
CSC 112: Computer Operating Systems
Lecture 3

Synchronization

Department of Computer Science,

Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming

And NTNU course on Operating Systems

2

Outline

• Concurrency & Spinlocks

• Semaphores

• Monitors

3

Different Types of Concurrencies

• Multiprocessing → multiple CPUs running in parallel

• Multiprogramming → multiple processes scheduled on a single processor by time-
sharing

• Multithreading → multiple threads per process scheduled on a single processor by
time-sharing

BA ACB C BMultiprogramming or
Multithreading on a
single processor

A
B
C

Multiprocessing on
multiprocessor

4

Concurrency
#include <stdio.h>

#include <stdlib.h>

#include "common.h"

#include "common_threads.h”

int counter = 0;

int loops;

void *worker(void *arg) {

 int i;

 for (i = 0; i < loops;i++)

{counter++; }

return NULL;

}

int main(int argc, char *argv[])

{

 if (argc != 2){

 fprintf(stderr, "usage: threads <loops>\n");

 exit(1); }

 loops = atoi(argv[1]);

 pthread_t p1, p2;

 printf("Initial value : %d\n", counter);

pthread_create(&p1, NULL, worker, NULL);

pthread_create(&p2, NULL, worker, NULL);

pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("Final value : %d\n", counter);

 return 0;

}

This concurrent program has a race condition, and may
produce different final values of counter for different runs,
depending on different non-deterministic interleavings of
worker threads

T1 T1 T1 T2 T2 T2

T1 T2 T2 T1 T1 T2

T2 T2 T2 T1 T1 T1

5

Race Condition
• Incrementing counter has 3 instructions in assembly

code:

• ld w8, [x9]: Read the value of counter at memory
address x9 into register w8

• add w8, w8, #0x1: increment the value of register w8 by
1

• st w8, [x9]: write the new value of counter in register w8
to memory address x9

• When both threads read the same value of counter
before writing to it, counter is incremented only by 1
instead of by 2!

• Note: threads in the same process share the same
memory space, but have separate registers. So in both
threads, [x9] refers to the same memory address at x9,
but w8 refers to different registers in each thread.

counter++;

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2
counter

st w8, [x9]

100
101

100
101
101

101

6

Race Condition & Critical Section
• Race condition:

– Multiple threads of execution update shared data variables, and final results depend on the
execution order

– Race condition leads to non-deterministic results: different results even for the same inputs

• To prevent race condition, a critical section should be used to protect shared data variables

– A critical section is executed atomically

– Mutual exclusion (mutex) ensures that when one thread is executing in its critical section, no other
thread is allowed to execute in that critical section

Thread A

Thread B

7

Lock to Protect a Critical Section

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

ld w8, [x9]
add w8, w8, #0x1
st w8, [x9]

Thread 1 Thread 2
Count
Value
100
101

101
102
102Lock it

101

Lock it

• Critical section: a piece of code that accesses a shared resource, usually

a variable or data structure

• Correctness of a concurrent program:

• Mutual exclusion: Only one thread in critical section at a time

• Progress (deadlock-free): If several simultaneous requests, must

allow one to proceed

• Bounded waiting (starvation-free): Must eventually allow each waiting

thread to enter

8

Locks

• A lock is a variable

• Objective: Provide mutual exclusion (mutex)

• Two states

– Available or free

– Locked or held

• lock(): tries to acquire the lock

• unlock(): releases the lock that was previously acquired

lock_t mutex

void *worker(void *arg) {

 int i;

 for (i = 0; i < loops;i++) {

 lock(&mutex);

 counter++;

 unlock(&mutex)}

return NULL;

}

9

Locks: Disable Interrupts

• An early solution: disable interrupts for critical sections

• Problems:

– System becomes irresponsive if interrupts are disabled for a long time

– Does not work on multiprocessors, as disabling interrupts on all processor cores requires
inter-core messages and would be very time consuming

10

Locks: Loads/Stores
• This implementation does not ensure mutual exclusion, since both threads may grab

the lock:

• After Thread 1 reads flag==0 and exits the while loop, it is preempted/interrupted by
Thread 2, which also reads flag==0 and exits the while loop. Then both threads set
flag=1 and enter the critical section.

