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CPU/IO Bursts

e A typical task alternates between bursts of
CPU and I/O
— It uses the CPU for some period of time, then does

/O, then uses CPU again (A job may be pre-empted
and forced to give up CPU before finishing current

CPU burst)
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Figure 2-38. Bursts of CPU usage alternate with periods of waiting for 1/0. (a)
A CPU-bound process. (b) An [/O-bound process,
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The Scheduling Problem
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e Scheduling: When multiple jobs are ready, the scheduling algorithm
decides which one is given access to the CPU

— We use the term “task” to refer to a runnable entity in the OS, which may be a
process or a thread. We use the term “job” to refer to a CPU burst of a task



Preemptive vs. Non-Preemptive Scheduling

e With non-preemptive scheduling, once the CPU has been allocated to a
process, it keeps the CPU until it releases the CPU either by terminating or
by blocking for I0O.

e With preemptive scheduling, the OS can forcibly remove a process from
the CPU without its cooperation

e Transition from “running” to “ready” only exists for preemptive scheduling
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Performance Metrics

Response time = CompletionTime — ArrivalTime: the total time taken for a job to
complete its execution, starting from its arrival time until it finishes. It includes all phases
of the process lifecycle: waiting in queues, execution on the CPU, and any I/O
operations.

— Called turnaround time in most textbooks (Please use my definition in this class!)

Initial waiting time: the time a job spends waiting in the ready queue before it gets its
first chance to execute on the CPU

— Called response time in most textbooks (Please use my definition in this class!)
Waiting time: the total time a job spends waiting in the ready queue until it finishes
CPU utilization: percent of time when CPU is busy
Throughput: # of jobs that complete their execution per time unit

Different systems may have different objectives. Typically, they cannot be optimized
simultaneously by a single scheduling algorithm

— Maximize CPU utilization

— Maximize Throughput

— Minimize Average Response time
— Minimize Average Waiting time



Common Scheduling Algorithms

First-Come-First-Served (FCFS) Scheduling
Round-Robin (RR) Scheduling
Shortest-Job-First (SJF) Scheduling
Priority-Based Scheduling

Multilevel Queue Scheduling

Multilevel Feedback-Queue Scheduling



First-Come, First-Served (FCFS) Scheduling

e First-Come, First-Served (FCFS)
— Also “First In, First Out” (FIFO) or “Run until done”

® Example: job Burst Time
P, 24
P, 3
P, 3

— Suppose jobs arrive in the order of P,, P,, P; attime O, i.e., P, arrives at
time O, P, arrives at time €, P, arrives at time 2¢
The Gantt Chart for the schedule is:

P, P, P;

0 24 27 30
— Initial waiting times: P,: O; P,: 24; P,: 27
— Response times: P;: 24; P,: 27, P;: 30
— Average initial waiting time: (0 + 24 + 27)/3 =17
— Average response time: (24 + 27 + 30)/3 = 27

e Convoy effect: short job stuck behind long job




FCFS Scheduling (Cont.)

e Example continued:
— Suppose jobs arrive in the order: P2, P3, P1 at time O:

P, P3 P

0 3 6 30
— Initial waiting times: P,: 6; P,: 0; P5: 3
— Response times: P;: 30; P,: 3; P;: 6
— Average initial waiting time: (6 + 0 + 3)/3 = 3 (vs. 17 before)
— Average response time: (30 + 3 + 6)/3 = 13 (vs. 27 before)



Convoy Effect
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e With FCFS non-preemptive scheduling, convoys of small
tasks tend to build up when a large one is running.
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Round Robin (RR) Scheduling

e Round Robin Scheme:

— Each job gets a small unit of CPU time (time slice or time quantum), usually
10-100 milliseconds

— When quantum expires, the job is preempted and added to the end of the
ready queue

— If the current CPU burst finishes before quantum expires, the job blocks for
IO and is added to the end of the ready queue

— n jobs in ready queue and time quantum is g =
» Each job gets (roughly) 1/n of the CPU time
» In chunks of at most g time units
» No job waits more than (n-1)g time units

e OS implementation:

— Use a periodic timer interrupt to preempt the running job every time
guantum, and send it to the back of the ready queue
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Example of RR with Time Quantum = 20

