
CSC 112: Computer Operating Systems
Lecture 5

Scheduling

Zonghua Gu

Department of Computer Science,

Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming

2

CPU/IO Bursts

• A typical task alternates between bursts of
CPU and I/O

– It uses the CPU for some period of time, then does
I/O, then uses CPU again (A job may be pre-empted
and forced to give up CPU before finishing current
CPU burst)

A CPU bound job

An I/O bound job

3

The Scheduling Problem

• Scheduling: When multiple jobs are ready, the scheduling algorithm
decides which one is given access to the CPU

– We use the term “task” to refer to a runnable entity in the OS, which may be a
process or a thread. We use the term “job” to refer to a CPU burst of a task

T1 T2 T3 T1 T2

Time

4

Preemptive vs. Non-Preemptive Scheduling

• With non-preemptive scheduling, once the CPU has been allocated to a
process, it keeps the CPU until it releases the CPU either by terminating or
by blocking for IO.

• With preemptive scheduling, the OS can forcibly remove a process from
the CPU without its cooperation

• Transition from “running” to “ready” only exists for preemptive scheduling

5

Performance Metrics

• Response time = CompletionTime – ArrivalTime: the total time taken for a job to
complete its execution, starting from its arrival time until it finishes. It includes all phases
of the process lifecycle: waiting in queues, execution on the CPU, and any I/O
operations.

– Called turnaround time in most textbooks (Please use my definition in this class!)

• Initial waiting time: the time a job spends waiting in the ready queue before it gets its
first chance to execute on the CPU

– Called response time in most textbooks (Please use my definition in this class!)

• Waiting time: the total time a job spends waiting in the ready queue until it finishes

• CPU utilization: percent of time when CPU is busy

• Throughput: # of jobs that complete their execution per time unit

• Different systems may have different objectives. Typically, they cannot be optimized
simultaneously by a single scheduling algorithm

– Maximize CPU utilization

– Maximize Throughput

– Minimize Average Response time

– Minimize Average Waiting time

6

Common Scheduling Algorithms

• First-Come-First-Served (FCFS) Scheduling

• Round-Robin (RR) Scheduling

• Shortest-Job-First (SJF) Scheduling

• Priority-Based Scheduling

• Multilevel Queue Scheduling

• Multilevel Feedback-Queue Scheduling

7

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”

• Example: job Burst Time
 P1 24
 P2 3
 P3 3

– Suppose jobs arrive in the order of P1, P2, P3 at time 0, i.e., P1 arrives at
time 0, P2 arrives at time 𝜖, P3 arrives at time 2𝜖
The Gantt Chart for the schedule is:

– Initial waiting times: P1: 0; P2: 24; P3: 27
– Response times: P1: 24; P2: 27; P3: 30
– Average initial waiting time: (0 + 24 + 27)/3 = 17
– Average response time: (24 + 27 + 30)/3 = 27

• Convoy effect: short job stuck behind long job

P1 P2 P3

24 27 300

8

FCFS Scheduling (Cont.)
• Example continued:

– Suppose jobs arrive in the order: P2 , P3 , P1 at time 0:

– Initial waiting times: P1: 6; P2: 0; P3: 3

– Response times: P1: 30; P2: 3; P3: 6

– Average initial waiting time: (6 + 0 + 3)/3 = 3 (vs. 17 before)

– Average response time: (30 + 3 + 6)/3 = 13 (vs. 27 before)

P1P3P2

63 300

9

Convoy Effect

• With FCFS non-preemptive scheduling, convoys of small
tasks tend to build up when a large one is running.

time
S
ch

e
d
ul
in
g

qu
e
ue

Scheduled Job

Job arrivals

Long job Short job Short job

10

• Round Robin Scheme:
– Each job gets a small unit of CPU time (time slice or time quantum), usually

10-100 milliseconds

– When quantum expires, the job is preempted and added to the end of the
ready queue

– If the current CPU burst finishes before quantum expires, the job blocks for
IO and is added to the end of the ready queue

– n jobs in ready queue and time quantum is q 

» Each job gets (roughly) 1/n of the CPU time

» In chunks of at most q time units

» No job waits more than (n-1)q time units

• OS implementation:
– Use a periodic timer interrupt to preempt the running job every time

quantum, and send it to the back of the ready queue

Round Robin (RR) Scheduling

11

• Example: job Burst Time
 P1 53
 P2 8
 P3 68
 P4 24

– Suppose jobs arrive in the order of P1, P2, P3, P4 at time 0. Gantt chart:

– Waiting times: P1=(68-20)+(112-88)=72
 P2=(20-0)=20
 P3=(28-0)+(88-48)+(125-108)=85
 P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼

– Response times: P1: 125; P2: 28; P3: 153; P4: 112

– Average response time = (125+28+153+112)/4 = 104½

• Round-Robin scheduling
– Pro: Better for short jobs, Fair
– Con: Context-switching overhead adds up for long jobs

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

Example of RR with Time Quantum = 20

12

• Choice of time quantum size q:

– q must be large with respect to context-switching overhead,

– q too large: fairness is reduced. RR with infinite time quantum is equivalent to FCFS

– q too small: too many context-switches with high overhead

• Typical time quantum in modern OSes is between 10ms – 100ms
• Typical context-switching overhead is 0.1ms – 1ms

– Roughly 1% overhead due to context-switching

Quantum size

13

Decrease Response Time w. Decreasing Quantum

• T1: Burst Length 10

• T2: Burst Length 1

• Suppose jobs arrive in the order of T1, T2 at time 0

• Q = 10

– Average Response Time = (10 + 11)/2 = 10.5

• Q = 5

– Average Response Time = (11 + 6)/2 = 8.5

T1

0 10

T2

11

T1

0 6

T2

11

T1

5

14

Response Time vs. Time Quantum

• T1: Burst Length 1

• T2: Burst Length 1

• Suppose jobs arrive in the order of T1, T2 at time 0

• Q = 10

– Average Response Time = (1 + 2)/2 = 1.5

• Q = 1

– Average Response Time = (1 + 2)/2 = 1.5

• Q = 0.5

– Average Response Time = (1.5 + 2)/2 = 1.75

T1

0 1

T2

2

T1

0 1

T2

2

0 2

Q = 10

Q = 1

Q = 0.5

15

FCFS vs. Round Robin
• Assuming zero-cost context-switching time, RR may not be better than

FCFS, e.g., when all jobs have equal execution time
• Simple example: 10 jobs, each take 100s of CPU time

 RR scheduler quantum of 1s
 All jobs start at the same time

• response times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR than FCFS

• Frequent context switches under RR hurts cache locality and increases
job execution time due to increased cache miss rate

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000

16

Consider the Previous Example

• When jobs have uneven length, it seems to be a good idea to
run short jobs first!

P2

[8]

P4

[24]

P1

[53]

P3

[68]

0 8 32 85 153

Best FCFS:

P2

[8]

P4

[24]

P1

[53]

P3

[68]

0 153

Worst FCFS:

68 121 145

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

RR q=20:

Job Burst Time

 P1 53

 P2 8

 P3 68

 P4 24

17

Earlier Example with Different Time Quantum

Average Wait Time and Response Time (Completion Time) may increase or decrease with varying time quantum

18

SJF and SRTF

• If we know job execution times at arrival time (predict the future),
then we can implement SJF and SRTF

• Shortest Job First (SJF):

– Non-preemptive scheduling: Run whatever job has least amount of
computation to do

– Still suffers from convoy effect due to non-preemption

• Shortest Remaining Time First (SRTF):

– Preemptive scheduling: if a new job arrives with remaining time less than
remaining time of currently-executing job, preempt the current job

» In case of a tie (a new job arrives with remaining time equal to remaining
time of currently-executing job), then do not preempt the current job

• Key idea: Give higher priority to short jobs and finish them quickly

– Big benefit for short jobs, only small delay effect on long ones

– Result is better average response time

19

SJF and SRTF Example

• SRTF achieves
shorter average
response time (Avg
RT) than SJF, thanks
to preemptive
scheduling

J
o
b

Arrival
time

Exec
Time

SJF
Finishing

Time

SJF
Response

Time

SRTF
Finishing

Time

SRTF
Response

Time

A 0 70 70 70 90 90

B 10 10 80 70 20 10

C 20 10 90 70 30 10

Avg RT 70 Avg RT 37

A B C

B arrives

0 70 80 90

A B C

0

10 20

90

A

30

10 20

C arrives

SJF

SRTF

20

Optimality of SJF and SRTF

• SJF is the optimal scheduling algorithm for minimizing the average response
time under the following assumptions:

– All jobs only use the CPU (no I/O)

– All jobs arrive at the same time

– Job execution times are known in advance

– Non-preemptive scheduling

• SRTF is the optimal scheduling algorithm for minimizing the average
response time under the following assumptions:

– All jobs only use the CPU (no I/O)

– Job execution times are known in advance

– Preemptive scheduling

• Comparison of SRTF with FCFS
– If all jobs have the same length (execution time)

» SRTF becomes the same as FCFS (i.e. FCFS is optimal if all jobs the same length)

– If jobs have varying length

» SRTF is better, since short jobs are not stuck behind long ones

21

Example to illustrate benefits of SRTF

• Three jobs:
– A, B: both CPU bound, run for an hour

C: I/O bound, runs in a loop of 1ms CPU followed by 9ms disk I/O

– If each job runs alone without interference, then C uses 90% of disk, A
or B uses 100% of CPU

• With FCFS:
– A and B may arrive and keep CPU busy for two weeks before C is

scheduled

• What about RR or SRTF?

