CSC 112: Computer Operating Systems
Lecture 6

Real-Time Scheduling I

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on Buttazzo, Hard Real-Time Computing Systems

Outline

- Part |
— Introduction to RTOS and Real-Time Scheduling
— Fixed-Priority Scheduling
— Earliest Deadline First Scheduling
— Least Laxity First (LLF) Scheduling
— Preemptive vs. Non-Preemptive Scheduling
- Part |l
— Multiprocessor Scheduling

— Resource Synchronization Protocols (for Fixed-Priority Scheduling)

Multiprocessor Scheduling

Multiprocessor models

|dentical multiprocessors:
— each processor has the same computing capacity
Uniform multiprocessors:
— different processors have different computing capacities
Heterogeneous multiprocessors:
— each (task, processor) pair may have a different computing capacity
MP scheduling
— Many NP-hard problems, with few optimal results, mainly heuristic approaches

— Only sufficient schedulability tests

Multiprocessor Models

ldentical multiprocessors: each processor has the same speed

Task T1 Task T2

Multiprocessor Models

Uniform multiprocessors: different processors have different speeds

Task T1 Task T2

" ol — e

speed = 1 speed = 2 speed =3

Multiprocessor Models

Heterogeneous multiprocessors: each (task, processor) pair may have a

different relative speed, due to specialized processor architectures

Task T1 Task T2

v 2N D
Number-crunchi

task:
] «2] [x3 | (I

Graphics- CPU DSP chip Graphics co-processor
intensive task:

Global vs partitioned scheduling

* Global scheduling

— All ready jobs are kept in a common (global) queue; when selected for
execution, a job can be dispatched to an arbitrary processor, even after
being preempted

* Partitioned scheduling

— Each task may only execute on a specific processor

Global scheduling: Partitioned scheduling:
Single system-wide queue per-processor queues

Global Scheduling vs. Partitioned Scheduling

» Global Scheduling « Partitioned Scheduling
* Pros: * Pros:
— Runtime load-balancing across cores — Mature scheduling framework
» More effective utilization of — Uniprocessor scheduling theory are
processors and overload applicable on each core; uniprocessor
management resource access protocols (PIP, PCP...)
— Supported by most multiprocessor can be used
operating systems — Partitioning of tasks can be done by
» Windows, Linux, MacOS... efficient bin-packing algorithms
- Cons: -« Cons:
— Low schedulable utilization — No runtime load-balancing; surplus
— Weak theoretical framework CPU time cannot be shared among

Processors

Partitioned Scheduling

» Scheduling problem reduces to:

Bin-packing Uniprocgssor
bl scheduling T, . .
i problem LN

NP-hard Well-known ‘/[\‘
b b b
] § 9§ §
Various heuristic algorithms EDF RM
First Fit (FF) Uel (RTA)
Best Fit (BF)

Worst Fit (WF)
Next Fit (NF)

Partitioned Scheduling

Bin-packing algorithms:

— The problem concerns packing objects of varying sizes in boxes ("bins”) with some optimization
objective, e.g., minimizing number of used boxes (best-fit), or minimizing the maximum workload
for each box (worst-fit)

Application to multiprocessor scheduling:
— Bins are represented by processors and objects by tasks

— The decision whether a processor is "full” or not is derived from a utilization-based feasibility test.

Since optimal bin-packing is a NP-complete problem, partitioned scheduling is also NP-
complete

Example: Rate-Monotonic-First-Fit (RMFF): (Dhall and Liu, 1978)

— Let the processors be indexed as 1, 2, ...
— Assign the tasks to processor in the order of increasing periods (that is, RM order)

— For each task t;, choose the lowest previously-used processor j such that t;, together with all
tasks that have already been assigned to processor j, can be feasibly scheduled according to the
utilization-based schedulability test

— Additional processors are added if needed

11

Assumptions for Global Scheduling

|dentical multiprocessors

VWork-conserving:

— At each instant, the highest-priority jobs that are eligible to execute are selected for
execution upon the available processors

— No processor is ever idle when the ready gueue is non-empty
Preemption and Migration support

— A preempted task can resume execution on a different processor with O overhead, as
cost of preemption/migration is integrated into task WCET

No job-level parallelism

— the same job cannot be simultaneously executed on more than one processor, ie., we do
not consider parallel programs that can run on multiple processors in parallel

12

Source of Difficulty

 The “no job-level parallelism” assumption leads to difficult scheduling problems

e “The simple fact that a task can use only one processor even when several
processors are free at the same time adds a surprising amount of difficulty to the
scheduling of multiple processors” [Liu’69]

CPU1 _ l

CPU2

v

v

v

CPU3

13

Global scheduling example

Global ready queue
(ordered according to a given policy, e.g,,

RM/DM/EDF)

T
S
A
PR,

1\

T3

hb R e
e R
b R E o
At ol R SR

PN

T3

The first m jobs in the queue are scheduled upon the m CPUs

Global scheduling example

Global ready queue

ordered according to a given policy, e.g,,

RM/DM/EDF)

haiy
et
et

o
A
oy
b
it

o
e
ity

vt

Hht
st
it
i
S

2

#

&
Iyt
i

!

o

i
"
o
i
i

2

7
"
4
3
i

T

o

7
"
o
i
i

o

2

7
"
&
i

T

o

7
"
o
i

o

gt

e

gt

o
Iyt

it

b
5

it
el

o
!
o

!
o

o

it
ot

s
s
i

b

l

.

