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Outline

e Concurrency & Spinlocks
e Semaphores
e Monitors



Different Types of Concurrencies

e Multiprocessing = multiple CPUs running in parallel

e Multiprogramming =2 multiple processes scheduled on a single processor by time-
sharing

e Multithreading = multiple threads per process scheduled on a single processor by
time-sharing
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Multiprocessing on B
multiprocessor C

Multiprogramming or A B € A B C
Multithreading on a |—| I—I—l |—| |

single processor



Concurrency

#include <stdio.h> int main(int argc, char *argv[])
#include <stdlib.h> {
#include "common.h" if (argc = 2){
#include "common_threads.h” fprintf(stderr, "usage: threads <loops>\n");
exit(1); }
int counter = 0; loops = atoi(argv[1]);
int loops; pthread t p1, p2;
void *worker(void *arg) { printf("Initial value : %d\n", counter);
int i; pthread_create(&p1, NULL, worker, NULL);
for (i = 0; i < loops:i++) pthread_f:r_eate(&pZ, NULL, worker, NULL);
{counter++: } pthread_join(p1, NULL);
return NULL: pthread_join(p2, NULL);
} printf("Final value : %d\n", counter);
return O;

}

This concurrent program has a race condition, and may
produce different final values of counter for different r'uns,

depending on different non-deterministic interleavings of

worker threads
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Race Condition

Incrementing counter has 3 instructions in assembly
code:

Id w8, [x9]: Read the value of counter at memory
address x9 into register w8

add w8, w8, #0x1: increment the value of register w8 by
1

st w8, [x9]: write the new value of counter in register w8
to memory address x9

When both threads read the same value of counter
before writing to it, counter is incremented only by 1
instead of by 2!

Note: threads in the same process share the same
memory space, but have separate registers. So in both
threads, [x9] refers to the same memory address at x9,
but w8 refers to different registers in each thread.

counter++;
Id w8, [x9] Id w8, [x9]
add w8, w8, #0x1 add w8, w8, #0x1
st w8, [x9] st w8, [x9]

Thread 1 Thread 2

Thread 1

Id w8, [x9]
add w8, w8, #0x1

st w8, [x9]

counter

100
101

100
101

101

101

Thread 2

Id w8, [x9]
add w8, w8, #0x1
st w8, [x9]




Race Condition & Critical Section

e Race condition:

— Multiple threads of execution update shared data variables, and final results depend on the
execution order

— Race condition leads to non-deterministic results: different results even for the same inputs
e To prevent race condition, a critical section should be used to protect shared data variables
— A critical section is executed atomically

— Mutual exclusion (mutex) ensures that when one thread is executing in its critical section, no other
thread is allowed to execute in that critical section

A enters critical region

/ A leaves critical region

Thread A | : i |
| | | |
| | | |
I | B attempts to I B enters | Bleaves
: | enter critical | critical region : critical region
region
! |)/ I / | /
I I
Thread B i e
! | e ! |
! 1 B blocked 1 I
I T 5 I
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« Critical section: a piece of code that accesses a shared resource, usually
a variable or data structure

Lock to Protect a Critical Section

Thread 1

Id w8, [x9]

st w8, [x9]

add w8, w8, #0x1

Lock it

» Correctness of a concurrent program:
Mutual exclusion: Only one thread in critical section at a time

Progress (deadlock-free): If several simultaneous requests, must

allow one to proceed

Count

Value Thread 2
100
101
101
101 Id w8, [x9]
102 add w8, w8, #0x1
102 st w8, [x9]

Lock it

Bounded waliting (starvation-free): Must eventually allow each waiting

thread to enter



Locks

A lock is a variable
Objective: Provide mutual exclusion (mutex)

Two states

— Available or free
— Locked or held

lock(): tries to acquire the lock
unlock(): releases the lock that was previously acquired

lock_t mutex
void *worker(void *arg) {
int i;
for (i = 0; i < loops;i++) {
lock(&mutex);
counter++;
unlock(&mutex)}
return NULL;

}



Locks: Disable Interrupts

e An early solution: disable interrupts for critical sections
e Problems:

— System becomes irresponsive if interrupts are disabled for a long time

— Does not work on multiprocessors, as disabling interrupts on all processor cores requires
inter-core messages and would be very time consuming

void lock () {
DisableInterrupts();

}

void unlock () {
EnableInterrupts();

}
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Locks: Loads/Stores

e This implementation does not ensure mutual exclusion, since both threads may grab

the lock:

o After Thread 1 reads flag==0 and exits the while loop, it is preempted/interrupted by
Thread 2, which also reads flag==0 and exits the while loop. Then both threads set

flag=1 and enter the critical section.

e Root cause: Lock is not an atomic operation!

typedef struct = lock t { int flag; } lock t;

vold init (lock_t *mutex) {
// 0 —> lock 1is available, 1 —-> held
mutex->flag = 0;

J

vold lock (lock_ t *mutex) {

while (mutex->flag == 1) // TEST the flag
; // spin-wait (do nothing)
mutex->flag = 1; // now SET it!

}

vold unlock (lock_t *mutex) {
mutex->flag = 0;

}

flag=0

Thread 1 Thread 2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag ==1)
flag =1;

flag =1, // set flag to 1 (too!)

interrupt: switch to Thread 1
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Locks: Test-and-Set

e How to provide mutual exclusion for
locks?

