CSC 112: Computer Operating Systems
Lecture 6

Real-Time Scheduling |

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on Buttazzo, Hard Real-Time Computing Systems

Outline

- Part |
— Introduction to RTOS and Real-Time Scheduling
— Fixed-Priority Scheduling
— Earliest Deadline First Scheduling
— Least Laxity First (LLF) Scheduling
— Preemptive vs. Non-Preemptive Scheduling
- Part |l
— Multiprocessor Scheduling

— Resource Synchronization Protocols (for Fixed-Priority Scheduling)

Introduction to RTOS and Real-Time
Scheduling

Embedded Control Systems

* An embedded control system co'nsists of:
— The system-under-control (SUT)

» may include sensors and actuators

I‘I:
— The controller/computer - »‘ == D/A It m
» sends signals to the system according to a _
predetermined control objective ‘ SUT
A
* In the old days, each control task runs on a
dedicated CPU —@ _@_
sensors
— No RTOS, bare metal <—. -

— No need for scheduling

Controller/computer
— Just make sure that task execution time < P

deadline ‘ Thread or Resource
process (task)

« Now, multiple control tasks share one CPU
— Multitasking RTOS

— Need scheduling to make sure all tasks meet
deadlines

Requirements

The tight interaction with the environment requires the system to react to events
within precise timing constraints

Timing constraints are imposed by the dynamics of the environment

The real-time operating system (RTOS) must be able to execute tasks within timing
constraints

A Robot Control Example

Consider a robot equipped with:
— two actuated wheels
— two proximity (Ultrasound) sensors
— a mobile (pan/tilt) camera

— a wireless transceiver

Goal:

— follow a path based on visual
feedback

— avoid obstacles

i

object
recognition

A

Y

visual-base
d

100 ms

visual
tracking

Y

navigation

extraction
A

-

camera

\
obstacle

-
-

avoidance

Y

20
feature (e \VW

motor

control

motor
control

-
Lol

@
\

an

tilt

T e o mim

vehicle
control

A A
@

Y

Y

motor motor
control control

mot_dx mot_sx

Real-Time Systems

A computer system that is able to respond to events within
precise timing constraints

RT system

A system where the correctness depends not only on the
output values, but also on the time at which results are
produced

A real-time system is not a necessarily a real fast system

— Speed is always relative to a specific environment

— Running faster is good, but does not guarantee hard real-time
constraints

The objective of a real-time system is to guarantee the
worst-case timing behaviour of each individual task

The objective of a fast system is to optimize the average-
case performance

— A system with fast average-case performance may not meet
worst-case timing requirements

— Analogy: there was a person who drowned in a river with
average depth of 15 cm

Average depth
15cm

RTOS Requirements

Timeliness: results must be correct not only in their value but also in the time domain

— provide kernel mechanism for time management and for handling tasks with explicit
timing constraints and different criticality

Predictability: system must be analyzable to predict the consequences of any
scheduling decision

— if some task cannot be guaranteed within time constraints, system must notify this in
advance, to handle the exception (plan alternative actions)

Efficiency: operating system should optimize the use of available resources
(computation time, memory, energy)

Robustness: must be resilient to peak-load conditions

Fault tolerance: single software/hardware failures should not cause the system to
crash

Maintainability: modular architecture to ensure that modifications are easy to
perform

Sources of Nondeterminism

Architecture
— cache, pipelining, interrupts, DMA
Operating System (our focus in this lecture)
— scheduling, synchronization, communication
Language
— lack of explicit support for time
Design Methodologies

— lack of analysis and verification techniques

Task

 The concept of concurrent tasks reflects the
intuition about the functionality of
embedded systems.

— Task here can refer to either process or
thread, depending on the underlying RTOS
support

« Tasks help us manage timing complexity:
— multiple execution rates
» multimedia
» automotive
— asynchronous input
» user interfaces

» communication systems

o
(7]
~
a

activation time a, —

start time s, S R

Execution time C,

<

finish time f, s

activation Readyqueue gichatching termination
> T3 [T, | T

“activation” = “arrival” = “release” time

10

Schedule

A specific assignment of tasks to the processor that determines the task
execution sequence. Formally:

- Given a task set ' = {14, ..., T, }, a schedule is a function g: R¥ — N that
associates an integer k to each time slice [¢;, t;11) with the meaning:

- k =0:in[t;, t;;1) the processor is idle

k > 0:in [t;, t;;1) the processor executes Ty

idle T T2 T3 idle

o(t)

3

2
1
0 —

t, t, t, t, t

At times t4, t,,.... context switch to a different task

11

Preemptive vs. Nonpreemptive Scheduling

* A scheduling algorithm is:

— preemptive: if the active job can be

temporarily suspended to execute a priority
more important job, e.g, RR, SRTF, Fixed- T EREEAREEEEEE R
Priority % - =

— non-preemptive: if the active job cannot B 46 b+ 1w o1 b

be suspended, i.e., always runs to
completion, e.g., FCFS, SJF

(S(t) A

S == N
L

0 2 4 6 8 10 12 14 16 18 20

Preemptive scheduling example

12

Definitions

Feasible schedule

— A schedule o is said to be feasible if all the tasks can complete according to a set of specified
constraints.

Schedulable set of tasks

— A set of tasks I' is said to be schedulable if there exists at least one algorithm that can produce a
feasible schedule for it.