When a job 73 finishes its execution, the next job in the
queue 7, is scheduled on the available CPU

Global scheduling example

Global ready queue
ordered according to a given policy, e.g,,

RM/DM/EDF)

T
SEELEREENREREat
A
PR,

1\

13

EL

e o e Ay

e
R SRR o

2 BT SRRt

PN

T

When a new higher-priority job 73 arrives in its next period
T3, it preempts the job with lowest priority 7, among the
executing ones

Global scheduling example

Global ready queue

ordered according to a given policy, e.g,,

RM/DM/EDF)

o]
]

el

e
Saity

k!
T
s

ity

2
!
i
iacs:
S
”
et

T
i
i

i

i
i

i
i

2
i
i
e
L
”
!

T
o
s

B

2
ik
i

T
o
iacs:
ik
”
s

4“

oo
A
S
el
A
cacrca:
S

s
]

2
e
o
i
i,
s
i

B

i
it
S
s
it
"
S

it

it

it
i

b

5
1
3
i
3

i

!

i

A++

.,.
L
+
3
o
o
i
i
i

%
et
piininaiiniaaiiinieall
2] £

I
2
&

l

When another job 7, finishes its execution, the preempted job
7, can resume its execution. Net effect: t, "migrated” from

CPU3 to CPU1

Global vs. Partitioned

» Global (work-conserving) and partitioned scheduling algorithms
are incomparable:

— There are tasksets that are schedulable with a global scheduler, but
not with a partitioned scheduler, and vice versa.

18

Task

Prio

Global vs Partitioned (FP) Scheduling =

* A taskset schedulable with global scheduling, but not partitioned T2

scheduling. System utilization U = % + % +§ = 1.83 T3

WIWIN

NIN[=TO

» Global FP scheduling is schedulable with priority assignment p;>p,>p;
(or p>P1>P3)
» Partitioned scheduling is unschedulable, since assigning any two tasks

to the same processor will cause that processor’s utilization to
exceed 1, so the bin-packing problem has no feasible solution

Processor 2 T2 T] T2

Processor 1 T] T, T, T T,

A feasible execution trace under global scheduling
T2 runs always on P2, T3 runs always on P1, T1 runs on both
P1 and P2 with task migration across different periods

19

... . Task T=D C Prio
Global vs Partitioned (FP) Scheduling — . T
A taskset schedglabls vvitDr parﬂ;tioned scheduling, but not global scheduling, System T 12 - 3
tilization U = =+ — 4+ — + — = 2.0, hence the two processors must be fully
sized with o' osshle e ienls I A
utilized with no possible idle intervals At time 7. T4 p 5 Ta oy) 1L
. Partitioned FP scheduling with RM tme 7 T4 runs on Processor 0 | 10
priority assignment (p,>p,>P3>Pa) IS
schedulable. T1, T3 assigned to Processor 2 T, T, T, T,
Processor 1; T2, T4 assigned to
Processor 2. Both processors have Processor 1 T, T, T, T, T, T, T, T,
utilization 1.0, and harmonic task —+— | —+— | —+— | —+— |
periods 0 6 12 15 24
 Global FP scheduling with RM priority A feasible execution trace
assignment p,>p,>p3>P. is under partitioned scheduling
unschedulable. Compared to \\ At time 7. T3 P 5
partitioned scheduling, the difference is L ST
at time 7, when T3 (with higher b . T | T T | T
priority than T4) runs on Processor 2. o~ 2 o 2 o
This causes idle intervals on Processor o o Mo
1 [10,12] and [22,24], since only one Processor 1 T, |T3) T, |T| Ty [T3] T; [T “Deadline Miss
task T4 is ready during these time N T T e T T T T
intervals. Since taskset U = 2.0 on 2 0 12 14

processors, any idle interval will cause

the taskset to be unschedulable An infeasible execution trace

under global scheduling

20

Difficulties of Global Scheduling

Dhall’s effect

— With RM, DM and EDF, some low-utilization task sets can be unschedulable
regardless of how many processors are used.

Scheduling anomalies

— Decreasing task execution time or increasing task period may cause deadline
misses

Hard-to-find worst-case

— The worst-case does not always occur when a task arrives at the same time as all
its higher-priority tasks

Dependence on relative priority ordering (omitted)

— Changing the relative priority ordering among higher-priority tasks may affect
schedulability for a lower-priority task

21

Dhall’s effect
Global RM/DM/EDF can fail at very low utilization

Example: m processors, n=m+1 tasks. Tasks 71, ..., T, are light tasks, with small C; = 1,
T; =D; =T — 1; Task 7,41 is a heavy task, with large C; =T, T; = D; =T.T > 1 is
some constant value

For global RM/DM/EDF, Task T,,41 has lowest priority, so T4, ..., T, mMust run on m
processors starting at time O, causing T,,,4.1 to finish at time T + 1, miss its deadline at T

One solution: assign higher priority to heavy tasks

— If heavy task 7,41 is assigned the highest priority, then it runs from time O to T and meets
its deadline; The light tasks can run on other processors and meet their deadlines as well

= m light tasks ;
1 1 heavy task !
Ts Uwré\l,y Deadline E
s Miss A :
Tm Tm+1 %Q\i

0 T

22

Hard-to-Find Worst-Case

» For uniprocessor scheduling, the worst case occurs when all tasks are initially released at time O
simultaneously, called the critical instant (recall Slide “Response Time Analysis (RTA)" in L6-
RTScheduling 1)