— Get help from hardware!

e CPUs provide sEeciaI hardware
instructions to help achieve mutual
exclusion

— The Test-and-Set (TAS) instruction tests
and modifies the content of a memory
word atomically

e Locking with TAS: TAS fetches the old
value of lock->flag into variable old, sets
lock->flag to 1, then return variable old, all
in one atomic operation

— If lock-flag==0, then lock() sets it to 1 and
returns old==0, so the thread exits the
while loop and enters critical section

— If lock-flag==1, then lock() returns old==1,
so the thread spin-waits in the while loop
and does not enter critical section

e |f multiple threads call TAS when lock-
flag==0, only one thread will see lock-
flag==0, set it to 1 and enter the critical
section, and all the other threads will see
lock-flag==1 and spin-wait.

typedef struct  lock tf{
int flag;
} lock t;

int TestAndSet (int *old ptr,
int old =
*old ptr =
return old;

new;

void lock(lock t *lock) {
(TestAndSet (&lock->flag,
; // spin-wait

while

void unlock (lock t *lock) {
lock->flag = 0;

int new) {
*old ptr; // fetch old value at old ptr
// store new into old ptr

1) ==

// return the old wvalue

)
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Locks: Compare-and-Swap

e Another hardware primitive:
Compare-and-Swap (CAS)

e Locking with CAS: CAS fetches the
old value of lock-flag into variable
original, compares original with
expected (0), and if they are equal
(lock-flag==0), sets lock->flag to 1,
then return variable original, all in
one atomic operation

— If lock-flag==0, then lock() sets it to
1 and returns old==0, so the thread
exits the while loop and enters
critical section

— If lock-flag==1, then lock() returns
old==1, so the thread spins in the
while loop and does not enter
critical section

int CompareAndSwap (int *ptr, int expected, int new) {
int old = *ptr;
1f (old == expected)
*ptr = new;
return old;

}

void lock(lock t *lock)
while (CompareAndSwap
; //spin-wait

{
(&lock->flag, 0, 1) == 1)




Locks: Busy Waiting

void locki{lock t *lock) {
while (TestAndSet (&lock->flag, 1) == 1)
; // spin-wait (do nothing)
}

volid lock (lock _t =xlock) {
while (CompareAndSwap(&lock->flag, 0, 1) == 1)
= /l/ spin
}
e Both TAS and CAS are spinlocks based on busy waiting

— A thread is stuck in a while loop endlessly checking lock->flag if the
lock is held by others

e Goals achieved?

— Mutual exclusion (Yes!)
— Fairness (NO!!)

— Performance?
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Ticket Lock

e Basic spinlocks are not fair and may
cause starvation

e Ticket lock uses hardware primitive
fetch-and-add to guarantee fairness

e Lock:
— Use fetch-and-add on the ticket value

— The return value is the thread’s “turn”

value
e Unlock:
— Increment the turn

int FetchAndAdd (int *ptr) {
int old = xptr;
*xptr = old + 1;
return old;

typedef struct _ _lock_t {
int ticket;
IRt tarrn;

- lock t:;

void lock init (lock t =*lock) {
lock—>ticket = 0;
lock->turn = 0;

}

void lock (lock_t =xlock) {
int myturn = FetchAndAdd(&lock—->ticket);
while (lock—>turn != myturn)
5. (L span
}

void unlock (lock _t =xlock) {
lock—>turn = lock—->turn + 1;

}
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Ticket Lock

e Aticket lock is a synchronization mechanism used in multithreaded programming to
ensure that threads acquire a lock in the order they request it. It uses two counters:

— tickets (or next_ticket): Tracks the next "ticket number" to be assigned to a thread
requesting the lock.

— turn: Tracks the "ticket number" of the thread currently holding the lock.
e Lock Acquisition (lock()):

— A thread atomically increments the tickets counter (using fetch-and-add) and receives its
"ticket number.”

— The thread then spin-waits until its ticket number matches the turn counter, indicating it is
its turn to enter the critical section.

e Lock Release (unlock()):

— When a thread finishes its critical section, it increments the turn counter, signaling that the
next thread in line can proceed.

— This ensures that threads are served in a first-come, first-served (FCFS) manner, preventing
starvation and ensuring fairness.
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void leck (lock_ t =xlock) {
int myturn = FetchAndAdd (&lock->ticket); __
while (lock->turn != myturn)
; f/ spin

}
Initial value tickets=0 turn=0

A lock(), 1 0 myTurn
A enters CS A 0]

B lock(), 2 0 B 1
spin-waits

C lock(), 3 0 ¢ 2
spin-waits

int FetchAndAdd(int xptr) {
int old = *ptr;
*ptr = old + 1;
return old;



void leck (lock_ t =xlock) {
int myturn = FetchAndAdd (&lock->ticket); __

while (lock->turn != myturn)
; f/ spin
}
Initial value tickets=0 turn=0
A lock(), 1 0 myturn
A enters CS A 3
B lock(), 2 0) B 1
spin-waits
C lock(), 3 0 ¢ 2
spin-waits
A unlock(), 3 1 int FetchAndAdd (int *ptr) ({
B enters CS int old = *ptr;
A lock(), 4 1 *ptr = old + 1;
spin-waits return old;

}

void unleek (lock t =lock]) {
lock->turn = lock—->turn + 1;



void leck (lock_ t =xlock) {
int myturn = FetchAndAdd (&lock->ticket); __

while (lock->turn != myturn)
; f/ spin
}
Initial value tickets=0 turn=0

A lock(), 1 0 myturn
A enters CS A 3

B lock(), 2 0) B 1

spin-waits

C lock(), 3 0 ¢ 2

spin-waits

A unlock(), 3 1 int FetchAndAdd (int =ptr) {
B enters CS int old = *ptr;

A lock(), 4 1 *ptr = old + 1;
spin-waits return old;

B unlock(), 4 2 }
C enters CS

C unlock(), 4 3 vold unleek {lock t =lock) {
A enters CS lock->turn = lock->turn + 1;

A unlock() 4 4 }



Recap

Locks --- mutual execution

— Only one thread must execute critical section
Hardware support — atomical execution

— Test-and-set and compare-and-swap
Busy-waiting --- spinlock
Metrics to evaluate locks:

— Correctness: mutual execution

— Fairness: no starvation

— Performance: no high cost to acquire and release a lock

Ticket locks --- No starvation
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Semaphores

. g(e)maphores were proposed by a Dutch computer scientist Dijkstra in late
S

* Definition: a semaphore has a non-negative integer value and supports
the following operations:

— sem_t sem or semaphore sem: Declare a semaphore
— sem_init(&sem, 0, N): Initialize the semaphore to any non-negative value

— sem_wait(&sem): also called down() or P(), an atomic operation that decrements

it by 1 if non-zero. If the semaphore is equal to 0, go to sleep waiting to be
signaled by another thread

— sem_post(&sem): also called signal(), up() or V(), an atomic operation that
increments it by 1, and wakes up a waiting/sleeping thread, if any

e Semaphores are also called sleeping locks, since the waiting thread goes
to sleep instead of spin-waiting

— If the waiting time is long, then sleeping is more efficient since the thread gives
up the CPU to other threads, but incurs system call (kernel) overhead to go to

sleep and wake up; if waiting time is short, then spinlock may be more eftficient
since it does not involve the kernel.