Hard real-time task: missing deadline may have catastrophic consequences, so deadline violations are
not permitted. A system able to handle hard real-time tasks is a hard real-time system

— sensory acquisition
— low-level control
— sensory-motor planning

Soft real-time task: missing deadlines causes Quality-of-Service(QoS)/performance degradation, so
deadline violations are expected and permitted

— reading data from the keyboard—user command interpretation
— message displaying
— graphical activities

13

Real-Time Task

A task characterized by a timing constraint on its response time, called deadline:

— relative deadline D;: part of task attribute definition, measured from task arrival time
al

— Absolute deadline d; = a; + D;: measured from some absolute reference time
point O

— Gantt chart convention: upwards arrows denote job arrival/release times;
downwards arrows denote deadlines

« Definition: feasible task

— A real-time task 7; is said to be feasible if it completes within its absolute deadline, that s,
if f; < d;, or, equivalently, if R; < D;

relative deadline D;

.]] [l -
! a; S; fl d.l t
_ absolute deadline (d; = a, + D))

response time R;

14

Tasks and Jobs

* A task running several times on different input data generates a sequence of
instances (jobs)

— Upwards arrow: task arrival or release times; downwards arrow: task deadlines
» Activation mode:
— Periodic tasks: the task is activated by the operating system at predefined time intervals

— Aperiodic tasks: the task is activated at an event arrival

Job 1 Job 2 Job 3
Ti,1 Ti,2 Ti,3
A A A
s N - N -
Ci I
| I S I l

ai,1 Ak Aik+1

15

Estimating WCET is Not Easy

Each job operates on different data and can take different paths.

Even for the same data, computation time depends on processor state (cache state, number
of preemptions).

We use C; to denote C;™"** Worst-Case Execution Time (WCET) in this lecture, and
assume it is given as part of task parameters.

C 3
I I
| | I |

loop

? 4 Distribution

, (probability density function)
AN ‘ ‘ 1 | .
timer min max execution

Ci Ci time

Predictability/Safety vs. Efficiency

* Tradeoff between safety and efficiency in estimating the WCET (;

— Setting a large C; achieves high predictability and safety, since it is unlikely to be exceeded at runtime;
but it hurts efficiency, since the system needs to reserve more CPU time for the task. Suitable for hard

real-time tasks.

— Setting a small C; achieves high efficiency, but hurts safety, since the task may execute for more than
its C; estimate. Suitable for soft real-time tasks.

A Distribution

(probability density function)

NN B ~ execution
" mi | | " time
mi avg max
Cf‘ Ci Ci
o O o C,estimate
unsafe efficient safe

17

Jitter

* It is a measure of the time variation of a periodic event:

Finish-time lJitter

T [1 1 [
fi1 fi2 fi3
Start-time lJitter
T — - ‘
L 1 1 [
Si,1 Si,2 Si,3

Completion-time Jitter (1/0 Jitter)

| \ |
si1 fi1 fl,2 Si3 fi3

18

Periodic Task

A periodic task 7; has a tuple of 3 attributes (C;, T;, D;):
— Worst-Case Execution Time (WCET) Cj; Period T;; Relative Deadline D;
— Implicit deadline if D; = T;; Constrained deadline if D; < T;

» It generates an infinite sequence of jobs in every period: T; 1, T; 1, v, Tifs «--

R

o & 0O

_—

D;

I‘-

T.

|
|
d;

1

S. f.

1 1

release time (arrival time a,)
start time

worst-case execution time (wcet)
absolute deadline

relative deadline

finishing time

A job of task T;

J

input

>C-

1

output

wait()|
N timer (period T})

Ti (Cl » Tiy Di) T. job Tix
C: |<—>|l “f A N
= = = el
ai,1 = O; ik Qi k+1 t

task phase or
release offset

aixk = O;+ (k-1)T;
di,k = ajx T D; \ Di=Ti

Multiple jobs released by task t;

19

Aperiodic & Sporadic Task

- Aperiodic task: jobs may arrive at arbitrary time instants

» Sporadic task: arrival times with a minimum interarrival time constraint

e Aperiodic: ajx+ > aix minimum
interarrival time
[) /
e Sporadic: ik = aix + T
job Tik
Gi G Gi
Ti I] l 1 mll I 1] l :
.1 Aik Aj J+1 t

20

Types of Constraints

» Timing constraints
— Deadline, jitter
* Precedence constraints

— Relative ordering among task executions

« Resource constraints

— Synchronization when accessing mutually-exclusive resources (shared data)

21

Precedence Constraints

e
(~ .\“

. . ;)
stereo vision C @ Ny

» Tasks must be executed with specific precedence E:I] g s

processing recognition|’

relations, specified by a Directed Acyclic Graph
(Precedence Graph)

« Example application of parts inspection in a factory.
Tasks:

1
— Image acquisition (acql, acg?) é J

— Edge detection (edgeT, edge?)
— Shape detection (shape), pixel disparities (disp) @
— Height determination (depth), recognition (rec)

s

22

Resource Constraints

To ensure data consistency, shared data
must be accessed in mutual exclusion

Example: the writer task Ty, writes to
variables x and y; the reader task Ty reads
x and y. The pair of variables (x, y) should
be updated atomically, i.e,, Ty should read

either (x,y) = (1,8) or (x,y) = (3,5).

Left upper: an erroneous scenario when Ty
reads a set of inconsistent values (x,y) =

(3,8).