• Root cause: Lock is not an atomic operation!

flag = 0

11

Locks: Test-and-Set

• How to provide mutual exclusion for
locks?

– Get help from hardware!

• CPUs provide special hardware
instructions to help achieve mutual
exclusion

– The Test-and-Set (TAS) instruction tests
and modifies the content of a memory
word atomically

• Locking with TAS: TAS fetches the old
value of lock->flag into variable old, sets
lock->flag to 1, then return variable old, all
in one atomic operation

– If lock-flag==0, then lock() sets it to 1 and
returns old==0, so the thread exits the
while loop and enters critical section

– If lock-flag==1, then lock() returns old==1,
so the thread spin-waits in the while loop
and does not enter critical section

• If multiple threads call TAS when lock-
flag==0, only one thread will see lock-
flag==0 , set it to 1 and enter the critical
section, and all the other threads will see
lock-flag==1 and spin-wait.

typedef struct __lock_t{

 int flag;

} lock_t;

int TestAndSet(int *old_ptr, int new){

 int old = *old_ptr; // fetch old value at old_ptr

 *old_ptr = new; // store new into old_ptr

 return old; // return the old value

}

void lock(lock_t *lock){

 while (TestAndSet(&lock->flag, 1) == 1)

 ; // spin-wait

}

void unlock(lock_t *lock){

 lock->flag = 0;

}

12

Locks: Compare-and-Swap
• Another hardware primitive:

Compare-and-Swap (CAS)

• Locking with CAS: CAS fetches the
old value of lock-flag into variable
original, compares original with
expected (0), and if they are equal
(lock-flag==0), sets lock->flag to 1,
then return variable original, all in
one atomic operation

– If lock-flag==0, then lock() sets it to
1 and returns old==0, so the thread
exits the while loop and enters
critical section

– If lock-flag==1, then lock() returns
old==1, so the thread spins in the
while loop and does not enter
critical section

int CompareAndSwap(int *ptr, int expected, int new){

 int old = *ptr;

 if (old == expected)

 *ptr = new;

 return old;

}

void lock(lock_t *lock){

 while (CompareAndSwap(&lock->flag, 0, 1) == 1)

 ; //spin-wait

}

13

Locks: Busy Waiting

• Both TAS and CAS are spinlocks based on busy waiting

– A thread is stuck in a while loop endlessly checking lock->flag if the
lock is held by others

• Goals achieved?

– Mutual exclusion (Yes!)

– Fairness (NO!!)

– Performance?

14

Ticket Lock
• Basic spinlocks are not fair and may

cause starvation

• Ticket lock uses hardware primitive
fetch-and-add to guarantee fairness

• Lock:
– Use fetch-and-add on the ticket value

– The return value is the thread’s ”turn”
value

• Unlock:
– Increment the turn

15

• A ticket lock is a synchronization mechanism used in multithreaded programming to
ensure that threads acquire a lock in the order they request it. It uses two counters:

– tickets (or next_ticket): Tracks the next "ticket number" to be assigned to a thread
requesting the lock.

– turn: Tracks the "ticket number" of the thread currently holding the lock.

• Lock Acquisition (lock()):

– A thread atomically increments the tickets counter (using fetch-and-add) and receives its
"ticket number.“

– The thread then spin-waits until its ticket number matches the turn counter, indicating it is
its turn to enter the critical section.

• Lock Release (unlock()):

– When a thread finishes its critical section, it increments the turn counter, signaling that the
next thread in line can proceed.

– This ensures that threads are served in a first-come, first-served (FCFS) manner, preventing
starvation and ensuring fairness.

