
CSC 112: Computer Operating Systems
Lecture 6

Real-Time Scheduling II

Department of Computer Science,

Hofstra University

Acknowledgement: Lecture slides based on Buttazzo, Hard Real-Time Computing Systems

2

Outline

• Part I

– Introduction to RTOS and Real-Time Scheduling

– Fixed-Priority Scheduling

– Earliest Deadline First Scheduling

– Least Laxity First (LLF) Scheduling

– Preemptive vs. Non-Preemptive Scheduling

• Part II

– Multiprocessor Scheduling

– Resource Synchronization Protocols (for Fixed-Priority Scheduling)

3

Multiprocessor Scheduling

4

Multiprocessor models

• Identical multiprocessors:

– each processor has the same computing capacity

• Uniform multiprocessors:

– different processors have different computing capacities

• Heterogeneous multiprocessors:

– each (task, processor) pair may have a different computing capacity

• MP scheduling

– Many NP-hard problems, with few optimal results, mainly heuristic approaches

– Only sufficient schedulability tests

5

Identical multiprocessors: each processor has the same speed

Multiprocessor Models

P1 P2 P3

Task T1 Task T2

6

Uniform multiprocessors: different processors have different speeds

Multiprocessor Models

P1 P2 P3

Task T1 Task T2

x

x/2 x/3

y y/2 y/3

speed = 1 speed = 2 speed = 3

7

Multiprocessor Models

Heterogeneous multiprocessors: each (task, processor) pair may have a

different relative speed, due to specialized processor architectures

x/2 x/3

x

CPU DSP chip Graphics co-processorGraphics-

intensive task:

Number-crunching

task:

x/2 x/3

y y
1.5 y

Task T1 Task T2

8

• Global scheduling

– All ready jobs are kept in a common (global) queue; when selected for
execution, a job can be dispatched to an arbitrary processor, even after
being preempted

• Partitioned scheduling

– Each task may only execute on a specific processor

CPU1

CPU2

CPU3







 

Global vs partitioned scheduling

CPU1

CPU2

CPU3









Global scheduling:

Single system-wide queue
Partitioned scheduling:

per-processor queues

9

Global Scheduling vs. Partitioned Scheduling

• Global Scheduling

• Pros:

– Runtime load-balancing across cores

» More effective utilization of
processors and overload
management

– Supported by most multiprocessor
operating systems

» Windows, Linux, MacOS...

• Cons:

– Low schedulable utilization

– Weak theoretical framework

• Partitioned Scheduling

• Pros:

– Mature scheduling framework

– Uniprocessor scheduling theory are
applicable on each core; uniprocessor
resource access protocols (PIP, PCP…)
can be used

– Partitioning of tasks can be done by
efficient bin-packing algorithms

• Cons:

– No runtime load-balancing; surplus
CPU time cannot be shared among
processors

10

Partitioned Scheduling

• Scheduling problem reduces to:

Bin-packing
problem

Uniprocessor
scheduling
problem

+

NP-hard

Various heuristic algorithms
First Fit (FF)
Best Fit (BF)
Worst Fit (WF)
Next Fit (NF)
…

Well-known

EDF
U ≤ 1


 




RM
(RTA)

...

11

Partitioned Scheduling

• Bin-packing algorithms:

– The problem concerns packing objects of varying sizes in boxes (”bins”) with some optimization
objective, e.g., minimizing number of used boxes (best-fit), or minimizing the maximum workload
for each box (worst-fit)

• Application to multiprocessor scheduling:

– Bins are represented by processors and objects by tasks

– The decision whether a processor is ”full” or not is derived from a utilization-based feasibility test.

• Since optimal bin-packing is a NP-complete problem, partitioned scheduling is also NP-
complete

• Example: Rate-Monotonic-First-Fit (RMFF): (Dhall and Liu, 1978)

– Let the processors be indexed as 1, 2, …

– Assign the tasks to processor in the order of increasing periods (that is, RM order)

– For each task 𝜏𝑖 , choose the lowest previously-used processor j such that 𝜏𝑖 , together with all
tasks that have already been assigned to processor j, can be feasibly scheduled according to the
utilization-based schedulability test

– Additional processors are added if needed

12

Assumptions for Global Scheduling

• Identical multiprocessors

• Work-conserving:

– At each instant, the highest-priority jobs that are eligible to execute are selected for
execution upon the available processors

– No processor is ever idle when the ready queue is non-empty

• Preemption and Migration support

– A preempted task can resume execution on a different processor with 0 overhead, as
cost of preemption/migration is integrated into task WCET

• No job-level parallelism

– the same job cannot be simultaneously executed on more than one processor, i.e., we do
not consider parallel programs that can run on multiple processors in parallel

13

Source of Difficulty

• The “no job-level parallelism” assumption leads to difficult scheduling problems

• “The simple fact that a task can use only one processor even when several
processors are free at the same time adds a surprising amount of difficulty to the
scheduling of multiple processors” [Liu’69]

CPU1

CPU2

CPU3

14

Global scheduling example

CPU1

CPU2

CPU3

Global ready queue

(ordered according to a given policy, e.g.,

RM/DM/EDF)







The first m jobs in the queue are scheduled upon the m CPUs

 

15



CPU1

CPU2

CPU3





When a job 𝝉𝟑 finishes its execution, the next job in the
queue 𝝉𝟒 is scheduled on the available CPU

   



Global scheduling example

Global ready queue

(ordered according to a given policy, e.g.,

RM/DM/EDF)

16

CPU1

CPU2

CPU3





When a new higher-priority job 𝝉𝟑 arrives in its next period
T3, it preempts the job with lowest priority 𝝉𝟒 among the
executing ones

 





  



Global scheduling example

Global ready queue

(ordered according to a given policy, e.g.,

RM/DM/EDF)

17

CPU1

CPU2

CPU3





When another job 𝝉𝟏 finishes its execution, the preempted job
𝝉𝟒 can resume its execution. Net effect: 𝝉𝟒 “migrated” from
CPU3 to CPU1

 







   



Global scheduling example

Global ready queue

(ordered according to a given policy, e.g.,

RM/DM/EDF)

18

Global vs. Partitioned

• Global (work-conserving) and partitioned scheduling algorithms
are incomparable:

– There are tasksets that are schedulable with a global scheduler, but
not with a partitioned scheduler, and vice versa.