Left lower: protecting the critical section
(vellow parts) with a mutex lock ensures
atomicity, when T, reads a set of consistent

values (x,y) = (3,5).

@
W x=1
y=38

<
[
N W

x=3
Tw E

A

read

L W

\/

op

Erroneous scenario with no lock protection

@
> > T
y=3 x=3 R
y=35
x=3 y=5
TWh | #
1 rea
d K
A

Correct scenario with lock protection

Scheduling Metrics

 lLateness Li = f; — djrepresents the delay of a task completion with respect
to its deadline; if a task completes before the deadline, its lateness is negative.

« Tardiness or exceeding time E; = max (0, L;) is the time a task stays active
after its deadline; if a task completes before the deadline, its tardiness is O.

D;

- -

4 -« Cl—’

|—|oH

release time (arrival time a,)
start tume

worst-case execution time (wcet)
absolute deadline

relative deadline

finishing time

7]
s

o & O

S

24

Example: Lateness

* Which schedule is better '“l - “:I o LHI . U4|.1-| dﬁl -
depends on application J, N l o \lv o L l o
requirements: " 1 1, I 1y j s
In (2), the maximum lateness _
is minimized with L, 4, = N L

L . 4 i 2 L} 12 14 1 15 20 22 24 i
fl—dl=6-—3 =3, but | |
all jobs J; to Js miss their Lo = L1 = 3
deadlines. '
!n (b), the Imaximal lateness " & 1 d4 45
s larger with Liypgy = f1 — Lu::-; L2 =4 ll..‘\:-r'- Ll4=-ﬁ l|..«'=-~'
dl =26 —3 = 23, but ¥
only one job J; missesits . J 4 J 5 iy J s iy
deadline.
| | P T v Tt P vt o
{ - f b L} 14 16 |5 [. 24 26t :
e =
Lopa = L1 = 23

25

Scheduling Algorithms

» Static cyclic scheduling (offline)

— All task invocation times are computed offline and
stored in a table; Runtime dispatch is a simple table
lookup

* Online scheduling;

— Fixed priority scheduling (also called static-priority
scheduling)

» Each task is assigned a fixed priority; Runtime
dispatch is priority-based, e.g., Rate Monotonic
(RM), Deadline Monotonic (DM)

— Dynamic priority scheduling

» Task priorities are assigned dynamically at
runtime, e.g,, Earliest Deadline First (EDF),
Least-Laxity First (LLF)

— Non-real-time scheduling, e.g., round-robin, multi-
level queue. ..

RT scheduling algorithms

/

Static cyclic scheduling
(offline)

Online scheduling

Fixed-priority
(e.g., RM, DM)

Dynamic-priority
(e.g., EDF, LLF)

Static Cyclic Scheduling

The same schedule is executed once during each hyper-period (least common multiple of all
task periods in a taskset).

— The hyper-period is partitioned into frames of length f.

» If a task’'s WCET exceeds f, then programmer needs to cut it to fit within a frame, and save/restore
program state manually

— The schedule is computed offline and stored in a table. Runtime task dispatch is a simple table lookup.
Pros:

— Deals with precedence, exclusion, and distance constraints

— Efficient, low-overhead for runtime task dispatch

— Lock-free at runtime
Cons:

— Task table can get very large if task periods are relatively prime, with a large hyperperiod
— Maintenance nightmare: complete redesign when new tasks are added, or old tasks are deleted

Not widely used
— Except in certain safety-critical systems such as avionic systems

i AN AN RN
6 8

0 2 - 10 12 14 16 18 20

f P 27

Fixed-Priority Scheduling

Fixed Priority Scheduling

Each task is assigned a fixed priority for all its invocations
Pros:

— Predictability

— Low runtime overhead

— Temporal isolation during overload
Cons:

— Cannot achieve 100% utilization in general, except when task periods are harmonic

Widely used in most commercial RTOSes and CAN bus

29

Rate Monotonic & Deadline Monotonic Scheduling

Rate Monotonic (RM)
— Assign higher priority to task with smaller period

— For implicit deadline tasksets (deadline D = period T)

RM is the optimal priority assignment, i.e, if a taskset
is not schedulable with RMS priority assignment,
then it is not schedulable with any other fixed
priority assignment

Deadline Monotonic (DM)

— Assign higher priority to task with smaller relative
deadline

— For constrained deadline tasksets (D < T), DM is
the optimal priority assignment

Why do we want D < T?

— Some events happen infrequently, but need to be
handled urgently

Example taskset: T, = (C;, T;, D;) = (10, 25, 25),
7, = (10,40,40) or (10,40, 15), 13 =
(20,100,100)

tlhm. l

v

0 25 50 75 100
TZ T I L e l L
0 40 80
T3 T 1 -) - I — _ S S S N \| >
) RM Scheduling w/ T, = (10,40, 40) .
Priority ordering: 71> 7, > T3
T1 —m —
0 25 50 75 100
TZ T l I R E— 1 l I S E— | — L’
0 40 80
T3 0 T T ! - T - ! ! T _ ! T ! ! ! 1““'\ >

DM Scheduling w/ T, = (10,40, 15) (D,=15 indicated by red
downward arrow for T,)
Priority ordering: 7, > 74 > T3

Two Schedulability Analysis Approaches ‘

- Ultilization bound test
— Calculate total CPU utilization and compare it to a known bound
— Polynomial time complexity

— Pessimistic: sufficient but not necessary condition for schedulability

« Response Time Analysis (RTA)

— Calculate Worst-Case Response Time R for each task Tau, and compare it to its
deadline D,

— Pseudo-polynomial time complexity

» An algorithm runs in pseudo-polynomial time if its running time is polynomial in the numeric
value of the input (which is exponential in the length of the input — its number of digits).