Example: job Burst Time
P, 53
P, 8
P, 68
P, 24

— Suppose jobs arrive in the order of P,, P,, P;, P, at time 0. Gantt chart:
P, P, |Ps |P, P, [Py |P, P, |Ps|Ps

0O 20 28 48 68 88 108 112 125 145 153
— Waiting times: P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88
— Average waiting time = (72+20+85+88)/4=66%
— Response times: P;: 125; P,: 28; P5: 153; P,: 112
— Average response time = (125+28+153+112)/4 = 104%
Round-Robin scheduling

— Pro: Better for short jobs, Fair
— Con: Context-switching overhead adds up for long jobs




Quantum size

e Choice of time quantum size q:
— g must be large with respect to context-switching overhead,
— g too large: fairness is reduced. RR with infinite time quantum is equivalent to FCFS

— g too small: too many context-switches with high overhead
e Typical time quantum in modern OSes is between 10ms — 100ms

e Typical context-switching overhead is 0.1ms — 1ms
— Roughly 1% overhead due to context-switching
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Decrease Response Time w. Decreasing Quantum

e T,: Burst Length 10
e T,: Burst Length 1

e Suppose jobs arrive in the order of T, T, at time O

oQ:]_()

T

0

10 11

— Average Response Time = (10 + 11)/2 = 10.5

T

I

e Q=5 0

> 6 11

— Average Response Time = (11 + 6)/2=8.5
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Response Time vs. Time Quantum

e T,: Burst Length 1
e T,: Burst Length 1
e Suppose jobs arrive in the order of T, T, at time O
e Q=10
— Average Response Time=(1+2)/2=1.5
¢ Q=1
— Average Response Time=(1+2)/2=1.5
e Q=0.5
— Average Response Time = (1.5+2)/2=1.75

Q=05
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FCFS vs. Round Robin

e Assuming zero-cost context-switching time, RR may not be better than
FCFS, e.g., when all jobs have equal execution time

° Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

® response times:

Job # FIFO RR

1 100 991

2 200 992

9 900 999
10 1000 1000

— Both RR and FCFS finish at the same time
— Average response time is much worse under RR than FCFS

* Frequent context switches under RR hurts cache locality and increases
job execution time due to increased cache miss rate



Consider the Previous Example

Job Burst Time
P, 53

P, 8

P, 68

P, 24

RR gq=20: Py |Py [Py [Py [Py [Py [Py [Py [Py | Py

0 20 28 48 68 88 108 112 125 145 153

| P P, P, P,
O 8 32 85 153
P, P, P, |P,
Worst FCFS: [68] [53] [24] 8]
0 68 121 145 153

e When jobs have uneven length, it seems to be a good idea to
run short jobs first!
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Earlier Example with Different Time Quantum

Quantum P, P, P, P, Average
Best FCFS 32 0 35 3 31%
Q=1 34 22 35 57 62
: Q=5 82 20 85 58 61%
Wait ;
b Q=8 20 3 85 56 57%
Q=10 82 10 85 68 61%
Q=20 72 20 85 33 66%
Worst FCFS | 68 145 0 121 8304
Best FCFS 35 3 153 32 69V
Q=1 137 |30 153 81 100%
= |a=s 135 |28 153 82 99%
g;’n:;plet'on Q=8 133 |16 153 30 95%
Q=10 135 |18 153 92 99%
Q=20 125 |28 153 112 104%
Worst FCFS | 121 | 153 68 145 121%

Average Wait Time and Response Time (Completion Time) may increase or decrease with varying time quantum
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SJF and SRTF

If we know job execution times at arrival time (predict the future), &
then we can implement SJF and SRTF r

Shortest Job First (SJF):

— Non-preemptive scheduling: Run whatever job has least amount of
computation to do

— Still suffers from convoy effect due to non-preemption
Shortest Remaining Time First (SRTF):

— Preemptive scheduling: if a new job arrives with remaining time less than
remaining time of currently-executing job, preempt the current job

» In case of a tie (a new job arrives with remaining time equal to remaining
time of currently-executing job), then do not preempt the current job

Key idea: Give higher priority to short jobs and finish them quickly
— Big benefit for short jobs, only small delay effect on long ones
— Result is better average response time
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SJF and SRTF Example

e SRTF achieves
shorter average
70 70 70 90 90

response time (Avg A 0
RT) than SJF, thanks B 10 10 80 70 20 10
to preemptive C 20 10 90 70 30 10
scheduling Avg RT 70 Avg RT 37
SF
0 ] I 70 80 90
10 20