19

Global vs Partitioned (FP) Scheduling

• A taskset schedulable with global scheduling, but not partitioned

scheduling. System utilization 𝑈 =
1

2
+

2

3
+

2

3
= 1.83

• Global FP scheduling is schedulable with priority assignment p1>p2>p3
(or p2>p1>p3)

• Partitioned scheduling is unschedulable, since assigning any two tasks
to the same processor will cause that processor’s utilization to
exceed 1, so the bin-packing problem has no feasible solution

A feasible execution trace under global scheduling

T2 runs always on P2, T3 runs always on P1, T1 runs on both

P1 and P2 with task migration across different periods

Task T=D C Prio

T1 2 1 H

T2 3 2 M

T3 3 2 L

20

Global vs Partitioned (FP) Scheduling
• A taskset schedulable with partitioned scheduling, but not global scheduling. System

utilization 𝑈 =
4

6
+

7

12
+

4

12
+

10

24
= 2.0, hence the two processors must be fully

utilized with no possible idle intervals
• Partitioned FP scheduling with RM

priority assignment (p1>p2>p3>p4) is
schedulable. T1, T3 assigned to
Processor 1; T2, T4 assigned to
Processor 2. Both processors have
utilization 1.0, and harmonic task
periods

• Global FP scheduling with RM priority
assignment p1>p2>p3>p4 is
unschedulable. Compared to
partitioned scheduling, the difference is
at time 7, when T3 (with higher
priority than T4) runs on Processor 2.
This causes idle intervals on Processor
1 [10,12] and [22,24], since only one
task T4 is ready during these time
intervals. Since taskset 𝑈 = 2.0 on 2
processors, any idle interval will cause
the taskset to be unschedulable

A feasible execution trace

under partitioned scheduling

Task T=D C Prio

T1 6 4 4(H)

T2 12 7 3

T3 12 4 2

T4 24 10 1(L)

I
d
le

I
d
le

An infeasible execution trace

under global scheduling

At time 7, T3 runs on Processor 2

At time 7, T4 runs on Processor 2

21

Difficulties of Global Scheduling

• Dhall’s effect

– With RM, DM and EDF, some low-utilization task sets can be unschedulable
regardless of how many processors are used.

• Scheduling anomalies

– Decreasing task execution time or increasing task period may cause deadline
misses

• Hard-to-find worst-case

– The worst-case does not always occur when a task arrives at the same time as all
its higher-priority tasks

• Dependence on relative priority ordering (omitted)

– Changing the relative priority ordering among higher-priority tasks may affect
schedulability for a lower-priority task

22

Dhall’s effect

• Global RM/DM/EDF can fail at very low utilization

• Example: m processors, n=m+1 tasks. Tasks 𝜏1, … , 𝜏𝑚 are light tasks, with small 𝐶𝑖 = 1,
𝑇𝑖 = 𝐷𝑖 = 𝑇 − 1; Task 𝜏𝑚+1 is a heavy task, with large 𝐶𝑖 = 𝑇, 𝑇𝑖 = 𝐷𝑖 = 𝑇. 𝑇 > 1 is
some constant value

• For global RM/DM/EDF, Task 𝜏𝑚+1 has lowest priority, so 𝜏1, … , 𝜏𝑚 must run on m
processors starting at time 0, causing 𝜏𝑚+1 to finish at time 𝑇 + 1, miss its deadline at 𝑇

• One solution: assign higher priority to heavy tasks

– If heavy task 𝜏𝑚+1 is assigned the highest priority, then it runs from time 0 to 𝑇 and meets
its deadline; The light tasks can run on other processors and meet their deadlines as well

T

Deadline

Miss

m light tasks
1 heavy task
Utot→1

23

Hard-to-Find Worst-Case
• For uniprocessor scheduling, the worst case occurs when all tasks are initially released at time 0

simultaneously, called the critical instant (recall Slide “Response Time Analysis (RTA)” in L6-
RTScheduling I)

• This is no longer true for multiprocessor scheduling, as the worst-case interference for a task does
not always occur at the critical instant time 0, when all tasks are initially released simultaneously

– Response time for task 𝜏3 is maximized for its 2nd job 𝜏3,2 (8-4=4), which does not arrive at the same
time as its higher priority tasks; not for its 1st job 𝜏3,1(3-0=3), which arrives at the same time as its
higher priority tasks

24

MP Scheduling Anomalies

• Decrease in processor demand (decreasing task execution time
or increasing task period) may cause deadline misses!

• Anomaly 1

–Decrease in processor demand from higher-priority tasks can
increase the interference on a lower-priority task because of change
in the time when the tasks execute

• Anomaly 2

–Decrease in processor demand of a task negatively affects the task
itself because change in the task arrival times cause it to suffer
more interference

25

Scheduling Anomaly Example 1

Task T=D C Util Prio

a 3 2 0.67 H

b 4 2 0.5 M

c 12 8 0.67 L

Task T=D C Util Prio

a 4 2 0.5 H

b 4 2 0.5 M

c 12 8 0.67 L

Interference of 2 Interference of 1 Interference of 1

Interference of 2 Interference of 2 Interference of 2

12

14

• Three tasks on two processors under global scheduling

• With Task a’s period 𝑇𝑎 = 3, system utilization ∑𝑈𝑖 = 1.83. WCRT of task c is 𝑅𝑐 = 12 ≤ 𝐷𝑐 = 12.
𝑅𝑐 = 𝐶𝑐 + 𝐼𝑐 = 8 + 𝐼𝑐 , where 𝐼𝑐 = 2 + 1 + 1 = 4 is interference by higher priority tasks a and b.
(Task c experiences inference when both processors are busy executing higher priority tasks a and b.)
Task c is schedulable but saturated, as any increase in its WCET or interference would make it
unschedulable.