Ticket Lock

16

Ticket Lock

Initial value tickets=0 turn=0

myturn

A 0

B 1

C 2

Ticket Turn

A lock(),
A enters CS

1 0

B lock(),
spin-waits

2 0

C lock(),
spin-waits

3 0

17

Ticket Lock

Initial value tickets=0 turn=0

myturn

A 3

B 1

C 2

Ticket Turn

A lock(),
A enters CS

1 0

B lock(),
spin-waits

2 0

C lock(),
spin-waits

3 0

A unlock(),
B enters CS

3 1

A lock(),
spin-waits

4 1

18

Ticket Lock

Initial value tickets=0 turn=0

myturn

A 3

B 1

C 2

Ticket Turn

A lock(),
A enters CS

1 0

B lock(),
spin-waits

2 0

C lock(),
spin-waits

3 0

A unlock(),
B enters CS

3 1

A lock(),
spin-waits

4 1

B unlock(),
C enters CS

4 2

C unlock(),
A enters CS

4 3

A unlock() 4 4

19

Recap

• Locks --- mutual execution

– Only one thread must execute critical section

• Hardware support – atomical execution

– Test-and-set and compare-and-swap

• Busy-waiting --- spinlock

• Metrics to evaluate locks:

– Correctness: mutual execution

– Fairness: no starvation

– Performance: no high cost to acquire and release a lock

• Ticket locks --- No starvation

Semaphores

• Semaphores were proposed by a Dutch computer scientist Dijkstra in late
60s

• Definition: a semaphore has a non-negative integer value and supports
the following operations:

– sem_t sem or semaphore sem: Declare a semaphore
– sem_init(&sem, 0, N): Initialize the semaphore to any non-negative value
– sem_wait(&sem): also called down() or P(), an atomic operation that decrements

it by 1 if non-zero. If the semaphore is equal to 0, go to sleep waiting to be
signaled by another thread

– sem_post(&sem): also called signal(), up() or V(), an atomic operation that
increments it by 1, and wakes up a waiting/sleeping thread, if any

• Semaphores are also called sleeping locks, since the waiting thread goes
to sleep instead of spin-waiting

– If the waiting time is long, then sleeping is more efficient since the thread gives
up the CPU to other threads, but incurs system call (kernel) overhead to go to
sleep and wake up; if waiting time is short, then spinlock may be more efficient
since it does not involve the kernel.

– Spinlock may cause starvation, e.g., if the waiting thread has higher priority than
the signaler thread under fixed priority scheduling (but not under round-robin
scheduling).

20

2.21

POSIX pthreads API

• A Portable Operating System
Interface (POSIX) library (IEEE
1003.1c), written in C
language

• In this lecture, we sometimes
use some simpler notations
for brevity, e.g.,

• sem_init(&sem, 0, N)

– written as: semaphore sem=N;

• sem_wait(&sem)

– written as sem.wait()

• sem_post(&sem)

– written as sem.signal()

API Functionality

pthread_create Create a new thread in the
caller’s address space

pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

sem_wait Wait on a semaphore

sem_post Signal or post on a semaphore

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Wake up one thread waiting
on a condition variable

pthread_cond_broadcast Wake up all threads waiting
on a condition variable

Value=2Value=1Value=0

Semaphores Like Integers Except…

• Semaphores are like integers, except:
– No negative values
– Only operations allowed are sem_wait() and sem_post() – cannot read or

write value, except initialization
– Operations must be atomic

» Two calls to sem_wait() together can’t decrement value below zero
» A thread going to sleep in sem_wait() won’t miss wakeup from sem_post () –

even if both happen concurrently

• Semaphore from railway analogy
– Here is a semaphore initialized to 2, to allow two trains to enter the two

tracks in the middle

Value=2

22

Implementing Semaphores with TestAndSet

Use TAS, but only spin-wait to atomically check guard value (very
short waiting time)

sem_post() {

 //Spin-wait while guard is

true

 while (TestAndSet(guard));

 if any thread in wait queue {

 take thread off wait queue;

 place on ready queue;

