CSC 256: Final Review

Zonghua Gu
Department of Computer Science,
Hofstra University

fork()

A function without any arguments
— ret = fork()

Both parent process and child process continue to
execute the instruction following the fork()

TL_?dr)eturn value indicates which process it is (parent or
chi

— ret > 0 (pid of child process): code running in the parent
process,

— ret == 0: code running in the newly-created child process

— ret ==-1: an error or failure occurred when creating new
process

Fun analogy: imaging you are a process after fork, but you
don’t know if you are the child or parent process, as if you
are running inside of a Matrix. But you can identify which
process you are running, by looking up to the sky and see
the ret value from forka

Child process is a duplicate of its parent process and has
same

— instructions, data, stack
Child and parents have different
— PIDs, memory spaces

parent

!

-

DATA

TEXT (instructions) user

space

[Resources (open files, etc)] space

kemel

fork() returns the PID
of the created child in
the parent

user
space

[Resources (open files, efc)] Space

kemel

v

-

fork() returns @ in the
the created child

Resources (open files, aic)

The child process is a
copy of the parent
.

Lec 16.2

user
space

kemel
space

exec()

e exec(cmd, argv) replaces the current process image with a new
process image specified by the path to an executable file.

— It does not return. It starts to execute the new program.

e There is a family of exec(), e.g., execl(), execvp()

— execl() takes a variable number of arguments that represent the
program name and its arguments.

» int execl(const char *path, const char *arg, ..., NULL);

— execvp() takes an array of arguments instead of a variable-length
argument list

» int execvp(const char *file, char *const argv(]);

rr

d B

Program 2
executable

user user
TEXT (instructions) space

exec()]—) o

Program 1
executable

TEXT (instructions)
DATA

—

kernel
Resources (open files, etc) space

[Resuumes (open files, etc)]

Lec 16.3

wait()

e Let the parent process wait for the completion of the
child process

— pid = wait()
e wait() suspends the execution of the calling process until
one of its child processes terminates.

— When a child process terminates, wait() retrieves its
termination status and allows the system to clean up the [fork()]
resources associated with that child. If the parent does not

call wait() to collect the child's exit status, the child _
becomes a zombie process, which means its PCB persists [wait()] [

in the process table, even though it is no longer running.

» While zombie processes do not consume processor or
memory resources, they occupy entries in the process
table. The process table is of finite size, and if too many
zombie processes accumulate, it can prevent new
processes from being created.

— If there are multiple child processes, wait() does not allow
the parent to specify which child process to wait for.
waitpid(pid) is an advanced version of wait. It allows the
parent process to specify which child process (or group of
processes) it wants to wait for.

Lec 16.4

L2 Summary

 Processes
— In OS, process is a running program and has an address space
— We use process APl to create and manage processes

— fork() to duplicate a process, exec() to replace the command

* [hreads:

— Multiple threads per process / address space
— Kernel threads are much more efficient than processes, but they're still not cheap

— User-level threads are very efficient

Lec 16.5

Race Condition

Incrementing counter has 3 instructions in assembly
code:

Id w8, [x9]: Read the value of counter at memory
address x9 into register w8

add w8, w8, #0x1: increment the value of register w8 by
1

st w8, [x9]: write the new value of counter in register w8
to memory address x9

When both threads read the same value of counter
before writing to it, counter is incremented only by 1
instead of by 2!

