
CSC 112: Computer Operating Systems
Lecture 6

Real-Time Scheduling I

Department of Computer Science,

Hofstra University

Acknowledgement: Lecture slides based on Buttazzo, Hard Real-Time Computing Systems

2

Outline

• Part I

– Introduction to RTOS and Real-Time Scheduling

– Fixed-Priority Scheduling

– Earliest Deadline First Scheduling

– Least Laxity First (LLF) Scheduling

– Preemptive vs. Non-Preemptive Scheduling

• Part II

– Multiprocessor Scheduling

– Resource Synchronization Protocols (for Fixed-Priority Scheduling)

3

Introduction to RTOS and Real-Time
Scheduling

4

Embedded Control Systems

• An embedded control system co´nsists of:

– The system-under-control (SUT)

» may include sensors and actuators

– The controller/computer

» sends signals to the system according to a
predetermined control objective

• In the old days, each control task runs on a
dedicated CPU

– No RTOS, bare metal

– No need for scheduling

– Just make sure that task execution time <
deadline

• Now, multiple control tasks share one CPU

– Multitasking RTOS

– Need scheduling to make sure all tasks meet
deadlines

Controller/computer

actuatorsD/A

SUT

sensorsA/D

Thread or

process (task)

Resource

5

Requirements

• The tight interaction with the environment requires the system to react to events
within precise timing constraints

• Timing constraints are imposed by the dynamics of the environment

• The real-time operating system (RTOS) must be able to execute tasks within timing
constraints

6

A Robot Control Example

• Consider a robot equipped with:

– two actuated wheels

– two proximity (Ultrasound) sensors

– a mobile (pan/tilt) camera

– a wireless transceiver

• Goal:

– follow a path based on visual
feedback

– avoid obstacles

visual−base
d
navigation

visual
tracking

obstacle
avoidance

10 ms

100 ms
object

recognition

mot_dx mot_sxpan tiltcamera US1 US2

1 ms

vehicle
control

5 ms20 ms
feature

extraction motor
control

motor
control

motor
control

motor
control

1 ms

7

Real-Time Systems

• A computer system that is able to respond to events within
precise timing constraints

• A system where the correctness depends not only on the
output values, but also on the time at which results are
produced

• A real-time system is not a necessarily a real fast system

– Speed is always relative to a specific environment

– Running faster is good, but does not guarantee hard real-time
constraints

• The objective of a real-time system is to guarantee the
worst-case timing behaviour of each individual task

• The objective of a fast system is to optimize the average-
case performance

– A system with fast average-case performance may not meet
worst-case timing requirements

– Analogy: there was a person who drowned in a river with
average depth of 15 cm

x (t)
RT system

Environmen

t

t
y (t+)

8

RTOS Requirements

• Timeliness: results must be correct not only in their value but also in the time domain

– provide kernel mechanism for time management and for handling tasks with explicit
timing constraints and different criticality

• Predictability: system must be analyzable to predict the consequences of any
scheduling decision

– if some task cannot be guaranteed within time constraints, system must notify this in
advance, to handle the exception (plan alternative actions)

• Efficiency: operating system should optimize the use of available resources
(computation time, memory, energy)

• Robustness: must be resilient to peak-load conditions

• Fault tolerance: single software/hardware failures should not cause the system to
crash

• Maintainability: modular architecture to ensure that modifications are easy to
perform

9

Sources of Nondeterminism

• Architecture

– cache, pipelining, interrupts, DMA

• Operating System (our focus in this lecture)

– scheduling, synchronization, communication

• Language

– lack of explicit support for time

• Design Methodologies

– lack of analysis and verification techniques

10

Task

• The concept of concurrent tasks reflects the
intuition about the functionality of
embedded systems.

– Task here can refer to either process or
thread, depending on the underlying RTOS
support

• Tasks help us manage timing complexity:

– multiple execution rates

» multimedia

» automotive

– asynchronous input

» user interfaces

» communication systems
“activation” = “arrival” = “release” time

Task iactivation time ai

start time si

finish time fi

Execution time Ci

CPU

activation dispatching terminationReady queue

3 2 1

11

• A specific assignment of tasks to the processor that determines the task
execution sequence. Formally:

• Given a task set Γ = {𝜏1, … , 𝜏𝑛}, a schedule is a function 𝜎: 𝑅+ → 𝑁 that
associates an integer 𝑘 to each time slice [𝑡𝑖 , 𝑡𝑖+1) with the meaning:

• 𝑘 = 0: in [𝑡𝑖 , 𝑡𝑖+1) the processor is idle

• 𝑘 > 0: in [𝑡𝑖 , 𝑡𝑖+1) the processor executes 𝜏𝑘

At times t1, t2 ,…: context switch to a different task

1 2 3 idleidle

(t)

3

2

1

0

tt3 t4t1 t2

Schedule

12

priority

1

2

3

(t)

3

2

1

0

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Preemptive vs. Nonpreemptive Scheduling

• A scheduling algorithm is:

– preemptive: if the active job can be
temporarily suspended to execute a
more important job, e.g., RR, SRTF, Fixed-
Priority

– non-preemptive: if the active job cannot
be suspended, i.e., always runs to
completion, e.g., FCFS, SJF

Preemptive scheduling example

13

Definitions

• Feasible schedule

– A schedule 𝜎 is said to be feasible if all the tasks can complete according to a set of specified
constraints.

• Schedulable set of tasks

– A set of tasks Γ is said to be schedulable if there exists at least one algorithm that can produce a
feasible schedule for it.