• With Task a’s period 𝑇𝑎 = 4, system utilization ∑𝑈𝑖 = 1.67 is reduced. But WCRT of task c increases:
𝑅𝑐 = 14 > 𝐷𝑐 = 12. 𝑅𝑐 = 8 + 𝐼𝑐 where 𝐼𝑐 = 2 + 2 + 2 = 6, since execution segments of tasks a
and b on two processors are aligned in time, thus causing more interference to task c

0

0

Task c

deadline

at 12

Task c deadline

at 12

26

Scheduling Anomaly Example 2

Interference of 2 Interference of 1

• Three tasks on two processors under global scheduling

• With Task c’s period 𝑇𝑐 = 10, system utilization ∑𝑈𝑖 = 1.8. WCRT of task c is 𝑅𝑐 = 10 ≤ 𝐷𝑐 =
10. 𝑅𝑐 = 𝐶𝑐 + 𝐼𝑐 = 7 + 3 = 10, where 𝐼𝑐 = 2 + 1 = 3 is interference by higher priority tasks a
and b. Its 1st job meets its deadline at time 10. This schedule repeats in future periods, hence task
c is schedulable but saturated, as any increase in its WCET or interference would make it
unschedulable.

Task T=D C Util Prio

a 4 2 0.5 H

b 5 3 0.6 M

c 10 7 0.7 L

Task c’s 1st job’s

deadline at 10

27
Task c’s 1st job’s deadline at 11

Scheduling Anomaly Example 2

Interference of 2 Interference of 1

• With Task c’s period 𝑇𝑐 = 11, system utilization ∑𝑈𝑖 = 1.74 is reduced. WCRT of task c is 𝑅𝑐 =
12 > 𝐷𝑐 = 10. Its 1st job has response time 𝐶𝑐 + 𝐼𝑐 = 7 + 3 = 10 ≤ 𝐷𝑐 = 11, where 𝐼𝑐 = 2 +
1 = 3, but this is not task c’s WCRT.

• Its 2nd job has response time 𝐶𝑐 + 𝐼𝑐 = 7 + 5 = 12 > 𝐷𝑐 = 11, where 𝐼𝑐 = 1 + 2 + 2 = 5. The
2nd job finishes at time 11+12=23, and misses its deadline at time 22.

• Another example where the worst-case interference for task c does NOT occur at time 0, when
all tasks are initially released at time 0 simultaneously

Task T=D C Util Prio

a 4 2 0.5 H

b 5 3 0.6 M

c 11 7 0.64 L
0

c

20

b

a c

23

Interference of 1 Interference of 2 Interference of 2

Task c’s 2nd job’s deadline at 22

28

Resource Synchronization Protocols

(for Fixed-Priority Scheduling)

29

Resource Sharing

• When two tasks access shared resources
(variables), mutexes (or binary semaphores) are
used to protect critical sections. Each Critical
Section (CS) must begin with lock(s) and end with
unlock(s)

• A task waiting for a shared resource is blocked on
that resource. Otherwise, it proceeds by entering
the critical section and holds the resource

• Tasks blocked on the same resource are kept in a
queue. When a running task invokes lock(s) when s
is already locked, it enters the waiting state, until
another task unlocks s

write readint x;
int y;

lock(s)

x = 3;

y = 5;

unlock(s)

lock(s)

a = x+1;

b = y+2;

c = x+y;

unlock(s)

Shared resources

(shared variables)

30

Blocking Delay

0 2 4 6 8 10 12 14 16 18

• Lower Priority (LP) tasks can cause blocking delay to Higher Priority (HP) tasks due to resource sharing
– HP tasks may cause preemption delay to LP tasks, but not blocking delay

• Example: Two tasks 𝜏1, 𝜏3 with priority ordering 𝑃1 > 𝑃3. They both require semaphore s (which protects
the red CS)

• If HP task 𝜏1 tries to lock s that is held by LP task 𝜏3, 𝜏1 is blocked until 𝜏3 unlocks s, so 𝜏1 experiences a
blocking delay Δ.

– Since CS is typically very short, it seems this blocking time delay Δ. is bounded by the longest critical section in
lower-priority tasks?

• No, blocking delay may be unbounded!

𝜏1

𝜏3

𝜏1 preempts 𝜏3

2

𝜏3 blocks 𝜏1 𝜏1 preempts 𝜏3

when 𝜏3 exits CS

Blocking Delay Δ (short, bounded)

𝑑1

priority

31

Priority Inversion I

0 2 4 6 100 102 104 106 108

𝜏1 preempts 𝜏3 𝜏3 blocks 𝜏1

𝜏2 preempts 𝜏3

𝜏1

𝜏2

𝜏3

𝜏2 finishes

𝜏1 preempts 𝜏3

when 𝜏3 exits CS

Blocking Delay Δ (long, unbounded)

• Three tasks 𝜏1, 𝜏2, 𝜏3 with priority ordering 𝑃1 > 𝑃2 > 𝑃3. 𝜏1, 𝜏3 both require semaphore s, and 𝜏2 does not require any
semaphore

• t=1: LP task 𝜏3 locks s and enters CS
• t=2: HP task 𝜏1 is released and preempts 𝜏3
• t=3: HP task 𝜏1 tries to lock s, but gets blocked by 𝜏3 holding s
• t=4.2: Medium Priority (MP) task 𝜏2 is released and preempts 𝜏3
• t=100: MP task 𝜏2 finishes execution after running for its WCET 𝐶2; 𝜏3 resumes execution in CS
• t=102: LP task 𝜏3 unlocks s; HP task 𝜏1 preempts 𝜏3 and finally locks s, after experiencing a long, unbounded

blocking delay Δ, and misses its deadline 𝑑1
• This is priority inversion, since MP task 𝜏2 causes a long blocking delay to HP task 𝜏1, even though they do not

share any resources (semaphores)

WCET 𝐶2 of 𝜏2

priority 𝑑1

32

Priority Inversion II

𝜏1 preempts 𝜏3 𝜏2 preempts 𝜏3

𝜏1

𝜏2

𝜏3

𝜏2 finishes

𝜏1 preempts 𝜏3

when 𝜏3 exits CS

Blocking Delay Δ (long, unbounded)

• (This scenario is more realistic and likely than previous one, as MP task 𝜏2 may be released anytime during 𝜏1’s execution
after it preempts 𝜏3. In the previous example, 𝜏2 is released during 𝜏3’s critical section, which is very short.)