« This is no longer true for multiprocessor scheduling, as the worst-case interference for a task does
not always occur at the critical instant time O, when all tasks are initially released simultaneously

— Response time for task T3 is maximized for its 2"9 job T3, (8-4=4), which does not arrive at the same

time as its higher priority tasks; not for its 15t job 73 1 (3-0=3), which arrives at the same time as its
higher priority tasks

Hard-to-find critical instant: 5,={C=1.7=2]
r,={C,=2T,=3}
(RM scheduling) L ={G=2T=1]

ao T I T T T T I

o I T | I

response fime of 1, is maximized for second instance

R LS T T 5 T O WY e I 0 T O O 3 W LT K

B || 11 ;] T2 g %23 [mg] 724 715 [f34
I | |

0 4 8 12 16

23

MP Scheduling Anomalies

* Decrease in processor demand (decreasing task execution time
or increasing task period) may cause deadline misses!

* Anomaly 1

—Decrease in processor demand from higher-priority tasks can
increase the interference on a lower-priority task because of change

iNn the time when the tasks execute

* Anomaly 2
—Decrease in processor demand of a task negatively affects the task
itself because change in the task arrival times cause it to suffer

more interference

24

Scheduling Anomaly Example 1

Three tasks on two processors under global scheduling

With Task a’s period T, = 3, system utilization)U; = 1.83. WCRT of task cis R, =12 < D, = 12.
R.=C.+I,=8+1I,wherel,=2+1+1= 4 is interference by higher priority tasks a and b.
Qcask C experiences inference when both processors are bus% executing higher priority tasks a and b.)

askhc g slcgledulable but saturated, as any increase in its WCET or interference would make it
unschedulable.

» With Task a’s period T,; = 4, system utilization },U; = 1.67 is reduced. But VWCRT of task ¢ increases:
R.=14> D, = 12. ﬁc =8+ I, wherel, =2+ 2+ 2 = 6, since execution segments of tasks a
and b on two processors are aligned in time, thus causing more interference to task ¢ -

asK C
Task T=D | C Util Prio deadline
° & 2 | 067 H Interf f2 f Tnterf 1 "
t 7 Anterf f t Y
b 4 2 0.5 M :n errerence o . Interference o A nterrerence o
c 12 | 8067 | L Rk c b c b c
0 4 8 12
Task | T=D | C | Util Prio |p - -_ Task ¢ deadline
1
T T | s
Interference of 2 'llnterference of 2 SInterference of 2 1
b 4 | 2| 05 M » : : 2
c 12 | 8| 067 L | b c b c b e

2

14
5

Scheduling Anomaly Example 2

 Three tasks on two processors under global scheduling

« With Task c’s period T, = 10, system utilization);U; = 1.8. WCRT of task cis R, =10 < D, =
10.R,=C.+ 1. =7+ 3 =10, where I. = 2+ 1 = 3 is interference by higher priority tasks a
and b. Its Tst job meets its deadline at time 10. This schedule repeats in future periods, hence task
c is schedulable but saturated, as any increase in its WCET or interference would make it
unschedulable.

Task ¢’s 1%t job’s
deadline at 10

Task T=D C Util Prio P, - c a C a |
a 4 | 2] 05 H \ .
Interference of 2 Jnterference of 1
b 5 3 0.6 M « > «—
c 10 |7 07 L P2 b ¢ b c

26

Scheduling Anomaly Example 2

« With Task c’s period T, = 11, system utilization Y,U; = 1.74 is reduced. WCRT of task cis R, =
12 > D, = 10. Its 1% job has response time C, + [, =7+ 3 =10 < D, = 11, where I, = 2 +
1 = 3, but this is not task c’'s VWCRT.

* Its 2" job has response tme C, + I, =7+5=12> D, = 11, where [, =1+ 2+ 2 =5.The
2" job finishes at time 11+12=23, and misses its deadline at time 22.

+ Another example where the worst-case interference for task ¢ does NOT occur at time O, when
all tasks are initially released at time O simultaneously

F Y FY
Task | T=D | C | Util Prio P, a - a c a
a 4 2 0.5 H
Interference of 2 4 Interference of 1 8
b 5 3 0.6 M . > +—
P
C 11 7 | 0.64 L 2_ ¢ — €
0 5 10
r'y r'y A A
Pl C a C a d C
11 12 16
Interference of 1 Interference of 2 alnterference of 2
— < > <t >
10 15 20 T 23

Task ¢’s 1% job’s deadline at 11 Task ¢’s 2" job’s deadline at 22

Resource Synchronization Protocols

(for Fixed-Priority Scheduling)

Resource Sharing

* When two tasks access shared resources

(variables), mutexes (or binary semaphores) are Zﬁii';e:ﬁ;&‘;i;
used to protect critical sections. Each Critical lock(s) _ . | lock(s)
Section (CS) must begin with lock(s) and end with x=3; ﬂ: It ¥ — | 2= x+;
unlock(s) y=>3; b =y+2;
o . unlock(s) R
* A task waiting for a shared resource is blocked on e

that resource. Otherwise, it proceeds by entering polackis)
the critical section and holds the resource

» Tasks blocked on the same resource are kept in a
queue. When a running task invokes lock(s) when s
is already locked, it enters the waiting state, until
another task unlocks s

activation termination

29

Blocking Delay

Lower Priority (LP) tasks can cause blocking delay to Higher Priority (HP) tasks due to resource sharing
— HP tasks may cause preemption delay to LP tasks, but not blocking delay

Eﬁam%e(::g)wo tasks Tq, T3 with priority ordering P; > P3. They both require semaphore s (which protects
the re

If HP task 71 tries to lock s that is held by LP task 73, 741 is blocked until T3 unlocks s, so T experiences a
blocking delay A

— Since CS is typically very short, it seems this blocking time delay A is bounded by the longest critical section in
lower-priority tasks?