— Spinlock may cause starvation, e.g., if the waiting thread has higher priority than

the signaler thread under fixed priority scheduling (but not under round-robin
scheduling).
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POSIX pthreads API

e A Portable Operating System  api Functionality

1003.10) wrtieninC __
1003.1c), written in C

language
e In this lecture, we sometimes ——

use some Simpler notations pthread_mutex_lock Lock a mutex

for brevity, e.g., pthread _mutex_unlock Unlock a mutex

o sem_wait Wait on a semaphore
e sem init(&sem, 0, N) .
— sem_post Signal or post on a semaphore
— written as: semaphore sem=N; pthread _cond_wait Wait on a condition variable

® sem_wait(&sem) pthread_cond_signal Wake up one thread waiting

: : on a condition variable
— written as sem.wait()

pthread_cond_broadcast Wake up all threads waiting
* 5em_p05t(&5em) on a condition variable

— written as sem.signal()
2.21



Semaphores Like Integers Except...

e Semaphores are like integers, except:
— No negative values

— Only operations allowed are sem_wait() and sem_post() — cannot read or
write value, except initialization

— Operations must be atomic
» Two calls to sem_wait() together can’t decrement value below zero

» A thread going to sleep in sem_wait() won’t miss wakeup from sem_post () —
even if both happen concurrently

e Semaphore from railway analogy

— Here is a semaphore initialized to 2, to allow two trains to enter the two
tracks in the middle

o
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Implementing Semaphores with TestAndSet

Use TAS, but only spin-wait to atomically check guard value (very

short waiting time)

int guard = 0;
int value = 0;
sem wait () | sem post () {
//Spin-wait while guard is //Spin-wait while guard is
true true
while (TestAndSet (guard)) While (TestAndSet(ggard));
if (value —— 0) { 1f any thread 1in walp queue {
, take thread off wait queue;
put thread on walit queue; place on ready queue;
guard = 0; l else |
sleep(); value = value + 1;
} else { }
value = value - 1; guard = 0;
guard = 0; }
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Two Uses of Semaphores

Mutual Exclusion (value =0 or 1)

e Called “Binary Semaphore” or “mutex”. Can
be used for mutual exclusion as a lock

— Example: sem is initialized to 1. The first
thread that calls sem_wait() decrements
sem to 0 and enters the critical section:
other threads will be blocked when they see
sem==0. When the flrst thread calls
sem_post(), one of the waltmgtthreads will
be woken up and enter the critical section.

. Equwalentl pthread_mutex_t is designed
sp eC| icall or mutua T'exclusion, meanmg
on one thread can hold the lock at a time.
Only the thread that locks the mutex can
unlock it, with strict ownership semantics.

Scheduling Constraints (value >= 0)

e Called “Counting Semaphore”.

- B|nar¥ Semaphore is a special case of
Counting Semaphore, and can be used for
either mutual exclu5|on or scheduling.

e Can be used as signaling mechanisms, such
as notifying otherthreads that a resource is
available or an event has occurred. Any
thread can signal or release the semaph
regardless of which thread acquired it.

e See next slide for an example.

ore,

//Mutual exclusion using binary semaphore
sem t sem;

sem init (&sem, O, 1); // Initialize to 1 for

mutex—-1ike behavior
sem walt (&sem);
// Critical section

sem post (&sem) ;

//Mutual exclusion using mutex

pthread mutex t mutex =
PTHREAD MUTEX INITIALIZER;
mutex to 1 (unlocked)

pthread mutex lock (&mutex) ;

// Initialize

//Critical section

pthread mutex unlock (&mutex) ;




Using Semaphores for Scheduling

e Consider 5 threads A, B, C, D, E. They must execute based on the partial ordering below,
regardless of the ordering of process start (e.g., if E starts before B and D finishes, it will

be blocked waiting for B and D to finish before it can execute)
_ Thread B _

Thread B|7

Thread A

Thread C|->|Thread D

Thread E

— Thread A —
start
process

start
wait (semA)

signal (semA)
signal (semA)
finish

Syntax in the figure is slightly different: wait(sem) and signal(sem)
instead of sem_wait(&sem) and sem_post(&sem).

semA
=0
process

signal (semB)
finish

— Thread C —
start

wait (semA)

semA
=0

process
signal (semC)

— Thread D
start

wait (semC)

finish

E semC
=0

process
signal (semD)
finish

~__ Thread E
start

wait (semB)

semB
=0

wait (semD)

H semD
=0

process
finish
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Readers/Writers Problem

e \We have two classes of concurrent processes:

— Writers: they change data, so only one writer can be active

— Readers: these only read data, thus multiple readers can be active, as long
as there is no active writer

e Shared Resource Conflict:
— Multiple readers can safely access the resource at the same time, but if any
writer is modifying the resource, no other process (either reader or writer)
should access it. This ensures data consistency.

e Readers vs. Writers Priority:

—|If a reader is already accessing the resource, additional readers are allowed
to enter immediately. A writer, however, must wait until all readers have
finished. Consequently, readers are favoured over writers, which can lead to

writer starvation if new readers keep arriving.
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Readers/Writers using Semaphores, Prefers Readers

This program ensures mutual exclusion between writers, and
between the 1 reader and any writers, but not between
multiple readers.

A semaphore named mutex is used to ensure mutual
exclusion when readers update a shared counter called
readcount, which tracks the number of active readers.
Another semaphore named wrt is used to control access to
thedshared resource. It is acquired by writers and by the first
reader.

First Reader Behavior: If the reader finds that it is the first one
to enter (i.e., readcount increments from 0 to 1), it calls
sem_wait(&wrt) to acquire the lock wrt. This prevents any
writer from entering the critical section while at least one
reader is present.

Last Reader Behavior: If the reader finds that it has been the
last to exit (i.e., readcount becomes 0), it calls
sem_post(&wrt) to allow a writer (if any are waiting) to
acquire the lock wrt and enter the critical section.