• t=1: LP task 𝜏3 locks s and enters CS

• t=2: HP task 𝜏1 is released and preempts 𝜏3

• t ∈ [2, 3]: MP task 𝜏2 is released, but cannot run since HP task 𝜏1 is running

• t=3: HP task 𝜏1 tries to lock s, but gets blocked by 𝜏3 holding s; MP task 𝜏2 starts running

• t=98.5: MP task 𝜏2 finishes execution after running for its WCET 𝐶2; 𝜏3 resumes execution in the CS

• t=102: LP task 𝜏3 unlocks s; HP task 𝜏1 preempts 𝜏3 and finally locks s, after experiencing a long, unbounded blocking
Delay Δ

0 2 4 6 100 102 104 106 108

priority

𝜏2 released

𝑑1

33

Deadlocks
• Classic deadlock scenario: Two tasks 𝜏1 and 𝜏2 lock two semaphores s1, s2 in opposite

order (s1 protects blue CS A and s2 protects pink CS B)

– HP task 𝜏1 enters blue CS A before pink CS B: …lock(s1)…lock(s2)… unlock(s2)…unlock(s1)…

– LP task 𝜏2 enters pink CS B before blue CS A: …lock(s2)…lock(s1)… unlock(s1)…unlock(s2)…

– LP task 𝜏2 runs first and locks s2

– HP task 𝜏1 starts running and locks s1, then tries to lock s2, gets blocked by 𝜏2

– 𝜏2 starts running and tries to lock s1, but 𝜏1 holds s1. Circular waiting → deadlock

s1

s2

s2

s1

34

Priority Inheritance Protocol (PIP)

0 2 4 6 8 10 12 14 16 18

𝝉𝟑 runs at 𝝉𝟏’s priority

𝜏1

𝜏2

𝜏3

𝜏1 preempts 𝜏3 𝜏3 blocks 𝜏1

Blocking Delay Δ (short, bounded)

𝜏1 preempts 𝜏3

when 𝜏3 exits CS

• In 1997, this bug caused the Mars pathfinder to freeze up occasionally and then starts working
again. Fixed by uploading a software patch enabling Priority-Inheritance Protocol (PIP)

• A task 𝜏𝑖 in a CS increases its priority, if it is holding a lock s and blocks other higher priority tasks,
by inheriting the highest priority of all higher-priority tasks 𝜏𝑘 blocked waiting for lock s

• 𝑃𝜏𝑖 holding 𝑠 = max 𝑃𝑘 𝜏𝑘 blocked on 𝑠

• t=3: HP task 𝜏1 tries to enter CS, gets blocked since LP task 𝜏3 is in CS; 𝜏3 inherits 𝜏1’s high
priority, so MP task 𝜏2 cannot pre-empt 𝜏3, which finishes its CS, and then 𝜏1 can run after a
short, bounded Blocking Delay Δ (regardless of when 𝜏2 is released at t ∈ [2, 3] or t>3)

priority 𝑑1

35

Blocking Time under PIP

• Under PIP, task 𝜏𝑖 may experience two types of
blocking delays:

– Direct blocking: 𝜏𝑖 tries to lock semaphore s that is
already locked

– Push-through blocking: 𝜏𝑖 blocked by lower-priority
task that has inherited a higher-priority (𝜏𝑖 itself may
not need any semaphores)

• Example:
– HP task 𝜏1 experiences direct blocking by LP task 𝜏3

in time interval [𝑡3, 𝑡5]
– MP task 𝜏2 experiences push-through blocking by LP

task 𝜏3 in time interval [𝑡4, 𝑡5]

• PIP analogy: suppose you have checked out a book
from the library and planned to read it in your
spare time. But you got a message from the library
that some VIP, say the university president, just got
in the waiting queue for the book. You should then
hurry up, give the book-reading task a high priority
so it is not preempted by other daily chores, finish
reading it, and return it to the library quickly, so the
VIP is not delayed for a long time.

• Your book-reading task (critical section) initially had
a low priority, but it inherits higher priority of the
VIP as soon as the VIP gets blocked waiting for the
book (shared resource)

LP task 𝜏3’s priority is increased at time 𝑡3 when HP task 𝜏1
tries to lock semaphore s but is blocked by 𝜏3; NOT when
𝜏3 lock s at time 𝑡1

36

PIP Pros and Cons

• Pros:

– It prevents priority inversion

– It is transparent to the programmer

• Cons:

– It does not prevent deadlocks and chained blocking

Deadlock still occurs under PIP

37

PIP Causes Chained Blocking

• Chained blocking: task 𝜏𝑖 can be blocked at most once by each lower priority task

• Theorem: Task 𝜏𝑖 can be blocked at most for the duration of min(𝑛, 𝑚) critical sections

• 𝑛 is the number of tasks with priority lower than 𝜏𝑖

• 𝑚 is the number of locks/semaphores on which 𝜏𝑖 can be blocked

• In this example, Four tasks and three semaphores (s1 protects red CS, s2 protects yellow CS, s3 protects

beige CS). Task 𝜏i is blocked for the duration of min(3,3) = 3 critical sections

B1 B2 B3

2

3

4

1

priority

38

Priority Ceiling Protocol (PCP)

• Assumptions: fixed-priority scheduling; resources required by all tasks are known a
priori at design time (not required by PIP)

• Priority Ceiling Protocol PCP = PIP + ceiling blocking

• PIP still holds: When 𝜏𝑖 is blocked on 𝑠𝑘 , the lower-priority task currently holding 𝑠𝑘
inherits 𝜏𝑖 ’s priority

• Each semaphore is assigned a ceiling, equal to maximum priority of all tasks that
require it: 𝐶 𝑠𝑘 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠𝑘}