No, blocking delay may be unbounded!

Blocking Delay A (short, bounded)

. . A
priority s N\
A ldl
Tq Y
T, preempts 74| |74 blocks 7, |71 Preempts 73
A ! when 75 exits CS

s I

| |
0 2 2 4 6 8 0 12 14 16 18

30

Priority Inversion |

Three ﬁasks T1, T2, T3 With priority ordering P; > P, > P3. 74, T3 both require semaphore s, and 7, does not require any
semaphore

t=1: LP task 73 locks s and enters CS

t=2: HP task 74 is released and preempts 73

t=3: HP task 71 tries to lock s, but gets blocked by T3 holding s

t=4.2: Medium Priority (MP) task 7, is released and preempts 73

t=100: MP task 7, finishes execution after running for its WCET C,; T3 resumes execution in CS

t=102: LP task 73 unlocks s; HP task 74 preempts 73 and finally locks s, after experiencing a long, unbounded
blocking delay A} and misses its deadline d4

This is priority inversion, since MP task T, causes a long blocking delay to HP task 74, even though they do not
share any resources (semaphores) ,
Blocking Delay A (long, unbounded)
A

s O Y
| T

Tl A) A
T, preempts Ts T3 blocks 14 T, preempts 73

p WCETG, of 7 when 75 exits CS

priqrity

A

T, preempts 73 T, finighes

I . I

| | | | | | | | | |
0 2 4 6 100 102 104 106 108 "

Priority Inversion Il

(This scenario is more realistic and likely than previous one, as MP task 7, may be released anytime during 7;'s execution
after it preempts 73. In the previous example, 7, is released during t3’s critical section, which is very short.)

t=1: LP task 15 locks s and enters CS

t=2: HP task 74 is released and preempts 75

t € [2, 3]: MP task 7, is released, but cannot run since HP task 74 is running

t=3: HP task 74 tries to lock s, but gets blocked by 73 holding s; MP task 7, starts running

t=98.5: MP task 7, finishes execution after running for its WCET C5; T3 resumes execution in the CS

t=102: LP task t3 unlocks s; HP task 71 preempts 73 and finally locks s, after experiencing a long, unbounded blocking
Delay A

Blocking Delay A (long, unbounded)
A

v O N\
prigrity J4: .
A Tl < L) L
Tq preempts 73 T, preempts 73 T1 preempts 73
1 Y when 15 exits CS
1o : i
T, released T, finishes
s

| | | | | | | | | |
0 2 4 6 100 102 104 106 108

32

Deadlocks

» Classic deadlock scenario: Two tasks 71 and T, lock two semaphores s,, s, in opposite

order (s, protects blue CS A and s, protects pink CS B)

— HP task 74 enters blue CS A before pink CS B: ...lock(s,)...lock(s,)... unlock(s,)...unlock(s,)...
— LP task 7, enters pink CS B before blue CS A: .. .lock(s,)...lock(s,)... unlock(s,)...unlock(s,)...

— LP task T, runs first and locks s,

— HP task 74 starts running and locks s, then tries to lock s,, gets blocked by 7,

~ T, starts running and tries to lock s; but 7, holds s;. Circular waiting = deadlock

Sy

P, > P,

T

S1 T2 | 1

* J/blncked

e Dblocked

~

33

Priority Inheritance Protocol (PIP)

 In 1997, this bug caused the Mars pathfinder to freeze up occasionally and then starts working
again. Fixed by uploading a software patch enabling Priority-Inheritance Protocol (PIP)

A task 7; in a CS increases its priority, if it is holding a lock s and blocks other higher priority tasks,
by inheriting the highest priority of all higher-priority tasks 7, blocked waiting for lock s

* Pt holding s = max{P|t) blocked on s}

t=3: HP task 14 tries to enter CS, gets blocked since LP task 73 is in CS; T3 inherits 71's high

priority, so MP task T, cannot pre-empt 73, which finishes its CS, and then 74 can run after a

short, bounded Blocking Delay A (regardless of when 1, is released at t € [2, 3] or t>3)
Blocking Delay A (short, bounded)

—M
priogity . [
! T]_ 4 A
rTl preempts 73| [t5 blocks 7, [T1 Preempts 73
1 when 73 exits CS
12

3 N
T3 runs at T,’s priority

| | | | | | | | | |
0 2 4 6 8 0 12 14 16 18

34

Blocking Time under PIP

Under PIP, task T; may experience two types of
blocking delays:

— Direct blocking: T; tries to lock semaphore s that is
already locke

— Push-through blocking: T; blocked by lower-priority
task that has inherited a higher-priority (z; itself may
not need any semaphores%

Example:

— HP task 74 experiences direct blocking by LP task 75
in time interval [t3, ts]

— MP task T, experiences push-through blocking by LP
task T3 in time interval [ty, ts]

PIP analogy: suppose you have checked out a book
from the Tibrary and planned to read it in your
spare time. But you got a message from the library
that some VIP, say the university president, just got
in the waiting queue for the book. You should then
hurry up, give the book-reading task a high priority
so it is not preempted by other daily chores, finish
reading it, and return it to the library quickly, so the
VIP is not delayed for a long time.