Writer Behavior: A writer begins by calling sem_wait(&wrt) to
acquire the lock wrt and enter the critical section to write
data. Since a writer must have exclusive access, it will block
until wrt is available—that is, until no reader holds it (because
the first reader acquired it) and no other writer is active.
Upon exiting the critical section, it calls sem_post(&wrt) to
allow waiting readers or writers to continue.

Readers-Preference and Its Consequences: Because the first
reader blocks any writer until all readers have exited, if new
readers continuously arrive, a writer may starve. This readers-

preference model is efficient for systems primarily performing

read operations but might cause fairness issues when writes
are necessary.

/* shared memory */
semaphore mutex;
semaphore wrt;

int readcount;

/* initialization.*/

mutex = 1;
wrt = 1;
readcount = 0;

/* writer */
sem walt (&wrt);

. critical section
to write data ..

sem post (&wrt) ;

/* reader */

sem walt (&mutex) ;

readcount++;

if (readcount==1)
sem walt (&wrt);

sem post (&mutex) ;

.. read data ..

sem wailt (&mutex) ;

readcount--;

if (readcount==0)
sem post (&wrt) ;

sem post (&mutex) ;
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'Readers./erters Solutlo_n int AR=0: Number of active readers; OPTIONAL
using Monitors, Prefers Writers int WR=0: Number of waiting readers;
int AW=0: Number of active writers;
int WW=0: Number of waiting writers;
Condition okToRead, okToWrite;
mutex t mutex = 1;
Reader () { Writer () {

mutex lock (&mutex);
while ((AW + WW) > 0){//Is it safe to read?
WR++; //No. AWs or WWs exist
cond wait (&okToRead, &mutex) ;
WR--; //No longer waiting
}
AR++; //Reader active!
mutex unlock (&mutex) ;
AccessDatabase (ReadOnly) ;
mutex lock (&mutex);
AR--; //No longer active
if (AR 0 && WwW > 0)//No other ARs
cond signal (&okToWrite);//Wake up one WW
mutex unlock (&mutex) ;

wa ke

mutex lock (&mutex);

while ((AW + AR) > 0){//Is it safe to write?
WW++; //No. AWs or ARs exist
cond wait (&okToWrite, &mutex) ;
WW--; //No longer waiting

}

AW++; //Writer active!

mutex unlock (&mutex) ;

AccessDatabase (ReadWrite) ;

mutex lock (&mutex) ;

AW--; //No longer active

if (WW > 0) {//Give priority to WWs
cond signal (&okToWrite);//Wake up

} else 1if (WR > 0) {
cond broadcast (&okToRead);//If no WW,

up all WRs

}

mutex unlock (&mutex) ;

one WW
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Readers/Writers Solution: Prefers Writers

e while (AW + WW) > 0)
— A reader waits for both Active Writers and Waiting Writers.

e Check (WW > 0) before (WR > 0)

—Wake up a Waiting Writer, and if there is no Waiting Writer, then wake
up all Waiting Readers.

e cond_signal(&okToWrite)
— Wake up one Waiting Writer, since at most one writer can write.

— If you use cond _broadcast(&okToWrite) to wake up all Waiting Writers,
only one Writer can start to write, and the rest will go back to sleep.

e cond broadcast(&okToRead)

— Wake up all Waiting Readers, since multiple readers can read
simultaneously.



Readers/Writers Solution
usin Monit/ors Prefers Readers int AR=0: Number of active readers; OPTIONAL
g d int WR=0: Number of waiting readers;
int AW=0: Number of active writers;
int WW=0: Number of waiting writers;
Condition okToRead, okToWrite;
mutex t mutex = 1;
Reader () { Writer ()
mutex lock (&mutex); mutex lock (&mutex);
while (AW > O) {//IS 1t safe to read? while ((A/\-/\-I/ + AR) > O) {//IS it safe to write?
. : WW++; No. AWs or ARs exist
WRHS /<NO' Alls exist cond wait (&okToWrite, &mutex) ;
cond wailt (&okToRead, &mutex) ; WW--; //No longer waiting
WR--; //No longer waiting }
} AW++; //Writer active!
. : | mutex unlock (&mutex) ;
ARF+; //Reader active! AccessDatabase (ReadWrite) ;
mutex unlock (&mutex) ; mutex lock (&mutex) ;
AccessDatabase (ReadOnly) ; AW--; //No longer active
mutex lock (smutex) ; if (WR > 0) {//Give priority to WRs
AR-—:  //No longer active cond broadcast (&okToRead) ;//wake up all
. ! WRs
if (AR == 0 && WW > 0)//No other ARs } else if (WW > 0) {
cond signal (&okToWrite);//Wake up one WW cond signal (&okToWrite);//If no WR, wake
mutex unlock (&mutex) ; up on? W
) mutex unlock (&mutex) ;
}
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Readers/Writers Solution: Prefers Readers ‘

e while (AW > 0)
— A reader only waits for Active Writers, not Waiting Writers.
e Check (WR >0) before (WW > 0)

—Wake up all Waiting Readers, and if there is no Waiting Reader,
then wake up a Waiting Writer.



Producer/Consumer Problem

e A classical synchronization problem, also called the bounded-buffer problem

e A buffer has a bounded size

e Examples of Producer/Consumer Problems: \E
— Web servers: / \ \
» Producer puts requests in a queue & & %
» Consumers picks requests from the queue to process CLIENT CLIENT CLIENT
— Coke vending machine
» Producer can put limited number of cokes in machine I I

» Consumer can’t take cokes out if machine is empty producer consumer
e Different from Readers/Writers problem

— There is a queue of items

"

— Consumer performs destructive read: reading an item removes it from the queue




Producer/Consumer Problem

e Correctness Constraints:

— When buffer is full, producer must wait

—When buffer is empty, consumer must wait

— Only one thread can manipulate buffer at a time (mutual exclusion)
e Use a separate semaphore for each constraint

—semaphore fullSlots; // consumer’s constraint

— semaphore emptySlots;// producer’s constraint
—semaphore mutex;  // mutual exclusion

Producer writes Consumer reads and
data items to buffer removes data items
L LI Il || from buffer (destructive