• Hard real-time task: missing deadline may have catastrophic consequences, so deadline violations are
not permitted. A system able to handle hard real-time tasks is a hard real-time system

– sensory acquisition

– low-level control

– sensory-motor planning

• Soft real-time task: missing deadlines causes Quality-of-Service(QoS)/performance degradation, so
deadline violations are expected and permitted

– reading data from the keyboard—user command interpretation

– message displaying

– graphical activities

14

Real-Time Task

tfi di

relative deadline Di

i
ai si

response time Ri

absolute deadline (di = ai + Di)

• A task characterized by a timing constraint on its response time, called deadline:

– relative deadline 𝐷𝑖 : part of task attribute definition, measured from task arrival time
ai

– Absolute deadline 𝑑𝑖 = 𝑎𝑖 + 𝐷𝑖 : measured from some absolute reference time
point 0

– Gantt chart convention: upwards arrows denote job arrival/release times;
downwards arrows denote deadlines

• Definition: feasible task

– A real-time task 𝜏𝑖 is said to be feasible if it completes within its absolute deadline, that is,
if 𝑓𝑖 ≤ 𝑑𝑖 , or, equivalently, if 𝑅𝑖 ≤ 𝐷𝑖

15

Tasks and Jobs

• A task running several times on different input data generates a sequence of
instances (jobs)

– Upwards arrow: task arrival or release times; downwards arrow: task deadlines

• Activation mode:

– Periodic tasks: the task is activated by the operating system at predefined time intervals

– Aperiodic tasks: the task is activated at an event arrival

Job 1

i,1

Job 2

i,2

Job 3

i,3

ai,k ai,k+1
t

i

Ci

ai,1

16

Estimating WCET is Not Easy

• Each job operates on different data and can take different paths.

• Even for the same data, computation time depends on processor state (cache state, number
of preemptions).

• We use 𝐶𝑖 to denote 𝐶𝑖
𝑚𝑎𝑥 Worst-Case Execution Time (WCET) in this lecture, and

assume it is given as part of task parameters.

?

Distribution

(probability density function)

loop

?

?

execution

timeCi

min
Ci

maxtimer

17

Predictability/Safety vs. Efficiency

execution

time
Ci

mi

n Ci

max
Ci

avg

Ci estimate

safeefficientunsafe

• Tradeoff between safety and efficiency in estimating the WCET 𝐶𝑖

– Setting a large 𝐶𝑖 achieves high predictability and safety, since it is unlikely to be exceeded at runtime;
but it hurts efficiency, since the system needs to reserve more CPU time for the task. Suitable for hard
real-time tasks.

– Setting a small 𝐶𝑖 achieves high efficiency, but hurts safety, since the task may execute for more than
its 𝐶𝑖 estimate. Suitable for soft real-time tasks.

Distribution

(probability density function)

18

Jitter

• It is a measure of the time variation of a periodic event:

fi,1

Finish-time Jitter

i

fi,2 fi,3

si,1

Start-time Jitter

i

si,1 si,2 si,3

Completion-time Jitter (I/O Jitter)

i

si,2 si,3fi,2fi,1 fi,3

19

Periodic Task

• A periodic task 𝜏𝑖 has a tuple of 3 attributes (𝐶𝑖 , 𝑇𝑖 , 𝐷𝑖):

– Worst-Case Execution Time (WCET) 𝐶𝑖 ; Period 𝑇𝑖 ; Relative Deadline 𝐷𝑖

– Implicit deadline if 𝐷𝑖 = 𝑇𝑖 ; Constrained deadline if 𝐷𝑖 ≤ 𝑇𝑖

• It generates an infinite sequence of jobs in every period: 𝜏𝑖,1, 𝜏𝑖,1, … , 𝜏𝑖,𝑘 , …

Ti
job ik

ai,k ai,k+1

i (Ci , Ti , Di)

Ci

tai,1 = i

task phase or

release offset

ai,k

di,k

= i + (k−1) Ti

= ai,k + Di

often

Di = Ti

input

Ci

wait()

timer (period Ti)

output

A job of task 𝜏𝑖 Multiple jobs released by task 𝜏𝑖

20

Aperiodic & Sporadic Task

• Aperiodic task: jobs may arrive at arbitrary time instants

• Sporadic task: arrival times with a minimum interarrival time constraint

• Aperiodic: ai,k+1 > ai,k
minimum

interarrival time

• Sporadic: ai,k+1  ai,k + Ti

Ci

job ik

Ci Ci

ai,k ai,k+1
t

i

ai,1

21

Types of Constraints

• Timing constraints

– Deadline, jitter

• Precedence constraints

– Relative ordering among task executions

• Resource constraints

– Synchronization when accessing mutually-exclusive resources (shared data)

22

Precedence Constraints

• Tasks must be executed with specific precedence
relations, specified by a Directed Acyclic Graph
(Precedence Graph)

• Example application of parts inspection in a factory.
Tasks:

– Image acquisition (acq1, acq2)

– Edge detection (edge1, edge2)

– Shape detection (shape), pixel disparities (disp)

– Height determination (depth), recognition (rec)

stereo vision

processing recognition

acq1 acq2

edge1 edge2

shapedisp

depth

rec

23

Resource Constraints

• To ensure data consistency, shared data
must be accessed in mutual exclusion

• Example: the writer task 𝜏𝑊 writes to
variables 𝑥 and 𝑦; the reader task 𝜏𝑅 reads
𝑥 and 𝑦. The pair of variables (𝑥, 𝑦) should
be updated atomically, i.e., 𝜏𝑅 should read
either 𝑥, 𝑦 = 1, 8 or 𝑥, 𝑦 = 3, 5 .

• Left upper: an erroneous scenario when τR
reads a set of inconsistent values 𝑥, 𝑦 =
3, 8 .

• Left lower: protecting the critical section
(yellow parts) with a mutex lock ensures
atomicity, when τR reads a set of consistent
values 𝑥, 𝑦 = 3, 5 .

x = 3

y = 5
W R

x = 1

y = 8

x = 3

y = 8

W

R

x=3 y=5

read

x = 3

y = 5x = 1

y = 8

x = 3

y = 5

W R

x = 3 y = 5
W

R



rea

d

Erroneous scenario with no lock protection

Correct scenario with lock protection

24

Scheduling Metrics
• Lateness 𝐿ᵢ = 𝑓ᵢ − 𝑑ᵢ represents the delay of a task completion with respect

to its deadline; if a task completes before the deadline, its lateness is negative.