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

22

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR w/ 1 ms time slice

C’s
I/O

C’s
I/O

C
A B

C

RR w/ 100 ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

C runs every 10 ms
Disk Utilization:
9/10=90%, but
frequent CPU context
switches

C runs every 10 ms
Disk Utilization:
9/10=90%, infrequent
CPU context switches

C runs every 201 ms
Disk Utilization:
9/201≈4.5%

C’s
I/O

BC

C’s
I/O

BB

23

• How to predict job execution time?

– Runtime measurement and profiling for typical inputs

– Offline static analysis

– Difficult and error-prone in general

• Unfair

– SRTF can lead to starvation if many small jobs arrive so large jobs
never get to run

• SRTF Pros & Cons

– Pros: Optimal in minimizing average response time)

– Cons: Hard to predict job execution time; Unfair

SRTF Discussions

24

Predicting Length of the Next CPU Burst

• Adaptive: Changing policy based on past behavior

– Works because programs have predictable behavior

» If program was I/O bound in recent past, it is likely to be I/O bound in
future

• We can use exponential moving averaging 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1,
where:

– 𝑥𝑛 is the new input data point

– 𝑡𝑛−1 is the previous exponential moving average

– 𝛼 is the smoothing factor (0<𝛼<1)
• 𝛼 large: fast update of n based on new input. 𝛼 = 1 → 𝑡𝑛 = 𝑥𝑛 is equal to

the new input data point at each step

• 𝛼 small: slow update of n based on new input. 𝛼 = 0 → 𝑡𝑛 = 𝑡0 stays
constant and not affected by new input data point

• Appropriate choice of 𝛼 lets 𝑡𝑛 track the input data points while
smoothing out sensor noise

25

Predicting Length of the Next CPU Burst: =0.5

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with
initial guess 𝑡0 = 10, assuming
smoothing factor =0.5

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.5∗6 + 0.5∗10 = 8

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.5∗4 + 0.5∗8 = 6

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.5∗6 + 0.5∗6 = 6

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.5∗4 + 0.5∗6 = 5

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.5∗13 + 0.5∗5 = 9

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.5∗13 + 0.5∗9 = 11

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.5∗13 + 0.5∗11 = 12

Time Series 101: Exponential Moving Average, A Visual Guide

https://www.youtube.com/watch?v=joHKNtPYtLo

https://www.youtube.com/watch?v=joHKNtPYtLo

26

Predicting the Length of the Next CPU Burst: =0.1 or 0.9

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with initial
guess 0 = 10, assuming =0.1.

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.1∗6 + 0.9∗10 = 9.6

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.1∗4 + 0.9∗9.6 = 9.0

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.1∗6 + 0.9∗9.0 = 8.7

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.1∗4 + 0.9∗8.7 = 8.3

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.1∗13 + 0.9∗8.3= 8.7

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.1∗13 + 0.9∗8.7= 9.2

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.1∗13 + 0.9∗9.2= 9.5

• Compute 𝑡𝑛 = 𝛼𝑥𝑛 + (1 − 𝛼)𝑡𝑛−1 with initial guess
0 = 10, assuming =0.9.

• 𝑡1 = 𝛼𝑥1 + (1 − 𝛼)𝑡0 = 0.9∗6 + 0.1∗10 = 6.4

• 𝑡2 = 𝛼𝑥2 + (1 − 𝛼)𝑡1 = 0.9∗4 + 0.1∗6.4 = 4.2

• 𝑡3 = 𝛼𝑥3 + (1 − 𝛼)𝑡2 = 0.9∗6 + 0.1∗4.2 = 5.8

• 𝑡4 = 𝛼𝑥4 + (1 − 𝛼)𝑡3 = 0.9∗4 + 0.1∗5.8 = 4.2

• 𝑡5 = 𝛼𝑥5 + (1 − 𝛼)𝑡4 = 0.9∗13 + 0.1∗4.2 = 12.1

• 𝑡6 = 𝛼𝑥6 + (1 − 𝛼)𝑡5 = 0.9∗13 + 0.1∗12.1 = 13.0

• 𝑡7 = 𝛼𝑥7 + (1 − 𝛼)𝑡6 = 0.9∗13 + 0.1∗13.0 = 13.0

With low 𝛼 = 0.1, the EMA changes gradually and reacts slowly to new data,
staying closer to the starting value.
With high 𝛼 = 0.9, the EMA responds quickly and closely tracks the latest data
points.