Note: threads in the same process share the same
memory space, but have separate registers. So in both
threads, [x9] refers to the same memory address at x9,
but w8 refers to different registers in each thread.

counter++;
Id w8, [x9] Id w8, [x9]
add w8, w8, #0x1 add w8, w8, #0x1
st w8, [x9] st w8, [x9]
Thread 1 Thread 2

Thread 1

Id w8, [x9]
add w8, w8, #0x1

st w8, [x9]

counter

100
101

100
101

101

101

Thread 2

Id w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Lec 16.6

« Critical section: a piece of code that accesses a shared resource, usually
a variable or data structure

Lock to Protect a Critical Section

Thread 1

Id w8, [x9]

st w8, [x9]

add w8, w8, #0x1

Lock it

» Correctness of a concurrent program:
Mutual exclusion: Only one thread in critical section at a time

Progress (deadlock-free): If several simultaneous requests, must

allow one to proceed

Count

Value Thread 2
100
101
101
101 Id w8, [x9]
102 add w8, w8, #0x1
102 st w8, [x9]

Lock it

Bounded waliting (starvation-free): Must eventually allow each waiting

thread to enter

Lec 16.7

Semaphores

Semaphores were proposed by a Dutch computer scientist Dijkstra in late 60s

Definition: a semaphore has a non-negative integer value and supports the following
operations:

— sem_t sem or semaphore sem: Declare a semaphore
— sem_init(&sem, 0, N): Initialize the semaphore to any non-negative value

— sem_wait(&sem): also called down() or P(), an atomic operation that decrements it by 1 if
non-zero. If the semaphore is equal to 0, go to sleep waiting to be signaled by another
thread

— sem_post(&sem): also called signal(), up() or V(), an atomic operation that increments it by 1,
and wakes up a waiting/sleeping thread, if any

Semaphores are also called sleeping locks, since the waiting thread goes to sleep instead
of spin-waiting
— If the waiting time is long, then sleeping is more efficient since the thread gives up the CPU

to other threads, but incurs system call (kernel) overhead to go to sleep and wake up; if
waiting time is short, then spinlock may be more efficient since it does not involve the kernel.

— Spinlock may cause starvation, e.g,, if the waiting thread has higher priority than the signaler
thread under fixed priority scheduling (but not under round-robin scheduling).

lec16.8 8

Deadlock

Definition: A set of processes are sa.lo.l to be in a deadlock state Wanted Resource Held
when every process in the set is waiting for an event that can be 1
caused only by another process in the set

Conditions for Deadlock
Mutual exclusion

— Only one process at a time can use a given resource s Resource
Hold-and-wait 2 Wanted

— processes hold resources allocated to them while waiting for
additional resources

No preemption

— Resources cannot be forcibly removed from processes that are
holding them; can be released only voluntarily by each holder

Circular wait

— There exists a circle of processes such that each holds one or
more resources that are being requested by next process in
the circle

Lec 16.9

Banker's algorithm: preliminaries

» Compute Need = Max — Allocation

 To determine if a process i can run to completion, compare two
vectors:
— (Need): row i in the Need Matrix of unmet resource needs
— A available resources vector A

— (Need), <= A if Need; <= A, for all resource types |

Lec 16.10

Banker’s algorithm

Algorithm CheckSafety() for checking to see if a state is safe:
1. Compute Need = Max — Allocation

2. Look for a process i that can run to completion by finding an unmarked row i with
(Need). < A. If no such row exists, system will eventually deadlock since no process
can run to completion

3. Assume process i requests all resources it needs and finishes. Mark process i as
completed, free all its resources and add the i-th row of Allocation to the Available
vector

4. Repeat steps 1 and 2 until either all processes are marked as completed (initial state
is safe), or no process is left whose resource needs can be met (there is a deadlock,
so initial state is unsafe).

Lec 16.11

Video tutorial of Banker's algorithm |

» Deadlock avoidance https://www.youtube.com/watch!v=AvP|Oye|bBM
Total resources: [§, 5, 9, 8]

| RO has 8 instances, R| has 5 instances, R2 has 9 instances, R3 has 8 instances g RO has 8 instances, R| has 5 instances, R2 has 9 instances, R3 has 7 instances
- Allocation Max Need - Allocation Max Need