Bounded buffer read)
fullSlots==3, emptySlots==

33



Full Solution to Bounded Buffer (coke machine) i

semaphore fullSlots=0; //Initially, no full slots :
semaphore emptySlots=bufSize; //Initially, all slots empt %

semaphore mutex=1;

Producer (1item) {

sem wait (&emptySlots);//Wait until emptySlots non—ziro

sem walt (&mutex) ;
engqueue (1tem) ;
sem_post (&mutex) ; mutex protects

o t(&fullSlot : : :
) sem_post (&tu ots) integrity of the
Indicates 1 more full slot

Consumer () { queue within
sem wait (&fullSlots) /Wait until fullSlots non-zerc ritical sections

sem walt (&mutex) ;

, 1tem = dequeue () ;

Indicates 1 sem post (&mutex) ;
more empty sem post (&emptySlots);

return item;
slot
emptySlots==0: Producer waits; fullSlots ==0: Consumer waits.
fullSlots>0 && emptySlots>0: Producer and Consumer can enqueue/dequeue items.
concurrently (within critical section protected by mutex).



Discussions

Decrease # of

e Two semaphores empty slots

Increase # of
full slots

— Producer does: sem_wait(\&/emptySIots), sem_&)/st(&fulls ots)
— Consumer does: sem_wait(&fullSlots), sem_post(&emptySlots)
/\ _/\

Decrease # of
full slots

e Can we put sem_wait()/sem_post() for mutex outside of
sem_wait()/sem_post() for emptySlots and fullSlots?

e No! This may cause deadlock. Suppose the queue is initially
empty. Producer enters the critical section, calls
sem_wait(&emptySlots) and is blocked waiting for Consumer
to put items into the queue; Consumer calls
sem_wait(&mutex) and is blocked waiting to enter the critical
section. But Producer will never exit the critical section and
call sem_post(&mutex) to wake up Consumer!

e Similar deadlock situation when the queue is full, Consumer
is blocked on sem_wait(&fullSlots) and Producer is blocked
on sem_wait(&mutex).

Increase # of
empty slots

//Incorrect code

Producer (item) {
sem wailt (&mutex) ;
sem wailt (&emptySlots);
enqueue (item) ;
sem post (&fullSlots);
sem post (&mutex) ;

}

Consumer (1tem) {
sem wailt (&mutex) ;
sem wait (&fullSlots);
enqueue (item) ;
sem post (&emptySlots) ;
sem post (&mutex) ;
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Deadlock

Definition: A set of threads are said to be in a deadlock state when
every thread in the set is waiting for an event that can be caused
only by another thread in the set

Wanted Resource 1 Held

Conditions for Deadlock
Mutual exclusion

— Only one thread at a time can use a given resource
Held Resource 2

Wanted

Hold-and-wait

— Threads hold resources allocated to them while waiting for
additional resources

No preemption

— Resources cannot be forcibly removed from threads that are
holding them; can be released only voluntarily by each holder

Circular wait

— There exists a circle of threads such that each holds one or
more resources that are being requested by next thread in the
circle
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Monitors

e Semaphores are dual purpose, used for both mutex and
scheduling constraints

e Monitors provide a higher-level abstraction that
encapsulates shared state and condition variables.

e Monitor: a mutex lock and one or more condition variables
for managing concurrent access to shared data
— A paradigm for concurrent programming

—Use lock for mutual exclusion and condition variables for
scheduling constraints. (Must hold lock when doing condition
operations!)

—Java supports monitors natively



Monitor with Condition Variables (CV)

e thread mutex t mutex: a mutex lock
— Provides mutual exclusion to critical section
— Acquire before entering, release upon exiting critical section

e pthread cond t cond: one or more condition variables:

— For each condition variable, a queue of threads may be waiting for it to be signaled
inside the critical section.

» Key idea: allow threads to wait on a condition variable (sleeping) inside the critical
section, since the mutex lock is released (implicitly) when a thread goes to sleep

» Contrast with semaphores: cannot wait on a semaphore inside critical section,
otherwise it leads to a deadlock since mutex lock is still held

- Thetr_e may be an entry queue of threads waiting on the lock outside of the critical
section

e Condition operations:

— pthread_cond_wait(&cond, &mutex): it releases the mutex lock temporarily and enters
the monitor's wait queue to go to sleep. This allows other threads to acquire the lock
and proceed with their tasks. When the waiting/sleeping thread is signaled, it re-
acquires the lock before resuming execution.

— pthread cond_signal(f&cond): Wake up one waiter, if any (if no waiter thread, then the
signal isTost/has no effect)

— pthread_cond_broadcast(&cond): Broadcast(): Wake up all waiters (if no waiter thread,
then the signalis lost/has no effect)




Monitor with Condition Variables (CV)
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- ‘--.,\ - <

shared data
ueues associated with [ /X« »il [ +8 |

X, y conditions L y = . \

'\ . | A 4 ,"f

\ operations 4

initialization "
code =




CV Common Usage Pattern

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread cond t cond = PTHREAD COND INITIALIZER;

bool flag; //Initialization value is application-specific, hence omitted here
// Signaler thread

Signaler () {
pthread mutex lock (&mutex) ;
update flag();
//Either signal 1 thread, or broadcast to all threads, but not both
pthread cond signal (&cond) ;
//pthread cond broadcast (&cond) ;
pthread mutex unlock (&mutex) ;

// Waiter thread
Waiter () {
pthread mutex lock (&mutex);
//Thread goes to sleep during waiting

while (!flag) {pthread cond wait (&cond, &mutex);}
// Process data

pthread mutex unlock (&mutex) ;




P/C Problem with Condition Variable

pthread mutex t mutex = PTHREAD MUTEX INITIALIZER;
pthread cond t prod CV = PTHREAD COND INITIALIZER;
pthread cond t cons CV = PTHREAD COND INITIALIZER;

Producer (item) {
pthread mutex lock (&mutex) ;
while (buffer full) {pthread cond wailt (&prod CV, &mutex); }
enqueue (item) ;
pthread cond signal (&cons CV);
pthread mutex unlock (&mutex) ;

}

Wake up any waiting consumer
thread blocked on an empty buffer

Consumer () { (it &)
pthread mutex lock (&mutex) ;

while (buffer empty) {pthread cond wait (&cons CV, &mutex);}
item = dequeue () ;

pthread cond signal (&prod CV);

pthread mutex unlock (&mutex) ;

VWake up any

waiting producer
thread blocked on :
a full buffer (if any) return item

['his program has the same behavior as previous program using semaphores.
(Code for updating buffer status and setting Boolean flags “buffer full” or “buffer empty” are omitted)




While vs. if for Checking Boolean flag

» Consider the dequeue code in Consumer thread:
while (buffer empty){ //NOT if (buffer empty)

cond wait (&cons CV, &mutex);

}

item = dequeue (&queue); // Get next item

* Why do we use a while loop to check the Boolean
flag “buffer empty”?