• Tardiness or exceeding time 𝐸ᵢ = max (0, 𝐿ᵢ) is the time a task stays active
after its deadline; if a task completes before the deadline, its tardiness is 0.

25

Example: Lateness

• Which schedule is better
depends on application
requirements:

• In (a), the maximum lateness
is minimized with 𝐿𝑚𝑎𝑥 =
𝑓1 − 𝑑1 = 6 − 3 = 3, but
all jobs 𝐽1 to 𝐽5 miss their
deadlines.

• In (b), the maximal lateness
is larger with 𝐿𝑚𝑎𝑥 = 𝑓1 −
𝑑1 = 26 − 3 = 23, but
only one job 𝐽1 misses its
deadline.

26

Scheduling Algorithms

• Static cyclic scheduling (offline)

– All task invocation times are computed offline and
stored in a table; Runtime dispatch is a simple table
lookup

• Online scheduling;

– Fixed priority scheduling (also called static-priority
scheduling)

» Each task is assigned a fixed priority; Runtime
dispatch is priority-based, e.g., Rate Monotonic
(RM), Deadline Monotonic (DM)

– Dynamic priority scheduling

» Task priorities are assigned dynamically at
runtime, e.g., Earliest Deadline First (EDF),
Least-Laxity First (LLF)

– Non-real-time scheduling, e.g., round-robin, multi-
level queue…

RT scheduling algorithms

Static cyclic scheduling

(offline)
Online scheduling

Fixed-priority

(e.g., RM, DM)

Dynamic-priority

(e.g., EDF, LLF)

27

Static Cyclic Scheduling

• The same schedule is executed once during each hyper-period (least common multiple of all
task periods in a taskset).

– The hyper-period is partitioned into frames of length f.

» If a task’s WCET exceeds f, then programmer needs to cut it to fit within a frame, and save/restore
program state manually

– The schedule is computed offline and stored in a table. Runtime task dispatch is a simple table lookup.

• Pros:

– Deals with precedence, exclusion, and distance constraints

– Efficient, low-overhead for runtime task dispatch

– Lock-free at runtime

• Cons:
– Task table can get very large if task periods are relatively prime, with a large hyperperiod

– Maintenance nightmare: complete redesign when new tasks are added, or old tasks are deleted

• Not widely used
– Except in certain safety-critical systems such as avionic systems

28

Fixed-Priority Scheduling

29

Fixed Priority Scheduling

• Each task is assigned a fixed priority for all its invocations

• Pros:

– Predictability

– Low runtime overhead

– Temporal isolation during overload

• Cons:

– Cannot achieve 100% utilization in general, except when task periods are harmonic

• Widely used in most commercial RTOSes and CAN bus

30

Rate Monotonic & Deadline Monotonic Scheduling

• Rate Monotonic (RM)

– Assign higher priority to task with smaller period

– For implicit deadline tasksets (deadline D = period T),
RM is the optimal priority assignment, i.e., if a taskset
is not schedulable with RMS priority assignment,
then it is not schedulable with any other fixed
priority assignment

• Deadline Monotonic (DM)

– Assign higher priority to task with smaller relative
deadline

– For constrained deadline tasksets (D ≤ T), DM is
the optimal priority assignment

• Why do we want D < T?

– Some events happen infrequently, but need to be
handled urgently

• Example taskset: 𝜏1 = 𝐶𝑖 , 𝑇𝑖 , 𝐷𝑖 = 10, 25, 25 ,
 𝜏2 = 10, 40, 40 or 10, 40, 15 , 𝜏3 =
20, 100, 100

0

500 10025 75

2

0

40 80

100
3

1

0

500 10025 75

2

0

40 80

100
3

1

RM Scheduling w/ 𝜏2 = (10, 40, 40)
Priority ordering: 𝜏1> 𝜏2 > 𝜏3

DM Scheduling w/ 𝜏2 = (10, 40, 15) (D2=15 indicated by red

downward arrow for 𝜏2)

Priority ordering: 𝜏2 > 𝜏1 > 𝜏3

31

Two Schedulability Analysis Approaches

• Utilization bound test

– Calculate total CPU utilization and compare it to a known bound

– Polynomial time complexity

– Pessimistic: sufficient but not necessary condition for schedulability

• Response Time Analysis (RTA)

– Calculate Worst-Case Response Time Ri for each task Taui and compare it to its
deadline Di

– Pseudo-polynomial time complexity

» An algorithm runs in pseudo-polynomial time if its running time is polynomial in the numeric
value of the input (which is exponential in the length of the input – its number of digits).

– Accurate: necessary and sufficient condition for schedulability

IMPORTANT

32

Utilization Bound Test

CPU%

100

90

80

70

60

50

40

30

20

10

0

1 2 3 4 5 6 7 8 9 10

69%

tasks

RM UB Test

Tasks RM Util Bound

1 1.00

2 0.828

3 0.780

4 0.757

5 0.743

10 0.718

inf 0.693

• A taskset is schedulable under RM
scheduling if system utilization 𝑈 =
σ𝑖=1

𝑁 𝐶𝑖

𝑇𝑖
≤ 𝑁(21/𝑁 − 1)

– 𝑈 → 0.69 as 𝑁 → ∞

– Assumptions: task period equal to
deadline (𝑃𝑖 = 𝐷𝑖); task with smaller
period 𝑃𝑖 is assigned higher priority (RM
priority assignment); tasks are
independent (no resource sharing)

• Sufficient but not necessary condition

– Guaranteed to be schedulable if test
succeeds

– May still be schedulable even if test fails

• Special case: if periods are harmonic
(larger periods divisible by smaller
periods), then utilization bound is 1
(necessary and sufficient condition)

