliest Deadline First

(EDF) Scheduling for

constrained deadline

taskset (D≤T)

Schedulability

Analysis

Algorithm

Utilization Bound (UB) test

𝑈 = σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 𝑁(21/𝑁 −

1) (sufficient but not

necessary condition) or

Response Time Analysis

(RTA) (necessary and

sufficient)

𝑅𝑖 = 𝐶𝑖 + ෍

∀𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

≤ 𝐷𝑖

RTA

Response Time Analysis

(RTA) (necessary and

sufficient)

𝑅𝑖

= 𝐶𝑖 + ෍

∀𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

≤ 𝐷𝑖

Utilization Bound (UB)

test 𝑈 = σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 1

(necessary and sufficient)

Density Bound test

∆ = σ𝑖
𝐶𝑖

min(𝐷𝑖,𝑇𝑖)
≤ 1

(sufficient but not

necessary condition)

or Demand Bound

Function (not covered)

IMPORTANT

Lec 16.18

PCP Blocking Time

push-through blocking

• Consider all lower-priority tasks (k∈lp(i)), and the semaphores they can lock (s)

• Select from those semaphores (s) with ceiling higher than or equal to 𝑝𝑟𝑖 𝑖 = 𝑃𝑖

• Take max length of all tasks (k)’s critical sections that lock semaphores (s)

• (The blocking time is valid even for a task that does not require any
semaphores/critical sections, as it may experience push-through blocking.)

	Slide 1: CSC 256: Final Review
	Slide 2: fork()
	Slide 3: exec()
	Slide 4: wait()
	Slide 5: L2 Summary
	Slide 6: Race Condition
	Slide 7: Lock to Protect a Critical Section
	Slide 8: Semaphores
	Slide 9: Deadlock
	Slide 10: Banker's algorithm: preliminaries
	Slide 11: Banker’s algorithm
	Slide 12: Video tutorial of Banker's algorithm I
	Slide 13: Predicting Length of the Next CPU Burst
	Slide 14: Predicting Length of the Next CPU Burst: =0.5
	Slide 15: Predicting the Length of the Next CPU Burst: =0.1 or 0.9
	Slide 16: Lecture 5 Scheduling Conclusion
	Slide 17: Summary of Schedulability Analysis Algorithms
	Slide 18: PCP Blocking Time