Your book-reading task (critical section) initially had
a low priority, but'it inherits higher priority of the
VIP as soon as the VIP gets blocked waiting for the
book (shared resource)

[critical section direct blocking
/ push-through blocking
T h /, []

B normal execution

SIS

1/

to 1 ta 13 14 ts e tr
I D3 |
P .
P, -
P; .

LP task T3’s priority is increased at time t3 when HP task 74
tries to lock semaphore s but is blocked by 73; NOT when
T3 lock s at time t4

35

PIP Pros and Cons

* Pros:

— It prevents priority inversion

— It is transparent to the programmer
- Cons:

— It does not prevent deadlocks and chained blocking

blocked

e

blocked

Deadlock still occurs under PIP

36

PIP Causes Chained Blocking

- Chained blocking: task 7; can be blocked at most once by each lower priority task
« Theorem: Task 7; can be blocked at most for the duration of min(n, m) critical sections

* nis the number of tasks with priority lower than t;

* m is the number of locks/semaphores on which 7; can be blocked

* In this example, Four tasks and three semaphores (s, protects red CS, s, protects yellow CS, s; protects
beige CS). Task t; is blocked for the duration of min(3,3) = 3 critical sections

priority B, B, B,
} boe— e
Ty [- i e
Ty []
T3 -
T4 L I m

37

Priority Ceiling Protocol (PCP)

Assumptions: fixed-priority scheduling; resources required by all tasks are known a
priori at design time (not required by PIP)

Priority Ceiling Protocol PCP = PIP + ceiling blocking

PIP still holds: When t; is blocked on sy, the lower-priority task currently holding sy,
inherits T;'s priority

Each semaphore is assigned a ceiling, equal to maximum priority of all tasks that
require it: C(sx) = max{P;: 7; uses S](j}
Task 7; can acquire semaphore s; and enter CS only if

— P; > max{C(sy): sy locked by other tasks # ’l'i%, that is, its priority P; is strictly higher than the
maximum ceiling of all semaphores (sy) currently held by other tasks; otherwise it is blocked due
to ceiling blocking. (s may or may not be the same as s;)

— Corollary: If s; itself is currently held by some task, then 7; cannot lock s;, since P; < C(Sj), as
ceiling of s; is"at least the priority of T; by definition

Under PCP, a task T, may experience ceiling blocking, in addition to direct blocking
and push-through blocking under PIP:

— T, tries to lock s;, but its priority P;is not strictly higher than the maximum ceiling of all
semaphores (S,{S currently held by other tasks (s; itself may be free)

— Ceiling blocking is “preventive blocking”, since a task may be blocked even though the
semaphore it tries to lock is free. This helps to prevent potential deadlocks and chained blocking

38

PCP Example |

* Three tasks 74, T, T3 with priority ordering P; > P, > P3. 71, T3 both require
semaphore s, and T, does not require any semaphore

- C(s) = max{P;:7j uses s} = max{P;, P,} = P,

* The execution trace is the same as PIP, since PCP includes PIP as part of the
protocol

Blocking Delay A (short, bounded)

—M
priority . |
! T]_ 4 A '
rrl preempts 73| [t5 blocks 7, [T1 Preempts 73
1 when 73 exits CS
12

s

T3 runs at T,’s priority

| | | | | | | | | |
0 2 4 6 8 0 12 14 16 18

39

PCP Prevents Deadlocks

« Semaphore s, protects blue CS A and s, protects

oink CS B

» Classic deadlock scenario (with or without PIP):
Two tasks 71 and T, lock two semaphores in

Oopposite orader:

— LP task 7, runs first and locks s,
— HP task 74 starts running and locks s, then

tries to lock s, gets blocked by 7,

— T, starts running and tries to lock s, but t;
holds s,. Circular waiting = deadlock

Typical Deadlock

P, > P,
* /blocked
Tl |
+ blocked
T 1

Under PCP, C(s;) = C(s,) = max{P;, P,} = P;. Both
semaphores s, and s, have ceiling equa]l to Py, since they are all
required by the higher priority task ;.

— LP task 75 runs first and locks s,

— HP task 74 runs and preempts 7,. VWhen 74 tries to lock s,
it is blocked since its priority does not exceed ceiling of s,
e, Py < ceil(s,) =P,

- T, Will lock both s, and s;, and exit both CSes before 74 can
lock s; and s, This prevents circular waiting and deadloc

Analogous to requiring a philosopher to pick up both forks in
one atomic operation to prevent deadlocks

Deadlock avoidance with PCP

] Ca=PF
P]. > Pz l:l {:'3=P._

‘l.'l T,
| l
S
B
ol

A ceiling blocking

40

PCP Prevents Chained Blocking

 Three tasks and two semaphores (s, protects red CS and s, protects yellow CS)

C(sy) = max{Py, P3} = P;, C(sp) = max{Py, P,} = P;. Both semaphores s, and s, have
ceiling equal to 1}1, since they are all required by thie highest priority task 741. At time t;, LP
task T3 is holding s, (in red CS). When MP task T, tries to lock s, and enter yellow C§, it is
blocked since its priority does not exceed ceiling of s;, P, < C(s1) = P; (ceiling blocking)

« Hence T3 must unlock s, before 7, can lock s,. This prevents possible chained blocking, so
T, is blocked only once by the red CS. (Under PIP, 75 'will enter the yellow CS, at time ¢4, so
T, may be blocked twice by both red CS and yellow CS.)

ms; Cs)=P
priority 'S, C'(sj) = P1

! Y L . [
. L T
T3 H_L_-

t,: T, 1s blocked by the PCP, since P, < C(s,)

41

PCP Prevents Chained Blocking

« Recall the example with chained blocking

under PIP

« Four tasks and three semaphores (s
protects red CS, s, protects yellow tS, Sy
protects beige CS)

« Under PCP: C Sl) — maX{P ,P4_3 = Pll
C(s,) = max{P;, P % = Pl,élf(sg

max{P;, P,} = 131. Al semaphores s;, S5, Ss
have ceiling equal to Py, since they are Al

required by the highest priority task 7.