IMPORTANT

33

Utilization Bound Test Examples

0 9 18

6 120 183

3 6

9 15

deadline miss

12 15

6 120 183 9 15

Taskset 1 (3, 6, 6), 2 (4, 9, 9)

 unschedulable

𝑈 =
3

6
+

4

9
= 0.944 > 0.828

Taskset 1 (3, 6, 6), 2 (3, 9, 9)

schedulable (UB test is sufficient but not

necessary condition)

𝑈 =
3

6
+

3

9
= 0.833 > 0.828

Taskset 1 (2, 4, 4), 2 (4, 8, 8)

schedulable (periods are harmonic)

𝑈 =
2

4
+

4

8
= 1.0 > 0.828

4 120 8 16

1

2

1

2

1

2

6 120 183 9 15

4 120 8 16

We use the notation i (Ci, Ti, Di) to denote task i with

WCET Ci Period Ti, Deadline Di

34

Response Time Analysis (RTA)
• Assumptions:

• Consider the synchronous taskset: all tasks are initially released at time 0 simultaneously,
called the critical instant. This is the worst-case when each task experiences maximum
amount of interference from higher priority tasks: if the taskset is schedulable with this
assumption, then it will be schedulable for any other release offset.

• No resource sharing (no critical sections)

• Figure shows task 𝜏2 has the worst-case response time 𝑅2 if it is initially released at time
0, simultaneously with higher priority task 𝜏1 (lower figure)

𝜏1, 𝜏2 initially released at time 0

simultaneously, the critical instant. 𝜏2

experiences 3 preemptions by 𝜏1 and

has longer response time

𝜏1, 𝜏2 initially released with a non-

zero offset, not all at time 0. 𝜏2

experiences 2 preemptions by 𝜏1

and has shorter response time

35

Response Time Analysis (RTA)
• For each task 𝜏𝑖 , compute its Worst-Case Response Time (WCRT) 𝑅𝑖

and compare to its deadline 𝐷𝑖 . 𝜏𝑖 is schedulable iff 𝑅𝑖 ≤ 𝐷𝑖 . The
taskset is schedulable if all tasks are schedulable (necessary and sufficient
condition. “iff” stands for “if and only if”).

• Task 𝜏𝑖 ‘s WCRT 𝑅𝑖 is computed by solving the following recursive
equation to find the minimum fixed-point solution, where task WCRT is
sum of its WCET and preemption delay caused by HP tasks:

• 𝑅𝑖 = 𝐶𝑖 + σ∀𝑗∈ℎ𝑝(𝑖)
𝑅𝑖

𝑇𝑗
𝐶𝑗

• where ℎ𝑝(𝑖) is the set of tasks with higher priority than task 𝜏𝑖 .

• ⌈⌉ is the ceiling operator, e.g., 1.1 = 2, 1.0 = 1

•
𝑅𝑖

𝑇𝑗
 denotes the number of times HP task 𝜏𝑗 preempts 𝜏𝑖 during its one job

execution;
𝑅𝑖

𝑇𝑗
𝐶𝑗 denotes the total preemption delay caused by HP task 𝜏𝑗 to

𝜏𝑖 during its one job execution

IMPORTANT

36

An Example Taskset

Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

• Consider a taskset of 3 task with (𝐶𝑖 , 𝑇𝑖 , 𝐷𝑖) of
10, 30, 30 , 10, 40, 40 , (12, 52, 52). Under RM, task priorities are assigned

to be High for T1, Medium for T2, and Low for T3

• System Utilization 𝑈 = σ𝑖=1
3 𝐶𝑖

𝑇𝑖
 =

10

30
 +

10

40
 +

12

52
= 0.81 > 0.78

• Utilization Bound 𝑁 = 3 = 3 ∗ 21/3 − 1 = 0.78

• Utilization bound test fails, but taskset is actually schedulable

37

Task T1

• T1 is the highest priority task, with no
interference from other tasks ℎ𝑝 1 = ∅

• 𝑅1 = 𝐶1 + 0 = 10

• 𝑅1 < 𝐷1, so T1 is schedulable

Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

0 10 20 30 40 50 Time

Task

T1 T1

38

Task T2

• T2 is the medium priority task, with interference

from higher priority Task 1 ℎ𝑝 2 = 1

• 𝑅2 = 𝐶2 + ⌈
𝑅2

𝑇1
⌉ ∗ 𝐶1 = 10 + ⌈

𝑅2

30
⌉ ∗ 10

• Solve for 𝑅2 iteratively, starting with initial value 𝑅2 = 𝐶2 = 10:

– Iteration 1: 𝑅2 = 10 +
10

30
∗ 10 = 10 + 1 ∗ 10 = 20

– Iteration 2: 𝑅2 = 10 +
20

30
∗ 10 = 10 + 1 ∗ 10 = 20

• Hence 𝑅2 = 20 < 𝐷2 = 40, so T2 is schedulable

Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

0 10 20 30 40 50 Time

Task

T1 T1

T2 T2

39

Task T3
• T3 is the lowest priority task, with interference

from higher priority tasks ℎ𝑝 3 = {1,2}

• 𝑅3 = 𝐶3 + ⌈
𝑅3

𝑇1
⌉ ∗ 𝐶1 + ⌈

𝑅3

𝑇2
⌉ ∗ 𝐶2 = 12 + ⌈

𝑅3

30
⌉ ∗ 10 + ⌈

𝑅3

40
⌉ ∗ 10

• Solve for 𝑅3 iteratively, starting with initial value 𝑅3 = 𝐶3 = 12:
– Iteration 1: 𝑅3 = 12 + ⌈12/30⌉ ∗ 10 + ⌈12/40⌉ ∗ 10 = 32