 } else {

 value = value + 1;

 }

 guard = 0;

}

sem_wait() {

 //Spin-wait while guard is

true

 while (TestAndSet(guard));

 if (value == 0) {

 put thread on wait queue;

 guard = 0;

 sleep();

 } else {

 value = value - 1;

 guard = 0;

 }

}

23

int guard = 0;

int value = 0;

Two Uses of Semaphores
Mutual Exclusion (value = 0 or 1)
• Called “Binary Semaphore” or “mutex”. Can

be used for mutual exclusion as a lock
– Example: sem is initialized to 1. The first

thread that calls sem_wait() decrements
sem to 0 and enters the critical section:
other threads will be blocked when they see
sem==0. When the first thread calls
sem_post(), one of the waiting threads will
be woken up and enter the critical section.

• Equivalently, pthread_mutex_t is designed
specifically for mutual exclusion, meaning
only one thread can hold the lock at a time.
Only the thread that locks the mutex can
unlock it, with strict ownership semantics.

Scheduling Constraints (value >= 0)
• Called “Counting Semaphore”.

– Binary Semaphore is a special case of
Counting Semaphore, and can be used for
either mutual exclusion or scheduling.

• Can be used as signaling mechanisms, such
as notifying other threads that a resource is
available or an event has occurred. Any
thread can signal or release the semaphore,
regardless of which thread acquired it.

• See next slide for an example.
24

//Mutual exclusion using binary semaphore

sem_t sem;

sem_init(&sem, 0, 1); // Initialize to 1 for

mutex-like behavior

sem_wait(&sem);

// Critical section

sem_post(&sem);

//Mutual exclusion using mutex

pthread_mutex_t mutex =

PTHREAD_MUTEX_INITIALIZER; // Initialize

mutex to 1 (unlocked)

pthread_mutex_lock(&mutex);

//Critical section

pthread_mutex_unlock(&mutex);

25

Using Semaphores for Scheduling
• Consider 5 threads A, B, C, D, E. They must execute based on the partial ordering below,

regardless of the ordering of process start (e.g., if E starts before B and D finishes, it will
be blocked waiting for B and D to finish before it can execute)

Thread A

Thread B

Thread C Thread D

Thread E

Thread A

Thread B

Thread C Thread D

Thread E

Syntax in the figure is slightly different: wait(sem) and signal(sem)
instead of sem_wait(&sem) and sem_post(&sem).

Readers/Writers Problem

• We have two classes of concurrent processes:
– Writers: they change data, so only one writer can be active

– Readers: these only read data, thus multiple readers can be active, as long
as there is no active writer

• Shared Resource Conflict:
– Multiple readers can safely access the resource at the same time, but if any

writer is modifying the resource, no other process (either reader or writer)
should access it. This ensures data consistency.

• Readers vs. Writers Priority:
– If a reader is already accessing the resource, additional readers are allowed

to enter immediately. A writer, however, must wait until all readers have
finished. Consequently, readers are favoured over writers, which can lead to
writer starvation if new readers keep arriving.

26

Readers/Writers using Semaphores, Prefers Readers
• This program ensures mutual exclusion between writers, and

between the 1st reader and any writers, but not between
multiple readers.

• A semaphore named mutex is used to ensure mutual
exclusion when readers update a shared counter called
readcount, which tracks the number of active readers.
Another semaphore named wrt is used to control access to
the shared resource. It is acquired by writers and by the first
reader.

• First Reader Behavior: If the reader finds that it is the first one
to enter (i.e., readcount increments from 0 to 1), it calls
sem_wait(&wrt) to acquire the lock wrt. This prevents any
writer from entering the critical section while at least one
reader is present.