—Most OSes use Mesa-style monitor (named after
Xerox-Park Mesa Operating System), where the waiter
thread may start to run some time after Signaler
thread calls cond_signal()



Mesa monitors

e |nside cond_wait(), Waiter thread releases the mutex lock temporarily and enters the
monitor's wait queue to go to sleep. This allows Signaler thread to acquire the mutex lock and
proceed with its task.

e When Signaler thread calls cond_si nalf) to signal Waiter thread, Waiter thread is put on the
ready queue (not woken up immediately). Signaler thread continues execution and releases
the mutex lock. When Waiter ’ghreadfets to run on the CPU when OS actually schedules it, it
re-acquires the mutex lock, exits cond wait(), enters the critical section, and finally releases

the mutex lock.

Put Waiter

thread on J unlock (&mutex) ;
ready queue

lock (&mutex) ; .
while (buffer empty) {

cond signal (&cons CV); cond wailt (&cons CV, &mutex) ;
()
unlock \65\‘6\ |
unlock (&mutex) ; (T@do e“ﬂg
(f56 «eﬁﬁ\ unlock (&mutex) ;
\)
Signaler thread N Waiter thread

e Waiter thread must use a while loop to re-check condition upon wakeup

— Another thread may be scheduled before Waiter thread %ets to run, and "sneak in" to modify the
state (e.g., empty the queue), so the condition may be false again (called “spurious wakeups”).



The Thread Join Problem

e A parent thread creates a child thread and waits for the child thread to finish by calling
thr_join(); the child thread signals completion by calling thr_exit(). We need to
implement functions thr_join() and thr_exit().

int main(int argc, char *argv([]) {
printf ("parent: begin\n");
pthread t p;

pthread create (&p, NULL, child,
Parent NULL) ; -

thr join(); // wait
printf ("parent: end\n");
return 0;

}

void *child(void *arg) {
. printf ("child\n");
Chlld thr exit(); // signal
return NULL;




Thread Join with Semaphore

Semaphore sem acts as the synchronization
flag. sem is initialized to O.

Works correctly regardless of whether parent
or child executes first:

If parent waits first: parent calls thr_join(),
sem_wait(&sem) blocks since sem==0, until child
calls thr_exit(), sem_post(&sem) to wake it up.

If child finishes first: child calls thr_exit(),
sem_post(&sem) increments sem from O to 1;
subsequently, parent calls thr_join(),
sem_wait(&sem) decrements sem from 1 to 0, and
parent continues immediately without blocking.

No Race Condition:

— Semaphores maintain state; No need for additional
flags or mutex protection. (In contrast to condition
variables.)

semaphore sem = 0O;

//Child
void thr exit () {

sem post (&sem) ;

//Parent
void thr join () {

sem walt (&sem) ;

//Signal parent

// Wait for child
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Thread Join with Condition Variable

e Condition variables do not maintain state
like semaphores do, so we need a shared
boolean flag “done” to track whether the
child thread has completed. (Similar to
Boolean flags “buffer full” and “buffer
empty” in P/C problem.)

e If parent waits first: parent calls thr_join()
and cond_wait (&c) before child calls
thr_exit() and cond_signal(&c). The signal
on condition variable c will wake up
parent.

e If child finishes first: child calls thr_exit()
and cond_signal(&c) before parent calls
thr_join(). Parent will detect that “done” is
already set so it will not call cond_wait(&c)
and block indefinitely. (While loop around
cond_wait(&c) ensures correctness in case
of spurious wakeups.)

pthread mutex t m =
PTHREAD MUTEX INITIALIZER;

pthread cond t ¢ =

bool done = false;
//Child
void thr exit ()

pthread mutex lock (&m) ;

done = true;
pthread cond signal (&c);
pthread mutex unlock (&m) ;

}

//Parent

void thr join() {
pthread mutex lock (&m) ;

{//Check if

while (!done)

finished

pthread cond wait (&c,

}

pthread mutex unlock (&m) ;

PTHREAD COND INITIALIZER;

child has

&m) ;




Thread Join with Condition Variables: Incorrect

e |f we remove Boolean flag “done”, then the
program is incorrect. Condition variables do
not maintain state (queue signals) if no
thread is waiting at the time of signal.

e If child finishes first: child calls thr_exit() and
cond_signal(&c) before parent calls
thr_join(). Child’s signal on condition
variable c will be lost, and parent will wait
forever in cond_wait(&c).

Scenario 1: Parent calls thr_join() first.
Works OK.

Parent | X | Y Z
Child A|B|C

Scenario 2: Child calls thr_exit() first.
Parent blocks forever!

Parent XY
Child A|B|C

pthread mutex t m =
PTHREAD MUTEX INITIALIZER;

pthread cond t c =
PTHREAD COND INITIALIZER;

//Child

void thr exit () {
pthread mutex lock (&m);//A
pthread cond signal(&c);//B
Pthread mutex unlock(&m);}//C

//Parent

void thr join () {
pthread mutex lock (&m);//X

&m) ;/ /Y

pthread mutex unlock(&m);}//Z

pthread cond wait (&c,




Dinning Philosophers

e N philosophers sit at a round table.

e They spend their lives alternating
thinking and eating.

e They do not communicate with their
neighbors.

e Each philosophers occasionally tries to
pick up his left and right forks (one at a
time) to eat.

e Needs both forks to eat, then releases
both when done eating.

e Suppose we have 5 philosophers
numbered 1_5) and 5 forks numbered 1_ Figure 2-44, Lunch time in the Philosophy Department.
5; philosopher i has left fork numbered i,
and right tfork (i+1)%5.