• Task 𝜏𝑖 can acquire semaphore 𝑠𝑗 and enter CS only if

– 𝑃𝑖 > max{𝐶 𝑠𝑘 : 𝑠𝑘 locked by other tasks ≠ 𝜏𝑖}, that is, its priority 𝑃𝑖 is strictly higher than the
maximum ceiling of all semaphores (𝑠𝑘) currently held by other tasks; otherwise it is blocked due
to ceiling blocking. (𝑠𝑘 may or may not be the same as 𝑠𝑗)

– Corollary: If 𝑠𝑗 itself is currently held by some task, then 𝜏𝑖 cannot lock 𝑠𝑗 , since 𝑃𝑖 ≤ 𝐶 𝑠𝑗 , as
ceiling of 𝑠𝑗 is at least the priority of 𝜏𝑖 by definition

• Under PCP, a task 𝜏𝑖
may experience ceiling blocking, in addition to direct blocking

and push-through blocking under PIP:
– 𝜏𝑖 tries to lock 𝑠𝑗 , but its priority 𝑃𝑖 is not strictly higher than the maximum ceiling of all

semaphores (𝑠𝑘) currently held by other tasks (𝑠𝑗 itself may be free)

– Ceiling blocking is “preventive blocking”, since a task may be blocked even though the
semaphore it tries to lock is free. This helps to prevent potential deadlocks and chained blocking

39

PCP Example I

• Three tasks 𝜏1, 𝜏2, 𝜏3 with priority ordering 𝑃1 > 𝑃2 > 𝑃3. 𝜏1, 𝜏3 both require
semaphore s, and 𝜏2 does not require any semaphore

– 𝐶 𝑠 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠} = max{𝑃1, 𝑃2} = 𝑃1

• The execution trace is the same as PIP, since PCP includes PIP as part of the
protocol

0 2 4 6 8 10 12 14 16 18

𝝉𝟑 runs at 𝝉𝟏’s priority

𝜏1

𝜏2

𝜏3

𝜏1 preempts 𝜏3 𝜏3 blocks 𝜏1

Blocking Delay Δ (short, bounded)

𝜏1 preempts 𝜏3

when 𝜏3 exits CS

priority 𝑑1

40

PCP Prevents Deadlocks
• Under PCP, 𝐶 𝑠1 = 𝐶 𝑠2 = max{𝑃1, 𝑃2} = 𝑃1. Both

semaphores s1 and s2 have ceiling equal to 𝑃1, since they are all
required by the higher priority task 𝜏1.

– LP task 𝜏2 runs first and locks s2

– HP task 𝜏1 runs and preempts 𝜏2. When 𝜏1 tries to lock s1,
it is blocked since its priority does not exceed ceiling of s2,
i.e., 𝑃1 ≤ 𝑐𝑒𝑖𝑙 𝑠2 = 𝑃1

– 𝜏2 will lock both s2 and s1, and exit both CSes before 𝜏1 can
lock s1 and s2. This prevents circular waiting and deadlock

• Analogous to requiring a philosopher to pick up both forks in
one atomic operation to prevent deadlocks

• Semaphore s1 protects blue CS A and s2 protects
pink CS B

• Classic deadlock scenario (with or without PIP):
Two tasks 𝜏1 and 𝜏2 lock two semaphores in
opposite order:

– LP task 𝜏2 runs first and locks s2

– HP task 𝜏1 starts running and locks s1, then
tries to lock s2, gets blocked by 𝜏2

– 𝜏2 starts running and tries to lock s1, but 𝜏1
holds s1. Circular waiting → deadlock

41

PCP Prevents Chained Blocking

• Three tasks and two semaphores (s1 protects red CS and s2 protects yellow CS)

• 𝐶 𝑠1 = max{𝑃1, 𝑃3} = 𝑃1, 𝐶 𝑠2 = max{𝑃1, 𝑃2} = 𝑃1. Both semaphores s1 and s2 have
ceiling equal to 𝑃1, since they are all required by the highest priority task 𝜏1. At time t1, LP
task 𝜏3 is holding s1 (in red CS). When MP task 𝜏2 tries to lock s2 and enter yellow CS, it is
blocked since its priority does not exceed ceiling of s1, 𝑃2 ≤ 𝐶 𝑠1 = 𝑃1 (ceiling blocking)

• Hence 𝜏3 must unlock s1 before 𝜏2 can lock s2. This prevents possible chained blocking, so
𝜏1 is blocked only once by the red CS. (Under PIP, 𝜏2¨will enter the yellow CS, at time 𝑡1, so
𝜏1 may be blocked twice by both red CS and yellow CS.)

42

PCP Prevents Chained Blocking
the example with chained blocking

under PIP

• Recall the example with chained blocking
under PIP

• Four tasks and three semaphores (s1
protects red CS, s2 protects yellow CS, s3
protects beige CS)

• Under PCP: 𝐶 𝑠1 = max{𝑃1, 𝑃4} = 𝑃1,
𝐶 𝑠2 = max{𝑃1, 𝑃3} = 𝑃1, 𝐶 𝑠3 =
max{𝑃1, 𝑃2} = 𝑃1. All semaphores s1, s2, s3
have ceiling equal to 𝑃1, since they are all
required by the highest priority task 𝜏1.

• Upper fig: While 𝜏4 is holding s1 (in the red
CS), 𝜏3 cannot lock s2, since 𝑃3 ≤ 𝐶 𝑠1 =
𝑃1; and 𝜏2 cannot lock s3, since 𝑃2 ≤
𝐶 𝑠1 = 𝑃1 (ceiling blocking)

• Lower fig: While 𝜏4 is holding s1 (in the red
CS), 𝜏3 cannot lock s2. Later when 𝜏4
releases s1, both 𝜏2 and 𝜏3 are ready, and
𝜏2 locks s3 since it has higher priority than
𝜏3

• Hence PCP prevents chained blocking,
since task 𝜏1 is blocked at most once by a
lower-priority task (either 𝜏4, or 𝜏3, or 𝜏2)

B

1

2

3

4

B

2

3

4

priority

1

priority

43

PCP Example II
• Two tasks τ1, τ2 with priority ordering 𝑃1 = 2 (higher) and 𝑃2 = 1 (lower) and two semaphores s1,

s2. (In the figure below, a thin blue arrow indicates that a task requires a semaphore during its
execution; a solid green arrow indicates that a task is currently holding the required semaphore.)