SRTF B | C A

0 I 30 90

10 20
B arrives C arrives
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Optimality of SJF and SRTF

e SJF is the optimal scheduling algorithm for minimizing the average response
time under the following assumptions:

— All jobs only use the CPU (no I/0)
— All jobs arrive at the same time
— Job execution times are known in advance
— Non-preemptive scheduling
e SRTF is the optimal scheduling algorithm for minimizing the average
response time under the following assumptions:
— All jobs only use the CPU (no 1/0)
— Job execution times are known in advance
— Preemptive scheduling

e Comparison of SRTF with FCFS

— If all jobs have the same length (execution time)

» SRTF becomes the same as FCFS (i.e. FCFS is optimal if all jobs the same length)
— If jobs have varying length

» SRTF is better, since short jobs are not stuck behind long ones
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Example to illustrate benefits of SRTF

AorB C

 — —>I—>
C’s C’s C’s
/O 1/O 1/0

e Three jobs:

— A, B: both CPU bound, run for an hour
C:1/0 bound, runs in a loop of 1ms CPU followed by 9ms disk I/O

— If each job runs alone without interference, then C uses 90% of disk, A
or B uses 100% of CPU

e With FCFS:

— A and B may arrive and keep CPU busy for two weeks before Cis
scheduled

e \What about RR or SRTF?
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SRTF Example continuedyerinsavery 200 ms
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SRTF Discussions

e How to predict job execution time?
— Runtime measurement and profiling for typical inputs
— Offline static analysis
— Difficult and error-prone in general

e Unfair

— SRTF can lead to starvation if many small jobs arrive so large jobs
never get to run

e SRTF Pros & Cons
— Pros: Optimal in minimizing average response time)
— Cons: Hard to predict job execution time; Unfair
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Predicting Length of the Next CPU Burst
e Adaptive: Changing policy based on past behavior

— Works because programs have predictable behavior

» |If program was |/O bound in recent past, it is likely to be 1/O bound in
future
e We can use exponential moving averaging t, = ax, + (1 — a)t,,_4,
where:
- X5, is the new input data point
- t,,—1 is the previous exponential moving average

— a is the smoothing factor (O<a<1)
* o large: fast update of t,, based on new input. « =1 - t,, = x,, is equal to
the new input data point at each step

* a small: slow update of t, based on new input. « = 0 - t,, = ¢, stays
constant and not affected by new input data point

* Appropriate choice of a lets t,, track the input data points while
smoothing out sensor noise
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Predicting Length of the Next CPU Burst: a.=0.5

Compute t,, = ax,, + (1 — a)t,,_1 with
initial guess ty = 10, assuming
smoothing factor 0.=0.5

ty =ax; + (1 —a)ty = 0.5%6 + 0.5x10=8 |
t,=ax, +(1—a)t; = 0.5+4 +05+«8=6 | | —
ty =axz + (1 —a)t, =0.5x6 +0.5x6 =6
ty = ax, + (1 —a)t; = 0.5%4 + 0.5¥6 =5 | | | | | | | |

t5 = X5 + (1 - C()t4 = 0.5¥¢13 4+ 05«5 =9 fifre: ——
t6 = U Xg + (1 - C()t5 - 05*13 ~+ 05*9 = 11 |[CPUburst g 6 & A 13 1% 13
t7 = axy + (1 — C()t6 = 05*13 + 05*11 — 12 nuesst (Tt 10 3 G & 5 o 11 -

Time Series 101: Exponential Moving Average, A Visual Guide
https://www.youtube.com/watch?v=joHKNtPYtLo



https://www.youtube.com/watch?v=joHKNtPYtLo

Predicting the Length of the Next CPU Burst: a.=0.1 or 0.9

Compute t, = ax, + (1 — al)tn_l with initial
guess T, = fO, assuming a=0.1.