-mmmm -mmlmm -IEIEIEE -mnlmm -mnlmm -mnlmm

oLl B < B 7 0) 3 A AERE
I GO iz 210 2 5 3 [0 NS F G EEEE Fe iz e
Rfario ORI Bl 2 s 1 0 5 | [RANSNSISINY maam e R E AN EY RN
e B S 0 e Rt [O R T T [0 4 O o - e e e
7oLl 00 NG SERIUTIE R L e e P Ol ZIlG 83

2 & .
SRR - - - - g3 76

a 7 A A : mmmm
P i
c._

]

1

No, it is NOT safe ' Lr 3 \
I

Available

Available

Lec 16.12

https://www.youtube.com/watch?v=AvPjOyeJbBM

Predicting Length of the Next CPU Burst
- Adaptive: Changing policy based on past behavior

— Works because programs have predictable behavior
» If program was |/O bound in recent past, it is likely to be /O bound in future

« We can use exponential moving averaging t,, = ax, + (1 — a)t,_1, where:
- X, is the new input data point
— t,,_1 is the previous exponential moving average

- a is the smoothing factor (O<a<1)
* « large: fast update of 1, based on new input. @« = 1 - t,, = x,, is equal to the new input
data point at each step
* «a small: slow update of 1, based on new input. @« = 0 = t,, = t, stays constant and not
affected by new input data point
* Appropriate choice of a lets t,, track the input data points while smoothing out sensor noise

Lec 16.13

Predicting Length of the Next CPU Burst: a.=0.5

« Compute t,, = ax,, + (1 — a)t,_1 with
initial guess 5= 10, assuming ot=0.5 T
t; = ax; + (1 —)ty = 0.5%6 + 0.5%10 = |
8 °T
t, =ax, + (1 — a)t; = 0.5%4 + 0.5+8 =6 T s
t3 = aXj3 + (1 — C()tz = 0.5x6 4+ 0.5x6 =6 o |
ty =ax, + (1 —a)t; = 0.5%4 4+ 0.5x6 =5 . - N— . , . .
te = axs + (1 — a)t, = 0.5%13 + 0.5%5 =
9 {SPLU burst () & 3 ! 13 13 13
te = axg + (1 — a)ts = 05%13 + 059 = 2= 2 = = =& = % 1 =
11
tr =ax; + (1 —a)tg = 0.5%¥13 + 0.5%11
=12

Time Series 101: Exponential Moving Average, A Visual Guide
https://www.youtube.com/watch?v=joHKNtPYtLo

Lec 16.14

https://www.youtube.com/watch?v=joHKNtPYtLo

Predicting the Length of the Next CPU Burst: a.=0.1 or 0.9

Compute t,, = ax, + (1 — a)t,,—; with initial guess ®
T, = 10, assuming a=0.1.

ti =ax; + (1 —a)ty = 0.1x6 + 0.9x10 = 9.6 *
t, = ax, + (1 —a)t; = 0.1¥4 + 0.9¥9.6 = 9.0 *
ty =axz; + (1 —a)t, = 0.1x6 + 0.9%¥9.0 = 8.7 *
ty = axy, + (1 —a)t; = 0.1x4 + 0.9%x8.7 = 8.3 y
ts = axs + (1 — a)t, = 0.1%13 + 0.9¥8.3= 8.7 *
te = axg + (1 — a)ts = 0.1%13 + 0.9%¥8.7= 9.2 *
tr =ax; + (1 —a)tg = 0.1x13 + 0.9%¥9.2=9.5 °

Compute t,, = ax,, + gl — a)t,_1 with initial guess
To= 10, assuming a=0.9.

ti =ax; + (1 —a)ty; =096+ 0.1x10 =64

th =ax, + (1 —a)t; = 0.9%4 4+ 0.1x6.4 = 4.2

t; =ax3 + (1 —a)t, =096 + 0.1x4.2 =5.8

ty =ax, + (1 —a)t; = 0.9x4 4+ 0.1x5.8 = 4.2

te = axc + (1 —a)t, = 09+13 4+ 0.1x4.2 =12.1
te = axg + (1 — a)ts; = 0.9x13 + 0.1x12.1 = 13.0
t- =ax; + (1 —a)tg = 09%13 + 0.1x13.0 =13.0

staying closer to the starting value.

points.