27

Comparison Chart

Property FCFS SJF SRTF RR

Optimize
Average

Response Time

Prevent
Starvation

Prevent
Convoy Effect

No Need to
Predict Exec

Time

28

• Fixed-Priority Scheduling

– Each job is assigned a fixed priority

– Run the highest-priority job in the ready queue at any given time (may be preemptive
or non-preemptive)

– Jobs of equal priority are scheduled with RR

• SJF/SRTF are special cases of priority-based scheduling where priority is the
predicted (remaining) job execution time

• Problem: starvation – low priority jobs may never execute

– Sometimes this is the desired behavior!

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Fixed-Priority Scheduling

29

Multi-Level Queue Scheduling

• Ready queue is partitioned into
multiple queues, each with
different priority

– Higher priority queues often
considered “foreground” tasks

• Each queue has its own scheduling
algorithm

– e.g., foreground queue (interactive
jobs/processes) with RR scheduling;
background queue (batch
jobs/processes) with FCFS scheduling

– Typically time quantum increases with
decreasing priority
(highest:1ms, next: 2ms, next: 4ms,
etc)

• Scheduling between the queues
– Fixed priority, e.g., serve all from

foreground queue, then from
background queue

30

Multi-Level Feedback Queue Scheduling
• Based on Multi-Level Queue Scheduling, but dynamically adjust each job’s

priority as follows:
– It starts in highest-priority queue
– If quantum expires before the CPU burst finishes, drop down one level
– If it blocks for I/O before quantum expires, push up one level (or to top, depending on

implementation)
– Time quantum increases with decreasing priority, from 8, to 16, to infinity (RR with infinite

time quantum is equivalent to FCFS)

31

Multi-Level Feedback Queue Scheduling Discussions

• MLFQ approximates SRTF:

– Long-running CPU-bound jobs/processes are punished and drop
down like a rock

– Short-running I/O-bound processes are rewarded and stay near
top

– No need for prediction of job éxecution time; rely on past behavior
to make decision

• User can game the scheduler:

– e.g., put in a bunch of meaningless I/O like printf() to keep process
in the high-priority queue

– Of course, if everyone did this, this trick wouldn’t work!

32

Conclusion

• FCFS Scheduling:
– Run jobs in the order of arrival
– Cons: Short jobs can get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all

ready threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least execution time/least remaining execution time
– Pros: Optimal (in terms of average response time)
– Cons: Hard to predict execution time, Unfair

• Priority-Based Scheduling
– Each job is assigned a fixed priority

• Multi-Level Queue Scheduling
– Multiple queues of different priorities and scheduling algorithms

• Multi-Level Feedback Queue Scheduling:
– Automatic promotion/demotion of jobs between queues to approximate SJF/SRTF

	Slide 1: CSC 112: Computer Operating Systems Lecture 5 Scheduling
	Slide 2: CPU/IO Bursts
	Slide 3: The Scheduling Problem
	Slide 4: Preemptive vs. Non-Preemptive Scheduling
	Slide 5: Performance Metrics
	Slide 6: Common Scheduling Algorithms
	Slide 7: First-Come, First-Served (FCFS) Scheduling
	Slide 8: FCFS Scheduling (Cont.)
	Slide 9: Convoy Effect
	Slide 10: Round Robin (RR) Scheduling
	Slide 11: Example of RR with Time Quantum = 20
	Slide 12: Quantum size
	Slide 13: Decrease Response Time w. Decreasing Quantum
	Slide 14: Response Time vs. Time Quantum
	Slide 15: FCFS vs. Round Robin
	Slide 16: Consider the Previous Example
	Slide 17: Earlier Example with Different Time Quantum
	Slide 18: SJF and SRTF
	Slide 19: SJF and SRTF Example
	Slide 20: Optimality of SJF and SRTF
	Slide 21: Example to illustrate benefits of SRTF
	Slide 22: SRTF Example continued:
	Slide 23: SRTF Discussions
	Slide 24: Predicting Length of the Next CPU Burst
	Slide 25: Predicting Length of the Next CPU Burst: =0.5
	Slide 26: Predicting the Length of the Next CPU Burst: =0.1 or 0.9
	Slide 27: Comparison Chart
	Slide 28: Fixed-Priority Scheduling
	Slide 29: Multi-Level Queue Scheduling
	Slide 30: Multi-Level Feedback Queue Scheduling
	Slide 31: Multi-Level Feedback Queue Scheduling Discussions
	Slide 32: Conclusion