• Last Reader Behavior: If the reader finds that it has been the
last to exit (i.e., readcount becomes 0), it calls
sem_post(&wrt) to allow a writer (if any are waiting) to
acquire the lock wrt and enter the critical section.

• Writer Behavior: A writer begins by calling sem_wait(&wrt) to
acquire the lock wrt and enter the critical section to write
data. Since a writer must have exclusive access, it will block
until wrt is available—that is, until no reader holds it (because
the first reader acquired it) and no other writer is active.
Upon exiting the critical section, it calls sem_post(&wrt) to
allow waiting readers or writers to continue.

• Readers-Preference and Its Consequences: Because the first
reader blocks any writer until all readers have exited, if new
readers continuously arrive, a writer may starve. This readers-
preference model is efficient for systems primarily performing
read operations but might cause fairness issues when writes
are necessary.

/* shared memory */

semaphore mutex;

semaphore wrt;

int readcount;

/* reader */

sem_wait(&mutex);

readcount++;

if(readcount==1)

sem_wait(&wrt);

sem_post(&mutex);

… read data …

sem_wait(&mutex);

readcount--;

if(readcount==0)

 sem_post(&wrt);

sem_post(&mutex);

/* initialization.*/

mutex = 1;

wrt = 1;

readcount = 0;

/* writer */

sem_wait(&wrt);

… critical section

to write data …

sem_post(&wrt);

27

Reader() {

 mutex_lock(&mutex);

 while ((AW + WW) > 0){//Is it safe to read?

 WR++; //No. AWs or WWs exist

 cond_wait(&okToRead,&mutex);

 WR--; //No longer waiting

 }

 AR++; //Reader active!

 mutex_unlock(&mutex);

 AccessDatabase(ReadOnly);

 mutex_lock(&mutex);

 AR--; //No longer active

 if (AR == 0 && WW > 0)//No other ARs

 cond_signal(&okToWrite);//Wake up one WW

 mutex_unlock(&mutex);

}

Writer() {

 mutex_lock(&mutex);

 while ((AW + AR) > 0){//Is it safe to write?
 WW++; //No. AWs or ARs exist
 cond_wait(&okToWrite,&mutex);
 WW--; //No longer waiting
 }
 AW++; //Writer active!
 mutex_unlock(&mutex);
 AccessDatabase(ReadWrite);
 mutex_lock(&mutex);
 AW--; //No longer active
 if (WW > 0) {//Give priority to WWs
 cond_signal(&okToWrite);//Wake up one WW
 } else if (WR > 0) {
 cond_broadcast(&okToRead);//If no WW,
wake up all WRs
 }
 mutex_unlock(&mutex);
}

int AR=0: Number of active readers;

int WR=0: Number of waiting readers;

int AW=0: Number of active writers;

int WW=0: Number of waiting writers;

Condition okToRead, okToWrite;

mutex_t mutex = 1;

Readers/Writers Solution
using Monitors, Prefers Writers

28

OPTIONAL

Readers/Writers Solution: Prefers Writers

• while ((AW + WW) > 0)
– A reader waits for both Active Writers and Waiting Writers.

• Check (WW > 0) before (WR > 0)
– Wake up a Waiting Writer, and if there is no Waiting Writer, then wake

up all Waiting Readers.

• cond_signal(&okToWrite)
– Wake up one Waiting Writer, since at most one writer can write.

– If you use cond_broadcast(&okToWrite) to wake up all Waiting Writers,
only one Writer can start to write, and the rest will go back to sleep.

• cond_broadcast(&okToRead)
– Wake up all Waiting Readers, since multiple readers can read

simultaneously.

OPTIONAL

Reader() {

 mutex_lock(&mutex);

 while (AW > 0) {//Is it safe to read?