Semaphore-based Solution: Deadlock

e Each fork (or chopstick) is modeled
as a binary semaphore that is
initially set to 1, meaning it is
available. When a philosopher
wants to eat, they perform a wait
(or P) operation to pick up a fork
and a signal (or V) operation to
release it afterward.

e Deadlock situation: Each

Bhilosopher first executes a

locking wait to pick up the left fork
and then tries to pick up the right
fork. If all philosophers adopt this
pattern simultaneously, every

hilosopher may pick up their left
ork and then block waiting for the
right fork (which is held by its
neighbor), resulting in a deadlock,
circular wait where none can
proceed.

#define N 5
forks

semaphore fork([N] = {1, 1, 1, 1, 1};

// Number of philosophers and

volid philosopher (int 1) {

while (true) {
think () ;
sem_wait (&fork[i]); // Pick up left fork
sem wait (&fork[(i + 1) % NJ]); // Pick up
right fork
eat ()

// Put down left fork
$ N1); // Put down

sem post (&fork[i]);

sem post (&fork[ (1 + 1)
right fork

}
}




Semaphore-basec

Solution 0: Global Lock

e We use the global semaphore
mutex to ensure that only one
philosopher can pick up forks
and eat at any one time.

e This solution works, but is
very inefficient, since only
one philosopher can be eating
at one time; it should be
possible for two philosophers
to eat at the same time, since
there are 5 forks.

#define N 5
forks

// Number of philosophers and

semaphore mutex = 1;

semaphore fork[N] {1, 1, 1, 1, 1};

void philosopher (int i) {
while (true) {

think () ;

sem walt (&mutex) ;
one atomic operation

// Pick up both forks in

// Pick up left fork
% N1); // Pick up

sem wait (&fork[1]);

sem walt (&fork[ (1 + 1)
right fork

eat ()
sem post (&fork([1]);

sem post (&fork[ (1 + 1)
right fork

sem post (&mutex);
}
}

// Put down left fork
$ NJ]); // Put down




Semaphore-based Solution: Deadlock

e One solutionis to let eachfphilosopher pick
up (and r)ut down) both left and right forks
atomica I(}/within a critical section,
protected by the global semaphore mutex.

e Deadlock situation: This solution is flawed
because it can lead to deadlock, similar to
the deadlock situation in the P/C problem.

e Philosopher A gets mutex, is blocked trying
to get a fork (left or right); meanwhile, his
neighbor Philosopher B (who has both
forks) finishes eating and tries to put down
forks. But B is blocked trying to get mutex
(which A holds). Now we have a circular
wait condition: A holds mutex, waiting for
fork; B holds fork, waiting for mutex.

— Philosopher B does not have to be A’s direct
neighbor. There may be a chain of
hilosophers starting from A, each holding
is left fork, and B may be the last one’s
neighbor.

#define N 5
forks

semaphore mutex = 1;
semaphore fork[N] =

// Number of philosophers and

{1, 1, 1, 1, 1};

void philosopher (int 1) {
while (true) {
think () ;

sem wait (&mutex); // Pick up both forks
within a critical section

sem wait (&fork([i]); // Pick up left fork

sem wait (&fork[(i + 1) % NJ]); // Pick up
right fork

sem post (&mutex) ;
eat ();

sem walit (&mutex); // Put down both forks
within a critical section

sem post (&fork([i]); // Put down left fork

sem post (&fork[(1i + 1) % N]); // Put down
right fork

sem post (&mutex);

}




Semaphore-based Solution |

e The solution is to let each philosopher pick #define N 5 // Number of philosophers and

up, but not put down, both left and right forks
forks atomically within a critical section, semaphore pickup mutex = 1;
protected by the global semaphore semaphore fork[N] = {1, 1, 1, 1, 1};

pickup_mutex.

* No deadlock: If philosopher i is in the critical | cigq philosopher (int 1) {
section protected by mutex, blocked in while (true) (
sem_wait() waiting for any fork (left or right),

the neighbor who is holding the requested think () ;

fork and eatmE can freely put down both sem_wait (¢pickup_mutex); // Pick up both

forks without blocking, thus allowing forks in one atomic operation

philosopher i to pick up both forks. sem wait (&fork[i]); // Pick up left fork
e Poor efficiency: If philosopheriisin the - sem_wait (&fork[(i + 1) % N]); // Pick up

critical section protected by pickup_mutex, |r+t9ht fork

waiting for any fork (left or right), then no sem_post (¢pickup_mutex) ;

other philosopher can enter the critical eat () ;

section before some other philosopher sem post (§fork[i]); // Put down left fork

finishes eating and puts down his forks to let
philosopher i exit the critical section and
start eating, even for a philosopher with both
left and riﬁ t forks free. This is unnecessary }
blocking that reduces concurrency. }

sem post (&fork[(i + 1) % N]); // Put down
right fork




Semaphore-based Solution Il

e Introduce an additional
“room” semaphore that
limits the number of
philosophers permitted to
start eating concurrently.
For example, if there are
N=5 philosophers, room is
initialized to N-1=4. With 5
forks and at most 4
philosophers competing, at
least one philosopher can
always get both forks

#tdefine N 5 // Number of philosophers and
forks

semaphore room = N-1;
semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher (int i) {
while (true) {
think () ;

sem wait (&room); // Limit number of
philosophers simultaneously hungry to 4

sem_wait (&fork[i]); // Pick up left fork

sem wait (sfork[(i + 1) % N]); // Pick up
right fork

eat ()
sem post(&fork[i]); // Put down left fork

sem post (&fork[(i + 1) % N]); // Put down
right fork

sem post (&room); // Leave the room
}
}




Semaphore-based Solution Il

Adjust the order in which resources are requested
(for instance, having one philosopher, the (N-1)-th
philosopher, pick up his right fork first while all the
others pick up the left fork first), which disrupts the
cycle that could lead to deadlock.

This method forces eachiphiloso her to pick up
lower-numbered fork before higher-numbered fork,
i.e., assign a total order to the resources, and
establish the convention that all resources will be
requested in the same order. Here the order of
forksis 0, 1, 2, 3, 4, so each philosopher picks up
the lower numbered fork before the higher-
numbered fork.