– 𝐶 𝑠1 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠1} = max{𝑃1} = 2

– 𝐶 𝑠2 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠2} = max{𝑃2} = 1

• While τ1 is holding s1, τ2 cannot lock s2, since 𝑃2 = 1 ≤ 𝐶 𝑠1 = 2 (ceiling blocking)

– In this case PCP is over-conservative, and there are no bad consequences even if we allow τ1 to hold s1
and τ2 to hold s2 simultaneously

• While τ2 is holding s2 (indicated by the thick green arrow), τ1 can lock s1, since 𝑃1 = 2 > 𝐶 𝑠2 = 1

s1C(s1)=2

τ1 (P1=2)

sem Ceil

s1 2

s2 1

Task Prio sems

τ1 2 s1

τ2 1 s2

s2

τ2 (P2=1)

C(s2)=1

44

PCP Example II

s1C(s1)=2

τ1 (P1=2)

sem Ceil

s1 2

s2 1

Task Prio sems

τ1 2 s1

τ2 1 s1, s2

s2

τ2 (P2=1)

C(s2)=1

• Two tasks τ1, τ2 and two semaphores s1, s2

– 𝐶 𝑠1 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠1} = max{𝑃1, 𝑃2} = 2

– 𝐶 𝑠2 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠2} = max{𝑃2} = 1

• While τ1 is holding s1, τ2 cannot lock s2, since 𝑃2 = 1 ≤ 𝐶 𝑠1 = 2 (ceiling blocking)

– In this case PCP is over-conservative, and there are no bad consequences even if we
allow τ1 to hold s1 and τ2 to hold s2 simultaneously

• While τ2 is holding s2, τ1 can lock s1, since 𝑃1 = 2 > 𝐶 𝑠2 = 1

Not at

the same

time

45

PCP Example II

• Two tasks τ1, τ2 and two semaphores s1, s2

– 𝐶 𝑠1 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠1} = max{𝑃1} = 2

– 𝐶 𝑠2 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠2} = max{𝑃1, 𝑃2} = 2

• While τ1 is holding s1, τ2 cannot lock s2, since 𝑃2 = 1 ≤ 𝐶 𝑠1 = 2 (ceiling blocking)

• While τ2 is holding s2, τ1 cannot lock s1, since 𝑃1 = 2 ≤ 𝐶 𝑠2 = 2 (ceiling blocking)

– In this case PCP is over-conservative, and there are no bad consequences even if we
allow τ1 to hold s1 and τ2 to hold s2 simultaneously

s1C(s1)=2

τ1 (P1=2)

sem Ceil

s1 2

s2 2

Task Prio sems

τ1 2 s1, s2

τ2 1 s2

s2

τ2 (P2=1)

C(s2)=2

46

PCP Example II

• Two tasks τ1, τ2 and two semaphores s1, s2

– 𝐶 𝑠1 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠1} = max{𝑃1, 𝑃2} = 2

– 𝐶 𝑠2 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠2} = max{𝑃1, 𝑃2} = 2

• While τ1 is holding s1, τ2 cannot lock s2, since 𝑃2 = 1 ≤ 𝐶 𝑠1 = 2 (ceiling blocking)

• While τ2 is holding s2, τ1 cannot lock s1, since 𝑃1 = 2 ≤ 𝐶 𝑠2 = 2 (ceiling blocking)

– This prevents any potential deadlocks in the future, when τ1, τ2 each holds one of s1, s2
and tries to lock the other (circular waiting)

s1C(s1)=2

τ1 (P1=2)

sem Ceil

s1 2

s2 2

Task Prio sems

τ1 2 s1, s2

τ2 1 s1, s2

s2

τ2 (P2=1)

C(s2)=2

47

PCP Example II

• Three tasks τ1, τ2, τ3 and two semaphores s1, s2

– 𝐶 𝑠1 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠1} = max{𝑃1, 𝑃3} = 3

– 𝐶 𝑠2 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠2} = max{𝑃2, 𝑃3} = 2

• While τ2 is holding s2, τ1 cannot lock s1, since 𝑃1 = 2 ≤ 𝐶 𝑠2 = 2 (ceiling blocking)

– In this case PCP is over-conservative, and there are no bad consequences even if we
allow τ1 to lock s1

• While τ2 is holding s2, τ3 can lock s1, since 𝑃3 = 3 > 𝐶 𝑠2 = 2

s1C(s1)=3

τ1 (P1=2)

sem Ceil

s1 3

s2 3

Task Prio sems

τ1 2 S1

τ2 1 s1, s2

τ3 3 s2

s2

τ2 (P2=1)

C(s2)=2

τ3 (P3=3)

48

PCP Example II

• Three tasks τ1, τ2, τ3 and two semaphores s1, s2

– 𝐶 𝑠1 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠1} = max{𝑃1, 𝑃3} = 3

– 𝐶 𝑠2 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠2} = max{𝑃2, 𝑃3} = 3

• While τ3 is holding s1, τ1 cannot lock s2, since 𝑃1 = 2 ≤ 𝐶 𝑠1 = 3 (ceiling blocking)

• While τ3 is holding s1, τ2 cannot lock s2, since 𝑃2 = 1 ≤ 𝐶 𝑠1 = 3 (ceiling blocking)

– In this case PCP is over-conservative, and there are no bad consequences even if we
allow τ1 to lock s2 and τ2 to lock s2

s1C(s1)=3

τ1 (P1=2)

sem Ceil

s1 3

s2 3

Task Prio sems

τ1 2 S1

τ2 1 s2

τ3 3 s1, s2

s2

τ2 (P2=1)

C(s2)=3

τ3 (P3=3)