— Accurate: necessary and sufficient condition for schedulability

31

Utilization Bound Test IMPORTANT
« A taskset is schedulable under RM

scheduling if system utilization U = 1 1.00
Z?’ﬂ% < NQ2VN —1) 2 0.828
U 069asN - o 3 0.780
— Assumptions: task period equal to . s
deadline (P; = D;); task with smaller 5 0.743
period P; is assigneq higher priority (RM 10 0.718
priority assignment); tasks are CPU% 'RM UB Test - 0693

independent (no resource sharing)

100 2
- Sufficient but not necessary condition 90
— Guaranteed to be schedulable if test gg
succeeds 0
— May still be schedulable even if test fails 50
» Special case: if periods are harmonic 401
(larger periods divisible by smaller ;g
periods), then utilization bound is 1 o
(necessary and sufficient condition) 0

1 2 3 4 5 6 7 8 9 10 #tasks

Utilization Bound Test Examples

Ve use the notation 1i (C;, Ti, Di) to denote task t; with

v

Taskset 11(3, 6,6),12(4,9,9) 0 3 6 9 12 15 18
unschedulable I E— h —
3. 4 R I 6 9 12 15 18
U=>+-=0.944 > 0.828
6" 9 g R

Taskset 11(3, 6, 6), 12(3,9, 9) Tlm ———

schedulable (UB test is sufficient but not
necessary condition)

v

(_]
\9]
v

3 3
U= A + 5 = 0.833 > 0.828 0 3 6 9 12 15 18
Taskset T1 (2, 4, 4), T2 (4, 8, 8) T loh**ﬁzhﬁh—'

schedulable (periods are harmonic)
2 4
U=7+5=10>0828 TLL—ﬁ-—ﬁfi—lﬁi —

Response Time Analysis (RTA)

* Assumptions:

 Consider the synchronous taskset: all tasks are initially released at time O simultaneously,
called the critical instant. This is the worst-case when each task experiences maximum
amount of interference from higher priority tasks: if the taskset is schedulable with this
assumption, then it will be schedulable for any other release offset.

« No resource sharing (no critical sections)

* Figure shows task T, has the worst-case response time R, if it is initially released at time
0, simultaneously with higher priority task T4 (lower figure)

T4, To initially released with a non- T L h h h

zero offset, not all at time 0. 7,
experiences 2 preemptions by 74 T
and has shorter response time

T4, Ty initially released at time O
simultaneously, the critical instant. T, LRI | |

experiences 3 preemptions by T4 and _ | ‘

has longer response time T2 u =
-

- 34

Response Time Analysis (RTA) ‘

» For each task t;, compute its Worst-Case Response Time (WCRT) R;
and compare to its deadline D;. T; is schedulable iff R; < D;. The
taskset is schedulable if all tasks are schedulable (necessary and sufficient
condition. “iff” stands for “if and only if").

» Task 7;'s WCRT R; is computed by solving the following recursive
equation to find the minimum fixed-point solution, where task VWCRT is
sum of its VWCET and preemption delay caused by HP tasks:

* Ri = Ci + Zvjenp(i) _w
« where hp(i) is the set of tasks with higher priority than task ;.
e [] is the ceiling operator; e.g, [1.1] = 2, [1.0] = 1

R; . o .
. T—‘} denotes the number of times HP task 7; preempts T; during its one job
j

. R; .
execution; [—‘} C; denotes the total preemption delay caused by HP task t; to
T

T; during its one job execution
35

An Example Taskset

« Consider a taskset of 3 task with (C;, T;, D;) of
(10,30,30),(10,40,40),(12,52,52). Under RM, task priorities are assigned
to be High for T1, Medium for T2, and Low for T3

C; _ 10

« System Utilization U = 3

10 12
17 =50 tig T, = 081> 078

30 ' 40
+ Utilization Bound (N = 3) =3 * (23 —-1) =0.78

- Ultilization bound test fails, but taskset is actually schedulable

Task | T=D | C | Prio
T1 30 10 H
T2 40 10 M
13 52 12 L

Task T1

11 is the highest priority task, with no
interference from other tasks hp(1) = @

e Ry =C;+0=10
e Ry < Dq,s0o T1isschedulable

Task | T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

| N
50 Time

37

1
O
@]

Task T2 Task | T Prio

T1 30 10 H

« T2 is the medium priority task, with interference T2 40 10 M

from higher priority Task 1 hp(2) = 1 T3 52 12 L

e Ry=Cy+[2]%C, =10+ [22] % 10
Ty 30
 Solve for R2 iteratively, starting with initial value R, = €, = 10:

%*10=10+1*10=20

~ Iteration 2: R, = 10 + |5 + 10 = 10 + 1+ 10 = 20

* Hence R, = 20 < D, =40, so T2 is schedulable

Task l

T2 T2

— lteration 1: R, = 10 +

| R
0 10 20 30 40 50 Time

38

Task = [
TaSk T3 as T=D C Prio
T1 30 10 H
« T3 is the lowest priority task, with interference = 20 10 v
from higher priority tasks hp(3) = {1,2
P ! 4 (1.2} T3 52 12 L