. nger fig: While T4 is holding s, (in the red

CS), T3 cannot lock s,, since P3 < C(s1) =
P;; and 7, cannot lock s,, since P, <
C](Sl) = 331 (ceiling blociing)

* Lower fig: While 74 is holding s, (in the red
CS), T3 cannot lock s,. Later when T4
releases s, both 7, and 73 are ready, and
T, locks s; since it has higﬁer priority than
13

« Hence PCP prevents chained blockingl,j
since task T4 is blocked at most once by a
lower-priority task (either 74, or T3, or T,)

priority B
A

)

42

PCP Example Il

 Two tasks ty, T, with priority ordering P; = 2 (higher) and P, = 1 (lower) and two semaphores s,,
s,. (In the figure below, a thin blue arrow indicates that a task requires a semaphore during its
execution; a solid green arrow indicates that a task is currently holding the required semaphore.)

- C(s;) = max{P;: 7 uses s;} = max{P;} = 2
- C(sz) = max{P;: 7; uses s,} = max{P,} = 1
* While 1, is holding s, T, cannot lock s, since P, = 1 < C(s7) = 2 (ceiling blocking)

— In this case PCP is over-conservative, and there are no bad consequences even if we allow T, to hold s,
and T, to hold s, simultaneously

* While 1, is holding s, (indicated by the thick green arrow), T, can lock s, since P; =2 > C(s,) =1

C(s)=2 C(s,)=1
Task | Prio | sems | | sem | Celil
7] 2 S S4 2
o 1] % %1 4 (P=2) |5, (P=1)

43

PCP Example Il

 Two tasks T4, T, and two semaphores s, s,

- C(s1) = max{P;:7j uses s;} = max{P;, P} = 2
- C(s3) = max{P;: 7; uses s,} = max{P,} = 1
+ While T, is holding s,, T, cannot lock s,, since P, =1 < C(s;1) = 2 (ceiling blocking)

— In this case PCP is over-conservative, and there are no bad consequences even if we
allow 1, to hold s; and T, to hold s, simultaneously

+ While 1, is holding s,, T, can lock s;, since P, =2 > C(s;) =1

C(s;)=2 C(sy)=1

Task | Prio | sems | | sem | Ceil
Not at

T 7 S, S4) the same >

time

B L RV N 2 q(P=2) 5 (P=l)

PCP Example Il

 Two tasks T4, T, and two semaphores s, s,

- C(s1) = max{P;:7; uses 51} = max{P, } = 2

- C(sy) = max{P;: 7; uses s,} = max{Py, P,} = 2
+ While T, is holding s,, T, cannot lock s,, since P, =1 < C(s;1) = 2 (ceiling blocking)
+ While 1, is holding s, T, cannot lock s,, since P; = 2 < C(s,) = 2 (ceiling blocking)

— In this case PCP is over-conservative, and there are no bad consequences even if we
allow 1, to hold s; and T, to hold s, simultaneously

C(sl)=2 C(sz)=2

2 I T) N L (P=2) (Pel)

Task | Prio | sems | | sem | Ceil

45

PCP Example Il

 Two tasks T4, T, and two semaphores s, s,

- C(s1) = max{P;:7j uses s;} = max{P;, P} = 2

- C(sy) = max{P;: 7; uses s,} = max{Py, P,} = 2
+ While T, is holding s,, T, cannot lock s,, since P, =1 < C(s;1) = 2 (ceiling blocking)
+ While 1, is holding s, T, cannot lock s,, since P; = 2 < C(s,) = 2 (ceiling blocking)

— This prevents any potential deadlocks in the future, when T, T, each holds one of s, s,
and tries to lock the other (circular waiting)

C(sl)=2 C(sz)=2

Tz 1 S]_[S2 SZ 2 Tl (P1=2) tZ (P2=1)

Task | Prio | sems | | sem | Ceil

46

PCP Example Il

* Three tasks ty, Ty, T3 and two semaphores s, s

- C(s1) = max{P;:7j uses s;} = max{P;, P;} = 3

- C(s3) = max{P;: 7; uses s,} = max{P,, P3} = 2

+ While 1, is holding s, T, cannot lock s,, since P; = 2 < C(s,) = 2 (ceiling blocking)

— In this case PCP is over-conservative, and there are no bad consequences even if we

allow 1, to lock s,

+ While 1, is holding s, T3 can lock s, since P; = 3 > C(s,) = 2

Task | Prio | sems
9] 2 Sy
T, 1 |syS
T3 3 S,

sem | Ceil
S4 3
S, 3

C(sy)=3

3 (P3=3)

vy (P1=2)

C(s,)=2

., (P,=1)