ti =axy+ (1 —a)ty = 0.1x6 + 0.9%x10 = 9.6

t, =ax, + (1 —a)t; = 0.1¥4 4+ 0.9¥9.6 = 9.0
ty =axz; + (1 —a)t, = 0.1x6 + 0.9%¥9.0 = 8.7
ty = axy, + (1 —a)t; = 0.1x4 + 0.9x8.7 = 8.3
ts = axs + (1 — a)t, = 0.1%13 + 0.9¥8.3= 8.7
te = axg + (1 — a)ts = 0.1%13 + 0.9%¥8.7= 9.2
tr =ax; + (1 —a)tg = 0.1¥x13 + 0.9%¥9.2=9.5

Compute t,, = ax,, + gl — a)t,_1 with initial guess
To= 10, assuming a=0.9.

ax; + (1 —a)tyg =0.9%6 + 0.1x10 = 6.4

ax, + (1 —a)t; =094 4+ 0.1x6.4 = 4.2
axz + (1 —a)t, = 0.9x6 + 0.1x4.2 =5.8
ax, + (1 —a)t; = 0.9%4 + 0.1x5.8 = 4.2
axs + (1 —a)t, =09+x13 + 0.1x4.2 =12.1
axe + (1 —a)ts = 0.9x13 + 0.1x12.1 = 13.0
ax; + (1 —a)tg = 0.9x13 + 0.1x13.0 = 13.0

staying closer to the starting value.

points.

With low a = 0.1, the EMA changes gradually and reacts slowly to new data,

With high a = 0.9, the EMA responds quickly and closely tracks the latest data
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Comparison Chart
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Fixed-Priority Scheduling
Priority 3 |—> Job1l = Job 2 |—> Job 3

Priority 2 =9 Job 4
Priority 1

Priority 0 [==P{Job5 f=b|lob6 [=»{Job 7
e Fixed-Priority Scheduling

— Each job is assigned a fixed priority

— Run the highest-priority job in the ready queue at any given time (may be preemptive
or non-preemptive)

— Jobs of equal priority are scheduled with RR

e SJF/SRTF are special cases of priority-based scheduling where priority is the
predicted (remaining) job execution time

e Problem: starvation — low priority jobs may never execute

— Sometimes this is the desired behavior!



Multi-Level Queue Scheduling

e Ready queue is partitioned into
multiple queues, each with
different priority

— Higher priority queues often
considered “foreground” tasks

e Each queue has its own scheduling
algorithm

— .%., foreground queue (interactive
Lo s/processes) with RR scheduling;
ackground queue (batch
jobs/processes) with FCFS scheduling

— Typically time quantum increases with
decreasing priority
(highest:1ms, next: 2ms, next: 4ms,
etc%

e Scheduling between the queues

— Fixed priority, e.g., serve all from
foreground queue, then from
background queue

[highest priority

system processes

interactive processes

interactive editing processes

batch processes

student processes

lowest priority
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Multi-Level Feedback Queue Scheduling

e Based on Multi-Level Queue Scheduling, but dynamically adjust each job’s
priority as follows:

— It starts in highest-priority queue
— If quantum expires before the CPU burst finishes, drop down one level

— |If it blocks for I/O before quantum expires, push up one level (or to top, depending on
implementation)

— Time quantum increases with decreasing priority, from 8, to 16, to infinity (RR with infinite
time quantum is equivalent to FCFS)

o=
>{ quantum = 8
>
—»r quantum = 16
>
—>r EHEE
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Multi-Level Feedback Queue Scheduling Discussions

e MLFQ approximates SRTF:

—Long-running CPU-bound jobs/processes are punished and drop
down like a rock

—Short-running 1/0-bound processes are rewarded and stay near
top

—No need for prediction of job éxecution time; rely on past behavior
to make decision

e User can game the scheduler:

—e.g., put in a bunch of meaningless I/O like printf() to keep process
in the high-priority queue

—Of course, if everyone did this, this trick wouldn’t work!
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Conclusion

FCFS Scheduling:

— Run jobs in the order of arrival

— Cons: Short jobs can get stuck behind long ones
Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it executes; cycle between all
ready threads

— Pros: Better for short jobs
Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least execution time/least remaining execution time
— Pros: Optimal (in terms of average response time)
— Cons: Hard to predict execution time, Unfair
Priority-Based Scheduling
— Each job is assigned a fixed priority
Multi-Level Queue Scheduling
— Multiple queues of different priorities and scheduling algorithms
Multi-Level Feedback Queue Scheduling:

— Automatic promotion/demotion of jobs between queues to approximate SJF/SRTF
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