-R3=cg+[’; cl+[1*cz_12+[10 + [2] * 10

* Solve for Rz iteratively, starting with initial value R; = C3 =12:
— lteration 1: Rz = 12 + [12/30] = 10 + [12/40] * 10 = 32
— lteration 2: Rz = 12 4 [32/30] * 10 + [32/40] = 10 = 42
— lteration 3: Rz = 12 + [42/30] * 10 + [42/40] * 10 = 52
O |teration 4: R3 = 12 + [52/30] * 10 + [52/40] * 10 = 52
* Hence R; =52 < D3 =52,s50 13 is schedulable

Task l

T2 T2

| ! | F ,
0 10 0 3 40 50 Time

39

° |n|t|a”>/ R3 — CB =12

Task

RTA for T3: Initial Condition Task | T=D | C | Prio
T1 30 10 H
T2 40 10 M
| | T3 | 52 | 12| L
* We have not taken into account any preemption
delays from higher priority tasks T1 and T2 yet
T2 T2
| | | R
10 12 20 30 40 50 Time

40

RTA for Task 3: Iteration 1 Task | T=D | C | Prio

T1 30 10 H

o Ry =12+ ||+ 10+ [2|+ 10 T2 | 40 |10 M

13 52 12 L
e =12+1%x10+1%10 = 32
* 11 preempts T3 once, and T2 preempts T3 once

—since all 3 tasks are released at time O (synchronous release

time assumption), and T1 and T2 have higher priority than
T3

Task l

T2 T2

| H | | X
0 10 0 30 32 40 50 Time

41

RTA for Task 3: Iteration 2 Tase] T=D | C | Prio
T1 30 10 H
¢ Ry =12+ 2|+ 10+ 2| 10 T2 | 40 110 M
13 52 12 L
e = 12+2x10+1 %10 =42
* 11 preempts T3 twice, and T2 preempts T3 once
— Since T3 has not finished execution at time 30, and
another job of higher priority task T1 is released at time
30 and preempts T3
Task
Tt
T2 T2

0] 10

%

| ,
50 Time

42

RTA for Task 3: Iteration 3

¢ Ry =12+ ||+ 10+ || + 10
e =12+2+10+2+10 = 52

* 11 preempts T3 twice, and T2 preempts T3 twice

—Since T3 has not finished execution at time 40, and

another job of higher priority task T2 is released at time

40 and preempts T3

Task l

T2

Task | T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L
T2

5E 52 Time

43

RTA for Task 3: Iteration 4

¢« Rg=12+|2]+10+ 2| +10=12+2510+2+10 =

« 11 preempts T3 twice, and T2 preempts T3 twice

— Since T3 has finished execution at time 52, and the next arrivals of T1
and T2 are at time 60 and 80, respectively, so T3 will not experience

Task | T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

additional preemptions from T1 and T2, since the next job arrivals of T1
and T2 are at time instants 60 and 80, after T3 has finished execution at

time 52

- Now the recursive equation has converged, and we have
obtained the WCRT of T3 Ry =52 < D3y = 52

Task l

T2

T2

44

When T3 is Unschedulable

The recursive equation may not converge, i.e, a task's WCRT may
be infinity, e.g,, suppose we change T2's WCET to be 20, then:

R R R R
Ry = C3 + 2% €y + 2% € = 124+ 2] % 10+ [2] » 20

Solve for Rj iteratively, starting with initial value R; = C3 = 12:

— Iteration 1: R; = 12 +
— |teration 1: R = 12 +
— |teration 3: R; = 12 +
— Iteratic?n 4:R; =12 +

12/30]
42 /30]
72/30]

'82/30]

Hence R; — oo. This means that T3's first job never finishes

execution due to interferences by higher priority tasks, hence T3 is

unschedulable

It is also possible for T3 to be unschedulable if R3 converges but it
exceeds its deadline D3, e.g, if we set D3 = 50, then R; =52 >
D; = 50 (another job of T3 is released at time 50, but RTA for

the current job is not affected by the newly-released job.)

Task | T=D | C | Prio
T1 | 30 | 10 | H
T2 | 40 | 20 | M
+10 + [12/40] * 20 = 42 T3 | 52 |12 L
+ 10 + [42/40] * 20 = 72
+ 10 + [72/40] 20 = 82
£ 10 + [82/40] * 20 = 102
Task | T=D | C | Prio
T1 | 30 | 10 | H
T2 40 10 M
T3 | 50 | 12 | L

45

DM for Constrained Deadline Tasksets (D < T)

* Deadline monotonic (Fixed Priority):

— A task with smaller relative deadline gets higher priority P; « 1/D;
— For constrained deadline tasksets (D < T), DM is the optimal priority assignment

— No Ultilization Bound test for RM or DM, for tasksets with D < T; must use Response
Time Analysis (RTA)

— Consider a taskset with two tasks both with (C;, T;, D;) = (1, 2, 1). Using RTA,
assuming T4 has higher priority (since task periods are equal, we can assign either
task higher priority), we can determine

—R1:C1 0_1<D1:1
Ry =G + |2 }Cl=1+[2|1=2> D; =1, hence it is unschedulable
T, |

.
|

a
Y

Iik dix Tik+

46

RM vs. DM Example

* Three tasks: 74 =
(0.5,3,3), 1, =
(1,4,4),73 = (2,6,6)