49

PCP Example II
• Three tasks τ1, τ2, τ3 and two semaphores s1, s2

– 𝐶 𝑠1 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠1} = max{𝑃1, 𝑃3} = 3

– 𝐶 𝑠2 = max{𝑃𝑗: 𝜏𝑗 uses 𝑠2} = max{𝑃2, 𝑃3} = 3

• While τ2 is holding s2, τ1 cannot lock s1, since 𝑃1 = 2 ≤ 𝐶 𝑠2 = 3 (ceiling blocking)

– This prevents potential chained blocking in the future, when τ1, τ2 each holds one of s1, s2
, and τ3 tries to lock both s1 and s2, and get blocked twice

• While τ2 is holding s2, τ3 cannot lock s1, since 𝑃3 = 3 ≤ 𝐶 𝑠1 = 3 (ceiling blocking)

– In this case PCP is over-conservative, and there are no bad consequences even if we
allow τ3 to lock s1

s1C(s1)=3

τ1 (P1=2)

sem Ceil

s1 3

s2 3

Task Prio sems

τ1 2 S1

τ2 1 s2

τ3 3 s1, s2

s2

τ2 (P2=1)

C(s2)=3

τ3 (P3=3)

50

PCP Blocking Time

push-through blocking

• Consider all lower-priority tasks (k∈lp(i)), and the semaphores they can lock (s)

• Select from those semaphores (s) with ceiling higher than or equal to 𝑝𝑟𝑖 𝑖 = 𝑃𝑖

• Take max length of all tasks (k)’s critical sections that lock semaphores (s)

• (The blocking time is valid even for a task that does not require any
semaphores/critical sections, as it may experience push-through blocking.)

IMPORTANT

51

PCP Pros and Cons

• Pros:

– It prevents priority inversion, deadlocks, and chained blocking

– Any given task is blocked at most once by a lower-priority task

• Cons:

– It is not transparent to the programmer, as shared resources required by all
tasks must be known a priori at design time, and programmer needs to
calculate priority ceilings of all semaphores and pass them to the OS
(PIP does not need this step)

Deadlock

Prevention

Number of

blockings

Programmer

Transparency

PIP No min(𝑛, 𝑚) Yes

PCP Yes 1 No

blockings under PIP: 𝑛 is the number of tasks with priority lower
than 𝜏𝑖 ; 𝑚 is the number of locks/semaphores on which 𝜏𝑖 can be blocked

52

Schedulability Analysis under PIP and PCP
• Let 𝐵𝑖 denote the maximum blocking time experienced by task 𝜏𝑖 by lower-priority

tasks due to shared resources

• Schedulable utilization bound for RM scheduling with blocking time (sufficient
condition):

– A taskset is schedulable under RM scheduling with blocking time if

– ∀𝑖, priority level i utilization 𝑈𝑖 = ∑∀𝑗∈ℎ𝑝(𝑖)

𝐶𝑗

𝑇𝑗
+

𝐶𝑖+𝐵𝑖

𝑇𝑖
≤ 𝑖(21/𝑖 − 1)

– Assumptions: task period equal to deadline (𝑃𝑖 = 𝐷𝑖); task with smaller period 𝑃𝑖 is assigned
higher priority (RM priority assignment)

• Response Time Analysis (RTA) for RM scheduling with resource sharing (necessary
and sufficient condition):
• Task 𝜏𝑖 ‘s WCRT 𝑅𝑖 is computed by solving the following recursive equation to find the

minimum fixed-point solution, where task WCRT is sum of its WCET, blocking time caused by
LP tasks, and preemption delay caused by HP tasks:

• 𝑅𝑖 = 𝐶𝑖 + 𝐵𝑖 + ∑∀𝑗∈ℎ𝑝(𝑖)
𝑅𝑖

𝑇𝑗
𝐶𝑗

• 𝜏𝑖 is schedulable iff 𝑅𝑖 ≤ 𝐷𝑖

• c.f. RTA for RM scheduling without resource sharing (Slide 35 in “L6-RT Scheduling I”), where
𝐵𝑖 = 0

53

Example Taskset (without shared resources)

• System utilization 𝑈 =
5

50
+

250

500
+

1000

3000
= 0.933 > 0.780

– Since utilization exceeds the Utilization Bound of 0.780 of 3 tasks under RM scheduling, we
cannot determine schdulability by the Utilization Bound test

• RTA shows that the taskset is schedulable by computing WCRT of each task:

– 𝑅1 = 𝐶1 + 0 = 5 + 0 = 5 ≤ 𝐷1 = 50

– 𝑅2 = 𝐶2 +
𝑅2

𝑇1
⋅ 𝐶1 = 250 +

𝑅2

50
⋅ 5 = 280 ≤ 𝐷2 = 500

– 𝑅3 = 𝐶3 +
𝑅3

𝑇1
⋅ 𝐶1 +

𝑅3

𝑇2
⋅ 𝐶2 = 1000 +

𝑅3

50
⋅ 5 +

𝑅3

500
⋅ 250 = 2500 ≤ 𝐷3 = 3000

Task T D C Prio R

1 50 50 5 H 5

2 500 500 250 M 280

3 3000 3000 1000 L 2500

54

Example Taskset (with shared resources under PCP) I
• 3 semaphores s1, s2, s3

– Task 1 requires semaphore s1, with CS length 1

– Task 2 requires semaphores s2 and s3, with CS lengths 2 and 5, respectively

– Task 3 requires semaphores s2 and s3, with CS lengths 3 and 4, respectively

• Ceilings 𝐶(𝑠1) = 𝑃1 = 𝐻; 𝐶(𝑠2) = 𝐶(𝑠3) = max(𝑃2, 𝑃3) = 𝑀
• Blocking times:

– Task 1: 𝐵1 = 0 (Task 1 does not experience any blocking since its priority is higher than ceilings of s2 and s3: 𝑃1 >
𝐶 𝑠2 = 𝐶 𝑆3 = 𝑀), so it remains schedulable

– Task 2: 𝐵2 = max 3, 4 = 4 (maximum CS length of LP Task 3 since 𝑃2 ≤ 𝐶 𝑠2 = 𝐶 𝑆3 = 𝑀)