47

PCP Example Il

* Three tasks ty, Ty, T3 and two semaphores s, s

- C(s1) = max{P;:7j uses s;} = max{P;, P;} = 3

- C(s3) = max{P;: 7; uses s,} = max{P,, P;} = 3
* While 15 is holding s, T, cannot lock s, since P; = 2 < C(s1) = 3 (ceiling blocking)
* While 15 is holding s, T, cannot lock s, since P, = 1 < C(s;) = 3 (ceiling blocking)

— In this case PCP is over-conservative, and there are no bad consequences even if we
allow 1, to lock s, and T, to lock s,

Task | Prio | sems :
sem | Caeil
O I s, | 3
T 1 S,
S 3
T3 3 15,5, 2 53 (Ps=3) |ty (P1=2) T, (P,=1)

48

PCP Example Il

* Three tasks ty, Ty, T3 and two semaphores s, s

- C(s1) = max{P;:7j uses s;} = max{P;, P;} = 3
- C(s3) = max{P;: 7; uses s,} = max{P,, P3} = 3
+ While 1, is holding s, T, cannot lock s,, since P; = 2 < C(s,) = 3 (ceiling blocking)

— This prevents potential chained blocking in the future, when t,, T, each holds one of s, s,
, and T3 tries to lock both s; and s,, and get blocked twice

+ While 1, is holding s, T3 cannot lock s, since P3 = 3 < C(s;) = 3 (ceiling blocking)

— In this case PCP is over-conservative, and there are no bad consequences even if we
allow t5 to lock s,

Task | Prio | sems _ C(sy)=3 C(s,)=3
sem | Ceil
S B s, | 3
Tz 1 52 3
G| 3 | SyS K 3 (Ps=3)] T (P=2) T, (P=1)

49

PCP Blocking Time

A given task ¢ is blocked (or delayed) by at most one critical section of any
lower priority task locking a semaphore with priority ceiling greater than or
equal to the priority of task 2. We can explain that mathematically using
the notation:

B; = max CSk.s
{k,s | k€lp(i) N s€usedby(k) A ceil(s)>pri(i)}

Consider all lower-priority tasks (k€Ip(i)), and the semaphores they can lock (s)

Select from those semaphores (s) with ceiling higher than or equal to pri(i) = P;

Take max length of all tasks (k)’s critical sections that lock semaphores (s)

(The blocking time is valid even for a task that does not require any
semaphores/critical sections, as it may experience push-through blocking.)

50

PCP Pros and Cons

* Pros:

— It prevents priority inversion, deadlocks, and chained blocking
— Any given task is blocked at most once by a lower-priority task

« Cons:

— It is not transparent to the programmer, as shared resources required by all
tasks must be known a priori at design time, and programmer needs to
calculate priority ceilings of all semaphores and pass them to the OS
(PIP does not need this step)

Deadlock Number of | Programmer
Prevention | blockings Transparency

min(n,m) Yes
PCP Yes 1 No

blockings under PIP: n is the number of tasks with priority lower

than 7;; m is the number of locks/semaphores on which t; can be blocked
51

Schedulability Analysis under PIP and PCP

* Let B; denote the maximum blocking time experienced by task ; by lower-priority
tasks due to shared resources

» Schedulable utilization bound for RM scheduling with blocking time (sufficient
condition):
— A taskset is schedulable under RM scheduling with blocking time if
NGRS
j i
— Assumptions: task period equal to deadline (P; = D;); task with smaller period P; is assigned
higher priority (RM priority assignment)
» Response Time Analysis (RTA) for RM scheduling with resource sharing (necessary
and sufficient condition):

« Task 7;'s WCRT R; is computed by solving the following recursive equation to find the
minimum fixed-point solution, where task WCRT is sum of its VWCET, blocking time caused by
LP tasks, and preemption delay caused by HP tasks:

Ri
* R =Ci+ B+ Lvjenpi) [T_J Cj
e T; is schedulable iff R; < D;

. %f. RT(/)A\ for RM scheduling without resource sharing (Slide 35 in “L6-RT Scheduling I”), where
i =

~ Vi, priority level i utilization U; = Yy jenp)

Example Taskset (without shared resources)

5 1000

2+ 2222 = 0.933 > 0.780
50 500 3000

— Since utilization exceeds the Utilization Bound of 0.780 of 3 tasks under RM scheduling, we
cannot determine schdulability by the Utilization Bound test

* System utilization U =

* RTA shows that the taskset is schedulable by computing WCRT of each task:
-R,=C;+0=5+0=5<D,; =50

~R,=C, + ‘;—f €, =250 + [22| - 5 = 280 < D, = 500

“R,=Cs+ ’;—f €+ |2 } €, =1000 + [22| - 5 + [22| - 250 = 2500 < D, = 3000
Task | T D C |Prio| R
1 50 | 50 5 H 5
2 | 500500250 M | 280
3 |3000(3000{1000f L |2500

53

Example Taskset (with shared resources under PCP) |

3 semaphores s, S5, Ss

— Task 1 requires semaphore s;, with CS length 1

— Task 2 requires semaphores s, and s;, with CS lengths 2 and 5, respectively
— Task 3 requires semaphores s, and s;, with CS lengths 3 and 4, respectively

Ceilings C(sy) = Py = H; C(s,) = C(s3) = max(P,,P3) = M

Blocking times:

— Task 1: B
c@a—tca

— Task 22 B, = max(3 4) = 4 (maximum CS length of LP Task 3 since P, < C(s,) = C(S3) =