« Under RM (or DM),
priority ordering T; >
Ty > T3

* Three tasks with

T, assigned a smaller
deadlineof D, = 2. 74 =
(0.5,3,3), 7, =
(1,4,2),73 = (2,6,6)

 Under DM, priority
ordering T, > 71 > T3

T2

Tq

T3

R -
-

14—
L a
t

47

Farliest

Deadline First (E

DF) Scheduling

Earliest Deadline First (EDF)

 As each job enters the system, it is assigned a deadline, and its priority is determined
by its absolute deadline d;

— The job with the earlier deadline is assigned the higher priority

— This priority assignment is dynamic because a periodic task’s priority changes for each job
released by the task (vs. fixed-priority scheduling, where a periodic task is assigned a fixed
priority for all its jobs)

* Pros:
— Optimal: can achieve 100% CPU utilization
-+ Cons:

— Poor temporal isolation during overload
— c.f. RM vs. EDF: Robustness under Overload

49

EDF Scheduling Example

* Say you have two tasks, both released at time O
— 11 has WCET 5 ms, with deadline of 20 ms
— T2 has WCET 10 ms, with deadline of 12 ms
« Non-EDF scheduling: T1 before T2, T2 misses its deadline at 12

« EDF scheduling: T2 before T1, both tasks meet their deadlines

N T2 Deadline T1 Deadline
11 before T2 T1 T2 | l .
0 5 15 20
N | l
T2 before T1 T2 .tl >
0 5 15 20

Convention: Upwards arrows indicate arrival
time; Downwards arrows indicate deadline

50

Schedulable Utilization Bound: EDF vs. RM

* The schedulable utilization bound for EDF
Scheduling is 1 (necessary and sufficient

condition):
— A taskset is schedulable under EDF scheduling ' RM EDF
iff systCe_m utilization does not exceed 1 U = cpyoy,
?’le—; <1 100 100%
» “iff” stands for “if and only if” 20
— Assumptions: task period equal to deadline gg
(P; = D;); tasks are independent (no ’ 69%
resource sharing) gg
» Recall: schedulable utilization bound for 10
Fixed-Priority scheduling (sufficient but not 30
necessary condition): 20
— A taskset is schedulable underCRIVI scheduling 10
. o _vN Ci 1/N _
if system utilization U = Zi:lTi < N2V 0 9 10 # tasks

1)
-U—->069a N > o

51

unschedulable with RM

Task | T=D C
RM vs. EDF Example - .
11
Under RM (Fixed-Priority scheduling), all jobs of 74 9 4
(with smaller period T=6) have higher priority than ‘2
all jobs of 7, (with larger period T=9). Taskset T hﬁﬁ_hﬁﬁ_h
0 3 6 9 12 5 18
Utilization bounczj3 (suiﬁcient but not necessary priority\/ V V
condition): U = cts= 0.944 > 0.828 T .
RTA'R; =C, +0=3<D; =6 R, = C, + A

R, . & . .
[T—J*cl =4+|%2|+3=10> D, =9 hence
T, is not schedulable

Under EDF (Dynamic Priority scheduling),
different jobs of T; and T, may have
different priorities, depending on their
absolute deadlines d;, which is different for

each newly-released job every period.
Taskset schedulable with EDF

U= 3+4 0.944 < 1.0
=ztg=

6 9 12 13 18

e

T2

0

priority Q 4 l Q /, /

VWhen two jobs have equal priority, the newly arrived
job does not preempt the running job

52

RM vs. EDF: Robustness under Overload

+ Under permanent overload, with CPU utilization U > 1
— Under EDF, all tasks execute at a slower rate with “period rescaling”, i. e, all tasks are delayed evenly
— Under RM, higher priority tasks are protected while lower priority tasks are delayed (7,) or completely blocked (73)
— Recall Slide 25 Example Lateless
 Under transient overload, when some job overruns (executes longer than expected temporarily)
— Under EDF, task overruns can cause deadline miss of arbitrary task
— Under RM: task overruns only affect lower priority tasks
+ Conclusion: RM offers better temporal isolation for higher priority tasks, at the expense of lower priority tasks

RM under permanent overload EDF under permanent overload
U= i+£+i = 1.25 U = 4 E+i 1.25
8 12 20 g 12 20

Ts‘ ‘ ‘ ‘ ‘ T3‘F h == — ‘

0 20 40 &0 80 0 20 40 60 a0

¢ High priority tasks execute at the proper rate o All tasks execute at a slower rate
e Low priority tasks are completely blocked ¢ No task is blocked

EDF Period Rescaling

» Theorem on Period Rescaling [Cervin et al. 2003]:

—If system utilization U > 1, tasks are executed with an average period
T/ = T;U under EDF scheduling

. U=1.25
T. T,
L)
8 10 “‘ T 8|10
Tz |BR L I L . . Tz 12].5
12 15 "
T3 ; T3 | 20| 25

20 25

54

EDF for Constrained Deadline Tasksets (D < T)

« FEarliest Deadline First (Dynamic-Priority):
— A task with smaller absolute deadline gets higher priority P; & 1/d;

— EDF is still optimal, but instead of Utilization Bound, we use Density Bound to determine
schedulability

Ci

— Density of task 7; is defined as 6; = n(DTs) Taskset is schedulable if system density does not
exceed 1: A =Y. 6; < 1 (sufficient but not riecessary condition)
» (Demand Bound Function can be used as necessary and sufficient condition (not covered))

— Consider a taskset with two tasks both with (C;, Ty, D;) &= (1,2, 1). It is obviously upschedulable
under any scheduling algo. System utilization is U = st>=1 System density A = Tto=2 But
we cannot determine schedulabiity based on A > 1.