Philosopher 0 picks up left fork O before right fork 1;
Philosopher 1 picks up left fork 1 before right fork 2;
Philosopher 2 picks up left fork 2 before right fork 3;
Philosopher 3 picks up left fork 3 before right fork 4;
Philosopher 4 picks up right fork O before left fork 4.

A variant is to let even-numbered philosophers pick
up right fork first.

The order of acquiring resources (forks) must be
controlled to prevent deadlock, but the release
order doesn't matter. So this program can be

?implified to let all philosophers put down left fork
irst.

#define N 5 // Number of philosophers and forks
semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher (int 1) {

while (true) {
think () ;
if (id == N - 1) {//One of the philosophers
//or 1f (1 % 2 == 0){// Even numbered philosophers

; // Pick up right fork

sem walt (&fork[i+1])
( $ N]);} // Pick up left fork

sem wailt (&fork([ (1)
else {
sem wait (&fork[i]); // Pick up left fork

sem wait (&fork[(i + 1) % N]);} // Pick up right
fork

eat ();

if (id == N - 1) {

//or if (1 % 2 == 0){// Even numbered philosophers
sem post (&fork[i+1]); // Put down right fork

sem post (&fork[ (i) % N]);} // Put down left fork
else {

sem post (&fork[i]); // Put down left fork

sem post(&fork[(1i + 1) % NJ]);} // Put down right
fork




Semaphore-based Solution IV

A semaphore self[i] is created for each philosopher i.

Each philosopher can be in any one of three states
(THINKING, HUNGRY, or EATING). All philosophers have
initial state of THINKING.

When philosopher i becomes hungry, he calls pickup(i),
which sets their state to HUNGRY and calls test(i) to
check if any of its two neighbors are eating.

If both adjacent philosophers are not eating,
philosopher i’s state is changed to EATING, and calls
sem_post(&self[i]) to increment self[i] by 1, and it next
calls sem_wait(&self[i]) to decrement self]i] by 1, and
start eating. Otherwise, philosopher i’s state stays to be
HUNGRY, and it is blocked on sem_wait(&self[i]).

Upon finishing eating, philosopher i calls putdown(i),
updates their state to THINKING, and then tests if
adjacent philosophers can now eat by signaling their
semaphore variables. This structure prevents the
circular waiting condition that leads to deadlock.

Since state is explicitly maintained in an array state[N],
we need mutex protection in both pickup() and
putdown() methods.

#define N 5 // Number of philosophers and forks
enum { THINKING, HUNGRY, EATING } state[N];
mutex t mutex = 1;

semaphore self[N] = {0, 0, 0, 0, 0};
philosopher

// Initialize to 0
void philosopher (int i) {
while (true) {
think () ;
pickup (i) ;
eat ()7
putdown (i) ;

// Semaphore for each

}

}

void pickup (int 1) {
mutex lock (&mutex) ;
state[i] = HUNGRY;
test (1),
mutex unlock (&mutex) ;
sem wait (&self[i]); //Block if forks weren't acquired

}

void putdown (int i) {
mutex lock (&mutex) ;

state[i] = THINKING;
test((i + 4) % N); // Test left neighbor
test((i + 1) % N); // Test right neighbor

mutex unlock (&mutex) ;

}

1) |
if (state[i] == HUNGRY &&
state[ (i + 4) % N] != EATING &&
state[ (i1 + 1) % N] != EATING) {
state[i] = EATING;
sem post (&self[i]);




Monitor-based Solution

A monitor selffi] is created for each philosopher i.

Each philosopher can be in any one of three states
(THINKING, HUNGRY, or EATING). All philosophers
have initial state of THINKING.

When philosopher i becomes hungry, he calls
pickup(i) inside the monitor, which sets their state
to HUNGRY and calls test(i) to check if any of its two
neighbors are eating.

If both adjacent philosophers are not eating,
philosopher i’s state is changed to EATING
(cond_signal(&self[i]) has no effect and the signal is
lost since no other philosopher is waiting on self[i]);
otherwise, philosopher i waits on condition variable

self[i].

Upon finishing eating, philosopher i calls
putdown(i), updates their state to THINKING, and
then tests if adjacent philosophers can now eat by
signaling their condition variables.

Note that cond_signal(&self]i]) in test(i) has no
effect during picku,o(), but it is used to wake up
waiting hungry philosophers during putdown(i).

#define N 5 // Number of philosophers and forks
enum { THINKING, HUNGRY, EATING } state[N];

mutex t mutex = 1; // Monitor's mutex
condition self[N]; // Condition variable for each
philosopher

void philosopher (int i) {
while (true) {
think () ;
pickup (i) ;
eat ()
putdown (i) ;
}
}
void pickup(int i) {
mutex lock (&mutex) ;

state[i] = HUNGRY;
test (i)
while (state[i] != EATING)
cond wait (&self[i], &mutex); //Block if forks

weren't acquired
mutex unlock (&mutex) ;
}
void putdown (int i) {
mutex lock (&mutex) ;

state[i] = THINKING;
test((i + 4) $ N); // Test left neighbor
test((1i + 1) % N); // Test right neighbor

mutex unlock (&mutex) ;
}
void test (int i) {
if (state[i] == HUNGRY &&

[
state[(1 + 4) % N] != EATING &&
state[(1 + 1) % N] != EATING) {
state[1] = EATING;

cond signal (&self[1]);




Semaphores vs. Monitors

e Semaphores: Like integers with restricted interface
— Initialize value to any non-negative value
— Two operations:
» sem_wait(): Wait/sleep if zero; decrement when becomes non-zero

» sem_post():also called signal(). Increment and wake up a waiting/sleeping
thread (if one exists)

— Use a separate semaphore for each constraint

e Monitors: A mutex lock plus one or more condition variables
— Always acquire lock before accessing shared data
— Use condition variables to wait inside critical section
—Three operations: wait(), signal(), and broadcast()

» VWait if necessary (inside a while loop to check a Boolean flag)

» Signal (or broadcast) when something is changed to wake up one waiting
thread (or all waiting threads)
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