» Utilization 𝑈2 = ∑∀𝑗∈ℎ𝑝(2)

𝐶𝑗

𝑇𝑗
+

𝐶2+𝐵2

𝑇2
=

5

50
+

250+4

500
= 0.608 ≤ 0.828 (utilization bound for 2 tasks under RM)

» Or WCRT: 𝑅2 = 𝐶2 + 𝐵2 +
𝑅2

𝑇1
⋅ 𝐶1 = 250 + 4 +

𝑅2

50
⋅ 5 = 284 ≤ 𝐷2 = 500

– Task 3: 𝐵3 = 0 (Task 3 is the lowest priority task, so it does not experience any blocking), so it remains schedulable

• The taskset remains schedulable with shared resources under PCP

sem Ceiling

s1 H

s2 M

s3 M

Task T D C Prio sems CS Len B R

1 50 50 5 H s1 1 0 5

2 500 500 250 M s2, s3 2, 5 4 284

3 3000 3000 1000 L s2, s3 3, 4 0 2500

55

Example Taskset (with shared resources under PCP) II
• 3 semaphores s1, s2, s3

– Task 1 requires semaphores s1, s2 and s3 with CS lengths 1, 1, 1

– Task 2 requires semaphores s2 and s3, with CS lengths 2 and 5, respectively

– Task 3 requires semaphores s2 and s3, with CS lengths 3 and 4, respectively

• Ceilings 𝐶(𝑠1) = 𝑃1 = 𝐻; 𝐶(𝑠2) = 𝐶(𝑠3) = max(𝑃1, 𝑃2, 𝑃3) = 𝐻
• Blocking times:

– Task 1: 𝐵1 = max(2, 5, 3, 4) = 5 (maximum CS length of LP Tasks 2 and 3, since 𝑃1 ≤ 𝐶 𝑠2 = 𝐶 𝑆3 = 𝐻)

» Utilization 𝑈1 = ∑∀𝑗∈ℎ𝑝(1)

𝐶𝑗

𝑇𝑗
+

𝐶1+𝐵1

𝑇1
= 0 +

5+5

50
= 0.2 ≤ 1 (Utilization bound for 1 task under RM), so Task 1

remains schedulable

» Or WCRT: 𝑅1 = 𝐶1 + 𝐵1 = 5 + 5 = 10 ≤ 𝐷1 = 50
» (Task 1’s CS lengths (1, 1, 1) do not matter since it is the highest priority task and does not block any other task)

– Task 2: 𝐵2 = max 3, 4 = 4 (maximum CS length of LP Task 3, since 𝑃2 ≤ 𝐶 𝑠2 = 𝐶 𝑆3 = 𝐻)

– Task 3: 𝐵3 = 0 (Task 3 is the lowest priority task, so it does not experience blocking), so it remains schedulable
» Same calculation of utilization and WCRT for Tasks 2 and 3 as before

• The taskset remains schedulable with shared resources under PCP

sem Ceiling

s1 H

s2 H

s3 H

Task T D C Prio sems CS Len B R

1 50 50 5 H s1,s2,s3 1, 1, 1 5 10

2 500 500 250 M s2, s3 2, 5 4 284

3 3000 3000 1000 L s2, s3 3, 4 0 2500

56

Scheduling Anomaly w/ Resource Synchronization

• Doubling processor speed causes T1 to miss its deadline

– (Yellow part denotes a critical section shared by T1 and T2)

	Slide 1: CSC 112: Computer Operating Systems Lecture 6 Real-Time Scheduling II
	Slide 2: Outline
	Slide 3
	Slide 4: Multiprocessor models
	Slide 5: Multiprocessor Models
	Slide 6: Multiprocessor Models
	Slide 7: Multiprocessor Models
	Slide 8: Global vs partitioned scheduling
	Slide 9: Global Scheduling vs. Partitioned Scheduling
	Slide 10: Partitioned Scheduling
	Slide 11: Partitioned Scheduling
	Slide 12: Assumptions for Global Scheduling
	Slide 13: Source of Difficulty
	Slide 14: Global scheduling example
	Slide 15: Global scheduling example
	Slide 16: Global scheduling example
	Slide 17: Global scheduling example
	Slide 18: Global vs. Partitioned
	Slide 19: Global vs Partitioned (FP) Scheduling
	Slide 20: Global vs Partitioned (FP) Scheduling
	Slide 21: Difficulties of Global Scheduling
	Slide 22: Dhall’s effect
	Slide 23: Hard-to-Find Worst-Case
	Slide 24: MP Scheduling Anomalies
	Slide 25: Scheduling Anomaly Example 1
	Slide 26: Scheduling Anomaly Example 2
	Slide 27: Scheduling Anomaly Example 2
	Slide 28
	Slide 29: Resource Sharing
	Slide 30: Blocking Delay
	Slide 31: Priority Inversion I
	Slide 32: Priority Inversion II
	Slide 33: Deadlocks
	Slide 34: Priority Inheritance Protocol (PIP)
	Slide 35: Blocking Time under PIP
	Slide 36: PIP Pros and Cons
	Slide 37: PIP Causes Chained Blocking
	Slide 38: Priority Ceiling Protocol (PCP)
	Slide 39: PCP Example I
	Slide 40: PCP Prevents Deadlocks
	Slide 41: PCP Prevents Chained Blocking
	Slide 42: PCP Prevents Chained Blocking
	Slide 43: PCP Example II
	Slide 44: PCP Example II
	Slide 45: PCP Example II
	Slide 46: PCP Example II
	Slide 47: PCP Example II
	Slide 48: PCP Example II
	Slide 49: PCP Example II
	Slide 50: PCP Blocking Time
	Slide 51: PCP Pros and Cons
	Slide 52: Schedulability Analysis under PIP and PCP
	Slide 53: Example Taskset (without shared resources)
	Slide 54: Example Taskset (with shared resources under PCP) I
	Slide 55: Example Taskset (with shared resources under PCP) II
	Slide 56: Scheduling Anomaly w/ Resource Synchronization