— Consider a taskset with two tasks 7, = (0.6,2,1),7, = (2.3,5,5). A = O—f + % = 1.06. Yet
the taskset is schedulable under EDF:
T j * ' ‘ + | + ' + r l{ !
repeats

1 -

J
~
N
¥ -
=
4
-
L

() |
55

Summary of Schedulability Analysis Algorithms ‘

Fixed-Priority Scheduling

Dynamic Priority Scheduling

Optimal
Scheduling
Algorithm

Rate Monotonic (RM)
Scheduling for implicit
deadline taskset (D=T)

Deadline Monotonic
(DM) Scheduling for
constrained deadline
taskset (D<T)

Earliest Deadline First
(EDF) Scheduling for
implicit deadline taskset
(D=T)

Earliest Deadline First
(EDF) Scheduling for

constrained deadline

taskset (D<T)

Schedulability
Analysis
Algorithm

Utilization Bound (UB) test

=¥V Cl < NQ2UN —

1) (sufﬂoent but not
necessary condition) or
Response Time Analysis
(RTA) (necessary and
sufficient)

neie 3 [

RTA
Response Time Analysis
(RTA) (necessary and
sufficient)
R;

R;

-ar 3 [

Vjehp(i)
<D

Utilization Bound (UB)
test U = Y4 C‘

(necessary and sufﬂoent)

Density Bound test

(sufficient but not
necessary condition)
or Demand Bound
Function (not covered)

56

Least Laxity First (LLF) Scheduling

Least Laxity First (LLF) Scheduling

LLF assigns priority to jobs dynamically based on their current laxity (slack)

— With absolute deadline d; and remaining execution time ¢;, laxity of ;s job attime tisl; = d; - t - e;. Job
with the smallest laxity has the highest priority

— While an active job waits and does not run, its laxity decreases and its priority increases until it becomes
the highest priority job and starts to run

— If an active job runs in the previous time slot, then its laxity remains the same, as t is incremented by 1, and
e; is decremented by 1

— Ifan active job does not run in the previous time slot, then its laxity is decremented by 1, as t is
incremented by 1, and e; remains the same

Analo%y: suppose you have an assignment that is due in 5 hours at 12:00, and it takes e;=3 hours to
complete. Currenttime is t=7:00, so the current laxityis [; = d; - t - e;=12-7-3=2.

— If you work for an hour until t=8:00, then the laxity remains the same: [; = d; - t - e;=12-8-2=2, since the
remaining execution time is decremented by 1: ¢;=3-1=2

— Ifyou sleep for an hour until t=8:00, then the laxity is decremented by 1: [; = d; - t - ¢;=12-8-3=1, since
the remaining execution time does not change: ¢;=3

— Ifyou sleep for 2 hours until t=9:00, then the laxityisnow 0: [; = d; - t - ¢;=12-9-3=0. Your must give the
assignment the highest priority and start working on it right away, otherwise you will miss the deadline

. deadline
e; € -------- e L l

v

t di I 1 1 "
laxity: 4 4 4 3 3 3 3 2 2 1 0

EDF adndfl_1LF are both optimal scheduling algorithms, i.e., they both have schedulable utilization
ound o

— LLF incurs frequent context switches, hence is less practical than EDF

58

RM, EDF, LLF Example Task | T=D | C
T1 5 2
Task T2 6 3

-

T2

O 1 2 3 4 5 6 7 8 9 10 11 12 |"me|mtadity Tlaxity Task
Time T1 (tie,
EDF and RM have the same schedule prefer task
t=0 |5-0-2=3 |6-0-3=3 | with
smaller
index)
t=1 |5-1-1=3 |6-1-3=2 |1,
T2 (tie,
Task t=2 |5-2-1=2 |6-2-2=2 | Prefer
running
h h -
| T1 | t=3 |53-1=1 |6-3-1=2 |1,
TZ TZ l Tz l t=4 T1 done 6-4-1=1 Ty
o 1 2 3 4 5 6 7 8 9 10 11 2 [t=5 [1052=3 |ndone |n
LLF has more frequent context sMitcheI'me t=6 1106:123 | 12:6:3=3 | 7, (tie)
t=7 T, done 12-7-3=2 | 1,

Preemptive vs. Non-Preemptive Scheduling

Preemptive vs. Non-Preemptive Scheduling

* Non-preemptive scheduling pros: Preemptive scheduling pros:
* |t reduces runtime overhead * Better schedulability (higher CPU utilization) (in
e Less context switches general)
« No mutex locks needed for critical * Cons:
sections * Runtime overhead due to frequent context-switches
* |t preserves program locality, improving * Destroys program locality so task WCET becomes
the effectiveness of CPU cache larger
* As a result, task WCET becomes smaller
and execution time distribution becomes 4 ictribution

more predictable (shown on right) hon-preemptive

* Sometimes NP scheduling can improve
schedulability

* Cons:
— Reduced schedulability (in general)

— Scheduling anomalies

61

Sometimes NP Scheduling Improves Schedulability

* An example where NP scheduling improves schedulability (for fixed-priority
scheduling) (upward red arrows indicate job completion times)