– Iteration 2: 𝑅3 = 12 + ⌈32/30⌉ ∗ 10 + ⌈32/40⌉ ∗ 10 = 42

– Iteration 3: 𝑅3 = 12 + ⌈42/30⌉ ∗ 10 + ⌈42/40⌉ ∗ 10 = 52

– Iteration 4: 𝑅3 = 12 + ⌈52/30⌉ ∗ 10 + ⌈52/40⌉ ∗ 10 = 52

• Hence 𝑅3 = 52 ≤ 𝐷3 = 52, so T3 is schedulable

Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

0

0 10 20 30 40 50 Time

T3 T3

Task

T1 T1

T2 T2

40

RTA for T3: Initial Condition

• Initially 𝑅3 = 𝐶3 = 12

• We have not taken into account any preemption
delays from higher priority tasks T1 and T2 yet

T2

Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

0 10 20 30 40 50 Time

Task

T1 T1

T2 T2

T3

12

41

RTA for Task 3: Iteration 1

• 𝑅3 = 12 +
12

30
∗ 10 +

12

40
∗ 10

• = 12 + 1 ∗ 10 + 1 ∗ 10 = 32

• T1 preempts T3 once, and T2 preempts T3 once

– since all 3 tasks are released at time 0 (synchronous release
time assumption), and T1 and T2 have higher priority than
T3

Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

320 10 20 30 40 50 Time

Task

T1 T1

T2 T2

T3

42

• 𝑅3 = 12 +
32

30
∗ 10 +

32

40
∗ 10

• = 12 + 2 ∗ 10 + 1 ∗ 10 = 42

• T1 preempts T3 twice, and T2 preempts T3 once

– Since T3 has not finished execution at time 30, and
another job of higher priority task T1 is released at time
30 and preempts T3

RTA for Task 3: Iteration 2 Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

0 10 20 30 40 50 Time

Task

T1 T1

T2 T2

T3 T3

42

43

• 𝑅3 = 12 +
42

30
∗ 10 +

42

40
∗ 10

• = 12 + 2 ∗ 10 + 2 ∗ 10 = 52

• T1 preempts T3 twice, and T2 preempts T3 twice

– Since T3 has not finished execution at time 40, and
another job of higher priority task T2 is released at time
40 and preempts T3

RTA for Task 3: Iteration 3 Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

0 10 20 30 40 50 Time

T3 T3

Task

T1 T1

T2 T2

52

44

• 𝑅3 = 12 +
52

30
∗ 10 +

52

40
∗ 10 = 12 + 2 ∗ 10 + 2 ∗ 10 =

52

• T1 preempts T3 twice, and T2 preempts T3 twice
– Since T3 has finished execution at time 52, and the next arrivals of T1

and T2 are at time 60 and 80, respectively, so T3 will not experience
additional preemptions from T1 and T2, since the next job arrivals of T1
and T2 are at time instants 60 and 80, after T3 has finished execution at
time 52

• Now the recursive equation has converged, and we have
obtained the WCRT of T3 𝑅3 = 52 ≤ 𝐷3 = 52

RTA for Task 3: Iteration 4 Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 52 12 L

0 10 20 30 40 50 Time

T3 T3

Task

T1 T1

T2 T2

52

45

When T3 is Unschedulable
• The recursive equation may not converge, i.e., a task’s WCRT may

be infinity, e.g., suppose we change T2’s WCET to be 20, then:

• 𝑅3 = 𝐶3 + ⌈
𝑅3

𝑇1
⌉ ∗ 𝐶1 + ⌈

𝑅3

𝑇2
⌉ ∗ 𝐶2 = 12 + ⌈

𝑅3

30
⌉ ∗ 10 + ⌈

𝑅3

40
⌉ ∗ 20

• Solve for 𝑅3 iteratively, starting with initial value 𝑅3 = 𝐶3 = 12:
– Iteration 1: 𝑅3 = 12 + ⌈12/30⌉ ∗ 10 + ⌈12/40⌉ ∗ 20 = 42

– Iteration 1: 𝑅3 = 12 + ⌈42/30⌉ ∗ 10 + ⌈42/40⌉ ∗ 20 = 72

– Iteration 3: 𝑅3 = 12 + ⌈72/30⌉ ∗ 10 + ⌈72/40⌉ ∗ 20 = 82

– Iteration 4: 𝑅3 = 12 + ⌈82/30⌉ ∗ 10 + ⌈82/40⌉ ∗ 20 = 102

– …

• Hence 𝑅3 → ∞. This means that T3’s first job never finishes
execution due to interferences by higher priority tasks, hence T3 is
unschedulable

• It is also possible for T3 to be unschedulable if 𝑅3 converges but it
exceeds its deadline 𝐷3, e.g., if we set 𝐷3 = 50, then 𝑅3 = 52 >
 𝐷3 = 50 (another job of T3 is released at time 50, but RTA for
the current job is not affected by the newly-released job.)

Task T=D C Prio

T1 30 10 H

T2 40 20 M

T3 52 12 L

0

Task T=D C Prio

T1 30 10 H

T2 40 10 M

T3 50 12 L

46

DM for Constrained Deadline Tasksets (D ≤ T)

• Deadline monotonic (Fixed Priority):

– A task with smaller relative deadline gets higher priority 𝑃𝑖 ∝ 1/𝐷𝑖

– For constrained deadline tasksets (D ≤ T), DM is the optimal priority assignment

– No Utilization Bound test for RM or DM, for tasksets with D ≤ T; must use Response
Time Analysis (RTA)

– Consider a taskset with two tasks both with (𝐶𝑖 , 𝑇𝑖 , 𝐷𝑖) = (1, 2, 1). Using RTA,
assuming 𝜏1 has higher priority (since task periods are equal, we can assign either
task higher priority), we can determine