With low a = 0.1, the EMA changes gradually and reacts slowly to new data,

With high a = 0.9, the EMA responds quickly and closely tracks the latest data

Lec 16.15

Lecture 5 Scheduling Conclusion

FCFS Scheduling:

— Run jobs in the order of arrival
— Cons: Short jobs can get stuck behind long ones

Round-Robin Scheduling:

— %ive (ejach thread a small amount of CPU time when it executes; cycle between all ready
threads

— Pros: Better for short jobs
Shortest Job First (5JF)/Shortest Remaining Time First (SRTF):
— Run whatever job has the least execution time/least remaining execution time
— Pros: Optimal (in terms of average response time)
— Cons: Hard to predict execution time, Unfair
Priority-Based Scheduling
— Each job is assigned a fixed priority
Multi-Level Queue Scheduling
— Multiple queues of different priorities and scheduling algorithms
Multi-Level Feedback Queue Scheduling:

— Automatic promotion/demotion of jobs between queues to approximate SJF/SRTF

Lec 16.16

Summary of Schedulability Analysis Algorithms ‘

Fixed-Priority Scheduling

Dynamic Priority Scheduling

Optimal
Scheduling
Algorithm

Rate Monotonic (RM)
Scheduling for implicit
deadline taskset (D=T)

Deadline Monotonic
(DM) Scheduling for
constrained deadline
taskset (D<T)

Earliest Deadline First
(EDF) Scheduling for
implicit deadline taskset
(D=T)

Earliest Deadline First
(EDF) Scheduling for

constrained deadline

taskset (D<T)

Schedulability
Analysis
Algorithm

Utilization Bound (UB) test

=¥V Cl < NQ2UN —

1) (sufﬂoent but not
necessary condition) or

Response Time Analysis
(RTA) (necessary and

sufficient)

neie 3 [

RTA
Response Time Analysis
(RTA) (necessary and
sufficient)
R;

R;

-ar 3 [

Vjehp(i)
<D

Utilization Bound (UB)
test U = Y4 C‘

(necessary and sufﬂoent)

Density Bound test

(sufficient but not
necessary condition)
or Demand Bound
Function (not covered)

Lec 16.1/

PCP Blocking Time

A given task ¢ is blocked (or delayed) by at most one critical section of any

lower priority task locking a semaphore with priority ceiling greater than or
equal to the priority of task 2. We can explain that mathematically using
the notation:

B; = max CSk.s
{k,s | k€lp(i) N s€usedby(k) A ceil(s)>pri(i)}

Consider all lower-priority tasks (k€Ip(i)), and the semaphores they can lock (s)

Select from those semaphores (s) with ceiling higher than or equal to pri(i) = P;

Take max length of all tasks (k)’s critical sections that lock semaphores (s)

(The blocking time is valid even for a task that does not require any
semaphores/critical sections, as it may experience push-through blocking.)

Lec 16.18

	Slide 1: CSC 256: Final Review
	Slide 2: fork()
	Slide 3: exec()
	Slide 4: wait()
	Slide 5: L2 Summary
	Slide 6: Race Condition
	Slide 7: Lock to Protect a Critical Section
	Slide 8: Semaphores
	Slide 9: Deadlock
	Slide 10: Banker's algorithm: preliminaries
	Slide 11: Banker’s algorithm
	Slide 12: Video tutorial of Banker's algorithm I
	Slide 13: Predicting Length of the Next CPU Burst
	Slide 14: Predicting Length of the Next CPU Burst: =0.5
	Slide 15: Predicting the Length of the Next CPU Burst: =0.1 or 0.9
	Slide 16: Lecture 5 Scheduling Conclusion
	Slide 17: Summary of Schedulability Analysis Algorithms
	Slide 18: PCP Blocking Time