U = —+—~=~ 0.97

nJ- 15 L-M |
.| ,w..l MU P R

deadlme miss

NP-RM
0 5 10 15 20 25 30 35
‘Cz [ol | m | Fr I m | o [>

62

Disadvantage of NP Scheduling: Reduced Schedulability

* In general, NP scheduling reduces schedulability. The utilization bound
under NP scheduling drops to zero due to blocking time

* An example with two tasks T1 and T2, CPU utilization of nearly O, yet
unschedulable.
— It C, (WCET of T2) = T, (period of Tg) then the taskset is unschedulable with
arbitrarily small system CPU ut|||zat|on — + —= > — + (vvhen C, goes to 0 and
T, goes to infinity) 2

— This example is valid whether T, or 7, has higher priority: even if T, has higher
priority, it may be released very shortly after 7, is released at time O, and it has to

wait for T, to finish due to NP scheduling
C,—0

U, >0 Ti i
C, =T, T, >

U,—>0 1m

63

Disadvantage of NP Scheduling: Scheduling Anomalies

* Scheduling anomaly: three tasks under NP fixed-priority scheduling with priority ordering

Ty > Ty > T3

« Doubling the processor speed (reducing task execution times by half) makes task 74 miss its

deadline, since T3 starts earlier before 77 is released, causing a long delay to it due to NP
scheduling (this anomaly does not occur for preemptive scheduling)

v_ |em!
Gl e———
double speed

1~ deadline miss

64

Online Resources

» Priority-Driven Scheduling, Marilyn Wolf

— https://www.youtube.com/watch!v=z5gr_oFmijgl&list=PLzweflUCNStZsmz5fVWPVwVvTo
1iPeGmMG9M&index=4

« RMS and EDF, Marilyn Wolf

— https://www.youtube.com/watch?v=oHMC2aO8G||&list=PLzwefUCNStZsmz5f\WPVwVv
To1iPeGmMG9M&index=5

* Real-Time Scheduling Models, Marilyn Wolf (long)
— https://www.youtube.com/watch?v=WI105SQ/ZEKXk

65

https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=WloSQ7ZEKXk
https://www.youtube.com/watch?v=WloSQ7ZEKXk

	Slide 1: CSC 112: Computer Operating Systems Lecture 6 Real-Time Scheduling I
	Slide 2: Outline
	Slide 3
	Slide 4: Embedded Control Systems
	Slide 5: Requirements
	Slide 6: A Robot Control Example
	Slide 7: Real-Time Systems
	Slide 8: RTOS Requirements
	Slide 9: Sources of Nondeterminism
	Slide 10: Task
	Slide 11: Schedule
	Slide 12: Preemptive vs. Nonpreemptive Scheduling
	Slide 13: Definitions
	Slide 14: Real-Time Task
	Slide 15: Tasks and Jobs
	Slide 16: Estimating WCET is Not Easy
	Slide 17: Predictability/Safety vs. Efficiency
	Slide 18: Jitter
	Slide 19: Periodic Task
	Slide 20: Aperiodic & Sporadic Task
	Slide 21: Types of Constraints
	Slide 22: Precedence Constraints
	Slide 23: Resource Constraints
	Slide 24: Scheduling Metrics
	Slide 25: Example: Lateness
	Slide 26: Scheduling Algorithms
	Slide 27: Static Cyclic Scheduling
	Slide 28
	Slide 29: Fixed Priority Scheduling
	Slide 30: Rate Monotonic & Deadline Monotonic Scheduling
	Slide 31: Two Schedulability Analysis Approaches
	Slide 32: Utilization Bound Test
	Slide 33: Utilization Bound Test Examples
	Slide 34: Response Time Analysis (RTA)
	Slide 35: Response Time Analysis (RTA)
	Slide 36: An Example Taskset
	Slide 37: Task T1
	Slide 38: Task T2
	Slide 39: Task T3
	Slide 40: RTA for T3: Initial Condition
	Slide 41: RTA for Task 3: Iteration 1
	Slide 42: RTA for Task 3: Iteration 2
	Slide 43: RTA for Task 3: Iteration 3
	Slide 44: RTA for Task 3: Iteration 4
	Slide 45: When T3 is Unschedulable
	Slide 46: DM for Constrained Deadline Tasksets (D less than or equal to T)
	Slide 47: RM vs. DM Example
	Slide 48
	Slide 49: Earliest Deadline First (EDF)
	Slide 50: EDF Scheduling Example
	Slide 51: Schedulable Utilization Bound: EDF vs. RM
	Slide 52: RM vs. EDF Example
	Slide 53: RM vs. EDF: Robustness under Overload
	Slide 54: EDF Period Rescaling
	Slide 55: EDF for Constrained Deadline Tasksets (D less than or equal to T)
	Slide 56: Summary of Schedulability Analysis Algorithms
	Slide 57
	Slide 58: Least Laxity First (LLF) Scheduling
	Slide 59: RM, EDF, LLF Example
	Slide 60
	Slide 61: Preemptive vs. Non-Preemptive Scheduling
	Slide 62: Sometimes NP Scheduling Improves Schedulability
	Slide 63: Disadvantage of NP Scheduling: Reduced Schedulability
	Slide 64: Disadvantage of NP Scheduling: Scheduling Anomalies
	Slide 65: Online Resources