– 𝑅1 = 𝐶1 + 0 = 1 ≤ 𝐷1 = 1

– 𝑅2 = 𝐶2 +
𝑅2

𝑇1
𝐶1 = 1 +

𝑅2

2
1 = 2 > 𝐷1 = 1, hence it is unschedulable

47

RM vs. DM Example

• Three tasks: 𝜏1 =
0.5, 3, 3 , 𝜏2 =
1, 4, 4 , 𝜏3 = (2, 6, 6)

• Under RM (or DM),
priority ordering 𝜏1 >
𝜏2 > 𝜏3

• Three tasks with
𝜏2 assigned a smaller
deadline of 𝐷2 = 2: 𝜏1 =
0.5, 3, 3 , 𝜏2 =
1, 4, 2 , 𝜏3 = (2, 6, 6)

• Under DM, priority
ordering 𝜏2 > 𝜏1 > 𝜏3

𝜏1

𝜏𝟐

𝜏𝟑

𝜏𝟐

𝜏𝟏

𝜏𝟑

0 3 6 9 12

0 3 6 9 12

48

Earliest Deadline First (EDF) Scheduling

49

Earliest Deadline First (EDF)

RM vs. EDF: Robustness under Overload

• As each job enters the system, it is assigned a deadline, and its priority is determined
by its absolute deadline 𝑑𝑖

– The job with the earlier deadline is assigned the higher priority

– This priority assignment is dynamic because a periodic task’s priority changes for each job
released by the task (vs. fixed-priority scheduling, where a periodic task is assigned a fixed
priority for all its jobs)

• Pros:

– Optimal: can achieve 100% CPU utilization

• Cons:

– Poor temporal isolation during overload

– c.f. RM vs. EDF: Robustness under Overload

50

EDF Scheduling Example

• Say you have two tasks, both released at time 0

– T1 has WCET 5 ms, with deadline of 20 ms

– T2 has WCET 10 ms, with deadline of 12 ms

• Non-EDF scheduling: T1 before T2, T2 misses its deadline at 12

• EDF scheduling: T2 before T1, both tasks meet their deadlines

T1 T2

0 5 15

T2 Deadline

T2 T1

0 5 15

T1 Deadline

20

20

T1 before T2

T2 before T1

Convention: Upwards arrows indicate arrival

time; Downwards arrows indicate deadline

51

Schedulable Utilization Bound: EDF vs. RM

CPU%

100

90

80

70

60

50

40

30

20

10

0

69%

RM EDF

100%

1 2 3 4 5 6 7 8 9 10 # tasks

• The schedulable utilization bound for EDF
Scheduling is 1 (necessary and sufficient
condition):

– A taskset is schedulable under EDF scheduling
iff system utilization does not exceed 1 𝑈 =
σ𝑖=1

𝑁 𝐶𝑖

𝑇𝑖
 ≤ 1

» “iff” stands for “if and only if”

– Assumptions: task period equal to deadline
(𝑃𝑖 = 𝐷𝑖); tasks are independent (no
resource sharing)

• Recall: schedulable utilization bound for
Fixed-Priority scheduling (sufficient but not
necessary condition):

– A taskset is schedulable under RM scheduling

if system utilization 𝑈 = σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 𝑁(21/𝑁 −

1)

– 𝑈 → 0.69 as 𝑁 → ∞

IMPORTANT

52

RM vs. EDF Example

0 9 18

6 120 183

3 6

9 15

deadline miss

12 15

Under RM (Fixed-Priority scheduling), all jobs of 𝜏1

(with smaller period T=6) have higher priority than

all jobs of 𝜏2 (with larger period T=9). Taskset

unschedulable with RM

Utilization bound (sufficient but not necessary

condition): 𝑈 =
3

6
+

4

9
= 0.944 > 0.828

RTA: 𝑅1 = 𝐶1 + 0 = 3 ≤ 𝐷1 = 6, 𝑅2 = 𝐶2 +
𝑅2

𝑇1
∗ 𝐶1 = 4 +

𝑅2

6
∗ 3 = 10 > 𝐷2 = 9, hence

𝜏2 is not schedulable

1

2

0

9 18

6 12

0

183

3 6 12

9

15

151

2

Under EDF (Dynamic Priority scheduling),

different jobs of 𝜏1 and 𝜏2 may have

different priorities, depending on their

absolute deadlines 𝑑𝑖 , which is different for

each newly-released job every period.

Taskset schedulable with EDF

𝑈 =
3

6
+

4

9
= 0.944 < 1.0

Task T=D C

𝜏1 6 3

𝜏2 9 4

> > >
priority

priority

When two jobs have equal priority, the newly arrived

job does not preempt the running job

53

RM vs. EDF: Robustness under Overload

Slide 25 Example Lateless

• Under permanent overload, with CPU utilization U > 1

– Under EDF, all tasks execute at a slower rate with “period rescaling”, i. e., all tasks are delayed evenly

– Under RM, higher priority tasks are protected while lower priority tasks are delayed (𝜏2) or completely blocked (𝜏3)

– Recall Slide 25 Example Lateless

• Under transient overload, when some job overruns (executes longer than expected temporarily)

– Under EDF, task overruns can cause deadline miss of arbitrary task

– Under RM: task overruns only affect lower priority tasks

• Conclusion: RM offers better temporal isolation for higher priority tasks, at the expense of lower priority tasks

54

EDF Period Rescaling

• Theorem on Period Rescaling [Cervin et al. 2003]:

– If system utilization 𝑈 > 1, tasks are executed with an average period
𝑇𝑖

′ = 𝑇𝑖𝑈 under EDF scheduling

55

EDF for Constrained Deadline Tasksets (D ≤ T)

• Earliest Deadline First (Dynamic-Priority):
– A task with smaller absolute deadline gets higher priority 𝑃𝑖 ∝ 1/𝑑𝑖

– EDF is still optimal, but instead of Utilization Bound, we use Density Bound to determine
schedulability

– Density of task 𝜏𝑖 is defined as 𝛿𝑖 =
𝐶𝑖

min(𝐷𝑖,𝑇𝑖)
. Taskset is schedulable if system density does not

exceed 1: ∆ = σ𝑖 𝛿𝑖 ≤ 1 (sufficient but not necessary condition)

» (Demand Bound Function can be used as necessary and sufficient condition (not covered))

– Consider a taskset with two tasks both with (𝐶𝑖, 𝑇𝑖 , 𝐷𝑖) = (1, 2, 1). It is obviously unschedulable
under any scheduling algo. System utilization is 𝑈 =

1

2
+

1

2
= 1; System density Δ =

1

1
+

1

1
= 2. But

we cannot determine schedulabiity based on Δ > 1.