H Cj 5 , 250+4
» Utilization U, = ZV]Ehp(Z) 1_|_ =

Tas|< 1 does not experience any blocking since its priority is higher than ceilings of s, and s3: P; >
, SO it remains schedulable

C2+Bz _

|

50 500

M)

= 0.608 < 0.828 (utilization bound for 2 tasks under RM)

» Or WCRT: R, = CZ+BZ+[] 61_250+4+[2| . 5 = 284 < D, = 500

— Task 3: By = 0 (Task 3 is the Iovvest priority task, so it does not experience any blocking), so it remains schedulable
The taskset remains schedulable with shared resources under PCP

Task | T D C | Prio| sems [CSlLen| B R sem | Ceiling
1 50 | 50 5 H S, 1 0 5 S H
2 500 | 500 | 250 | M S, S3 | 2,5 4 | 284 S, M
3 |3000({3000(1000| L | s5,ss| 3,4 | 0 |2500 S, M

54

Example Taskset (with shared resources under PCP) I

3 semaphores s;, S5, S3
— Task 1 requires semaphores s;, s, and sy with CS lengths 1, 1, 1
— Task 2 requires semaphores s, and s5, with CS lengths 2 and 5, respectively
— Task 3 requires semaphores s, and s;, with CS lengths 3 and 4, respectively

« Cellings C(sy) = P = H; C(s,) = C(s3) = max(Py,P,,P;) = H

* Blocking times:

« The taskset remains schedulable with shared resources under PCP

— Task 1: By = max(2,5,3,4) = 5 (maximum CS length of LP Tasks 2 and 3, since P; < C(sy) = C(S3) =

Cj , C1+B
» Utilization U; = ZV]Ehp(l) Ly 1+ 1

remains schedulable
» (Task 1's CS lengths (1, 1, 1) do not matter since it is the highest priority task and does not block any other task)

» Or WCRT: R, =

— Task 2. B, =

max(3,4) = 4 (maximum CS length of LP Task 3, since P, < C(s3) = C(S3) =

=0+ E = 0.2 < 1 (Utilization bound for 1 task under RM), so Task 1

H)

H)

— Task 3: By = 0 (Task 3 is the lowest priority task, so it does not experience blocking), so it remains schedulable
» Same calculation of utilization and WCRT for Tasks 2 and 3 as before

Task | T D C | Prio| sems [CSLen| B R
1 50 50 5 H |s,S,s;]1,1,1] 5 10
2 500|500 (250 | M |s,,s5| 2,5 | 4| 284
3 |3000|{3000{1000| L | s,s3| 3,49 | 0 | 2500

sem | Ceiling
Sq H
S, H
S3 H

55

Scheduling Anomaly w/ Resource Synchronization

+ Doubling processor speed causes T1 to miss its deadline
— (Yellow part denotes a critical section shared by T1 and T2)

A
l .
*, -1
double speed deadline miss
A ‘ ‘/I/
T 1 Y >

56

	Slide 1: CSC 112: Computer Operating Systems Lecture 6 Real-Time Scheduling II
	Slide 2: Outline
	Slide 3
	Slide 4: Multiprocessor models
	Slide 5: Multiprocessor Models
	Slide 6: Multiprocessor Models
	Slide 7: Multiprocessor Models
	Slide 8: Global vs partitioned scheduling
	Slide 9: Global Scheduling vs. Partitioned Scheduling
	Slide 10: Partitioned Scheduling
	Slide 11: Partitioned Scheduling
	Slide 12: Assumptions for Global Scheduling
	Slide 13: Source of Difficulty
	Slide 14: Global scheduling example
	Slide 15: Global scheduling example
	Slide 16: Global scheduling example
	Slide 17: Global scheduling example
	Slide 18: Global vs. Partitioned
	Slide 19: Global vs Partitioned (FP) Scheduling
	Slide 20: Global vs Partitioned (FP) Scheduling
	Slide 21: Difficulties of Global Scheduling
	Slide 22: Dhall’s effect
	Slide 23: Hard-to-Find Worst-Case
	Slide 24: MP Scheduling Anomalies
	Slide 25: Scheduling Anomaly Example 1
	Slide 26: Scheduling Anomaly Example 2
	Slide 27: Scheduling Anomaly Example 2
	Slide 28
	Slide 29: Resource Sharing
	Slide 30: Blocking Delay
	Slide 31: Priority Inversion I
	Slide 32: Priority Inversion II
	Slide 33: Deadlocks
	Slide 34: Priority Inheritance Protocol (PIP)
	Slide 35: Blocking Time under PIP
	Slide 36: PIP Pros and Cons
	Slide 37: PIP Causes Chained Blocking
	Slide 38: Priority Ceiling Protocol (PCP)
	Slide 39: PCP Example I
	Slide 40: PCP Prevents Deadlocks
	Slide 41: PCP Prevents Chained Blocking
	Slide 42: PCP Prevents Chained Blocking
	Slide 43: PCP Example II
	Slide 44: PCP Example II
	Slide 45: PCP Example II
	Slide 46: PCP Example II
	Slide 47: PCP Example II
	Slide 48: PCP Example II
	Slide 49: PCP Example II
	Slide 50: PCP Blocking Time
	Slide 51: PCP Pros and Cons
	Slide 52: Schedulability Analysis under PIP and PCP
	Slide 53: Example Taskset (without shared resources)
	Slide 54: Example Taskset (with shared resources under PCP) I
	Slide 55: Example Taskset (with shared resources under PCP) II
	Slide 56: Scheduling Anomaly w/ Resource Synchronization