– Consider a taskset with two tasks 𝜏1 = 0.6, 2, 1 , 𝜏2 = (2.3, 5, 5). ∆ =
0.6

1
+

2.3

5
= 1.06. Yet

the taskset is schedulable under EDF:

IMPORTANT

56

Summary of Schedulability Analysis Algorithms
Fixed-Priority Scheduling Dynamic Priority Scheduling

Optimal

Scheduling

Algorithm

Rate Monotonic (RM)

Scheduling for implicit

deadline taskset (D=T)

Deadline Monotonic

(DM) Scheduling for

constrained deadline

taskset (D≤T)

Earliest Deadline First

(EDF) Scheduling for

implicit deadline taskset

(D=T)

Earliest Deadline First

(EDF) Scheduling for

constrained deadline

taskset (D≤T)

Schedulability

Analysis

Algorithm

Utilization Bound (UB) test

𝑈 = σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 𝑁(21/𝑁 −

1) (sufficient but not

necessary condition) or

Response Time Analysis

(RTA) (necessary and

sufficient)

𝑅𝑖 = 𝐶𝑖 + ෍

∀𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

≤ 𝐷𝑖

RTA

Response Time Analysis

(RTA) (necessary and

sufficient)

𝑅𝑖

= 𝐶𝑖 + ෍

∀𝑗∈ℎ𝑝(𝑖)

𝑅𝑖

𝑇𝑗
𝐶𝑗

≤ 𝐷𝑖

Utilization Bound (UB)

test 𝑈 = σ𝑖=1
𝑁 𝐶𝑖

𝑇𝑖
≤ 1

(necessary and sufficient)

Density Bound test

∆ = σ𝑖
𝐶𝑖

min(𝐷𝑖,𝑇𝑖)
≤ 1

(sufficient but not

necessary condition)

or Demand Bound

Function (not covered)

IMPORTANT

57

Least Laxity First (LLF) Scheduling

58

Least Laxity First (LLF) Scheduling
• LLF assigns priority to jobs dynamically based on their current laxity (slack)

– With absolute deadline 𝑑𝑖 and remaining execution time 𝑒𝑖, laxity of 𝜏𝑖’s job at time 𝑡 is 𝑙𝑖 = 𝑑𝑖 – 𝑡 – 𝑒𝑖. Job
with the smallest laxity has the highest priority

– While an active job waits and does not run, its laxity decreases and its priority increases until it becomes
the highest priority job and starts to run

– If an active job runs in the previous time slot, then its laxity remains the same, as 𝑡 is incremented by 1, and
𝑒𝑖 is decremented by 1

– If an active job does not run in the previous time slot, then its laxity is decremented by 1, as 𝑡 is
incremented by 1, and 𝑒𝑖 remains the same

• Analogy: suppose you have an assignment that is due in 5 hours at 12:00, and it takes 𝑒𝑖=3 hours to
complete. Current time is 𝑡=7:00, so the current laxity is 𝑙𝑖 = 𝑑𝑖 – 𝑡 – 𝑒𝑖=12−7−3=2.

– If you work for an hour until 𝑡=8:00, then the laxity remains the same: 𝑙𝑖 = 𝑑𝑖 – 𝑡 – 𝑒𝑖=12−8−2=2, since the
remaining execution time is decremented by 1: 𝑒𝑖=3-1=2

– If you sleep for an hour until 𝑡=8:00, then the laxity is decremented by 1: 𝑙𝑖 = 𝑑𝑖 – 𝑡 – 𝑒𝑖=12−8−3=1, since
the remaining execution time does not change: 𝑒𝑖=3

– If you sleep for 2 hours until 𝑡=9:00, then the laxity is now 0: 𝑙𝑖 = 𝑑𝑖 – 𝑡 – 𝑒𝑖=12−9−3=0. Your must give the
assignment the highest priority and start working on it right away, otherwise you will miss the deadline

• EDF and LLF are both optimal scheduling algorithms, i.e., they both have schedulable utilization
bound of 1

– LLF incurs frequent context switches, hence is less practical than EDF

𝑒𝑖

t 𝑑𝑖

𝑙𝑖

59

RM, EDF, LLF Example

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

Task

T1

T2

Task T=D C

T1 5 2

T2 6 3

T1

T2

T1

T2

T1

0 1 2 3 4 5 6 7 8 9 10 11 12
Time

Task

T1

T2

T1T1

T2

EDF and RM have the same schedule

LLF has more frequent context switches

Time τ₁ Laxity τ₂ Laxity
Running
Task

t=0 5-0-2=3 6-0-3=3

𝜏₁ (tie,

prefer task
with
smaller
index)

t=1 5-1-1=3 6-1-3=2 𝜏₂

t=2 5-2-1=2 6-2-2=2

𝜏₂ (tie,

prefer
running
task)

t=3 5-3-1=1 6-3-1=2 𝜏₁

t=4 𝜏₁ done 6-4-1=1 𝜏₂

t=5 10-5-2=3 𝜏₂ done 𝜏₁

t=6 10-6-1=3 12-6-3=3 𝜏₁ (tie)

t=7 𝜏₁ done 12-7-3=2 𝜏₂

60

Preemptive vs. Non-Preemptive Scheduling

61

Preemptive vs. Non-Preemptive Scheduling

• Non-preemptive scheduling pros:

• It reduces runtime overhead

• Less context switches

• No mutex locks needed for critical
sections

• It preserves program locality, improving
the effectiveness of CPU cache

• As a result, task WCET becomes smaller
and execution time distribution becomes
more predictable (shown on right)

• Sometimes NP scheduling can improve
schedulability

• Cons:

– Reduced schedulability (in general)

– Scheduling anomalies

• Preemptive scheduling pros:

• Better schedulability (higher CPU utilization) (in
general)

• Cons:

• Runtime overhead due to frequent context-switches

• Destroys program locality so task WCET becomes
larger

62

Sometimes NP Scheduling Improves Schedulability
• An example where NP scheduling improves schedulability (for fixed-priority

scheduling) (upward red arrows indicate job completion times)

63

Disadvantage of NP Scheduling: Reduced Schedulability

• In general, NP scheduling reduces schedulability. The utilization bound
under NP scheduling drops to zero due to blocking time

• An example with two tasks T1 and T2, CPU utilization of nearly 0, yet
unschedulable.

– If 𝐶2 (WCET of T2) ≥ 𝑇1 (period of T1), then the taskset is unschedulable with

arbitrarily small system CPU utilization
𝐶1

𝑇1
+

𝐶2

𝑇2
→

0

𝑇1
+

𝐶2

∞
 (when 𝐶1 goes to 0 and

𝑇2 goes to infinity)

– This example is valid whether 𝜏1 or 𝜏2 has higher priority: even if 𝜏1 has higher
priority, it may be released very shortly after 𝜏2 is released at time 0, and it has to
wait for 𝜏2 to finish due to NP scheduling

T1

T2

64

Disadvantage of NP Scheduling: Scheduling Anomalies
• Scheduling anomaly: three tasks under NP fixed-priority scheduling with priority ordering

𝜏1 > 𝜏2 > 𝜏3

• Doubling the processor speed (reducing task execution times by half) makes task 𝜏1 miss its
deadline, since 𝜏3 starts earlier before 𝜏1 is released, causing a long delay to it due to NP
scheduling (this anomaly does not occur for preemptive scheduling)

65

Online Resources

• Priority-Driven Scheduling, Marilyn Wolf

– https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo
1iPeGmG9M&index=4

• RMS and EDF, Marilyn Wolf

– https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVv
To1iPeGmG9M&index=5

• Real-Time Scheduling Models, Marilyn Wolf (long)

– https://www.youtube.com/watch?v=WloSQ7ZEKXk

https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=WloSQ7ZEKXk
https://www.youtube.com/watch?v=WloSQ7ZEKXk

	Slide 1: CSC 112: Computer Operating Systems Lecture 6 Real-Time Scheduling I
	Slide 2: Outline
	Slide 3
	Slide 4: Embedded Control Systems
	Slide 5: Requirements
	Slide 6: A Robot Control Example
	Slide 7: Real-Time Systems
	Slide 8: RTOS Requirements
	Slide 9: Sources of Nondeterminism
	Slide 10: Task
	Slide 11: Schedule
	Slide 12: Preemptive vs. Nonpreemptive Scheduling
	Slide 13: Definitions
	Slide 14: Real-Time Task
	Slide 15: Tasks and Jobs
	Slide 16: Estimating WCET is Not Easy
	Slide 17: Predictability/Safety vs. Efficiency
	Slide 18: Jitter
	Slide 19: Periodic Task
	Slide 20: Aperiodic & Sporadic Task
	Slide 21: Types of Constraints
	Slide 22: Precedence Constraints
	Slide 23: Resource Constraints
	Slide 24: Scheduling Metrics
	Slide 25: Example: Lateness
	Slide 26: Scheduling Algorithms
	Slide 27: Static Cyclic Scheduling
	Slide 28
	Slide 29: Fixed Priority Scheduling
	Slide 30: Rate Monotonic & Deadline Monotonic Scheduling
	Slide 31: Two Schedulability Analysis Approaches
	Slide 32: Utilization Bound Test
	Slide 33: Utilization Bound Test Examples
	Slide 34: Response Time Analysis (RTA)
	Slide 35: Response Time Analysis (RTA)
	Slide 36: An Example Taskset
	Slide 37: Task T1
	Slide 38: Task T2
	Slide 39: Task T3
	Slide 40: RTA for T3: Initial Condition
	Slide 41: RTA for Task 3: Iteration 1
	Slide 42: RTA for Task 3: Iteration 2
	Slide 43: RTA for Task 3: Iteration 3
	Slide 44: RTA for Task 3: Iteration 4
	Slide 45: When T3 is Unschedulable
	Slide 46: DM for Constrained Deadline Tasksets (D less than or equal to T)
	Slide 47: RM vs. DM Example
	Slide 48
	Slide 49: Earliest Deadline First (EDF)
	Slide 50: EDF Scheduling Example
	Slide 51: Schedulable Utilization Bound: EDF vs. RM
	Slide 52: RM vs. EDF Example
	Slide 53: RM vs. EDF: Robustness under Overload
	Slide 54: EDF Period Rescaling
	Slide 55: EDF for Constrained Deadline Tasksets (D less than or equal to T)
	Slide 56: Summary of Schedulability Analysis Algorithms
	Slide 57
	Slide 58: Least Laxity First (LLF) Scheduling
	Slide 59: RM, EDF, LLF Example
	Slide 60
	Slide 61: Preemptive vs. Non-Preemptive Scheduling
	Slide 62: Sometimes NP Scheduling Improves Schedulability
	Slide 63: Disadvantage of NP Scheduling: Reduced Schedulability
	Slide 64: Disadvantage of NP Scheduling: Scheduling Anomalies
	Slide 65: Online Resources