 WR++; //No. AWs exist

 cond_wait(&okToRead,&mutex);

 WR--; //No longer waiting

 }

 AR++; //Reader active!

 mutex_unlock(&mutex);

 AccessDatabase(ReadOnly);

 mutex_lock(&mutex);

 AR--; //No longer active

 if (AR == 0 && WW > 0)//No other ARs

 cond_signal(&okToWrite);//Wake up one WW

 mutex_unlock(&mutex);

}

Writer() {

 mutex_lock(&mutex);

 while ((AW + AR) > 0){//Is it safe to write?
 WW++; //No. AWs or ARs exist
 cond_wait(&okToWrite,&mutex);
 WW--; //No longer waiting
 }
 AW++; //Writer active!
 mutex_unlock(&mutex);
 AccessDatabase(ReadWrite);
 mutex_lock(&mutex);
 AW--; //No longer active
 if (WR > 0) {//Give priority to WRs
 cond_broadcast(&okToRead);//wake up all
WRs
 } else if (WW > 0) {
 cond_signal(&okToWrite);//If no WR, wake
up one WW
 }
 mutex_unlock(&mutex);
}

int AR=0: Number of active readers;

int WR=0: Number of waiting readers;

int AW=0: Number of active writers;

int WW=0: Number of waiting writers;

Condition okToRead, okToWrite;

mutex_t mutex = 1;

Readers/Writers Solution
using Monitors, Prefers Readers

30

OPTIONAL

Readers/Writers Solution: Prefers Readers

• while (AW > 0)

– A reader only waits for Active Writers, not Waiting Writers.

• Check (WR > 0) before (WW > 0)

– Wake up all Waiting Readers, and if there is no Waiting Reader,
then wake up a Waiting Writer.

OPTIONAL

32

Producer/Consumer Problem

• A classical synchronization problem, also called the bounded-buffer problem

• A buffer has a bounded size

• Examples of Producer/Consumer Problems:

– Web servers:

» Producer puts requests in a queue

» Consumers picks requests from the queue to process

– Linux Pipes

– Coke vending machine

» Producer can put limited number of cokes in machine

» Consumer can’t take cokes out if machine is empty

• Different from Readers/Writers problem

– There is a queue of items

– Consumer performs destructive read: reading an item removes it from the queue

producer consumer

Producer/Consumer Problem

• Correctness Constraints:
– When buffer is full, producer must wait
– When buffer is empty, consumer must wait
– Only one thread can manipulate buffer at a time (mutual exclusion)

• Use a separate semaphore for each constraint
– semaphore fullSlots; // consumer’s constraint
– semaphore emptySlots;// producer’s constraint
– semaphore mutex; // mutual exclusion

Bounded buffer
fullSlots==3, emptySlots==4

Producer writes
data items to buffer

Consumer reads and
removes data items
from buffer (destructive
read)

33

semaphore fullSlots=0; //Initially, no full slots

 semaphore emptySlots=bufSize; //Initially, all slots empty

 semaphore mutex=1;

Producer(item) {
 sem_wait(&emptySlots);//Wait until emptySlots non-zero
 sem_wait(&mutex);
 enqueue(item);
 sem_post(&mutex);
 sem_post(&fullSlots);
}

 Consumer() {
 sem_wait(&fullSlots);//Wait until fullSlots non-zero
 sem_wait(&mutex);
 item = dequeue();
 sem_post(&mutex);
 sem_post(&emptySlots);
 return item;
}

Indicates 1 more full slot

Indicates 1

more empty

slot

Full Solution to Bounded Buffer (coke machine)

mutex protects

integrity of the

queue within

critical sections

emptySlots==0: Producer waits; fullSlots ==0: Consumer waits.

fullSlots>0 && emptySlots>0: Producer and Consumer can enqueue/dequeue items.

concurrently (within critical section protected by mutex).

Discussions

• Two semaphores
– Producer does: sem_wait(&emptySlots), sem_post(&fullSlots)
– Consumer does: sem_wait(&fullSlots), sem_post(&emptySlots)

Decrease # of

empty slots

Increase # of

full slots

Increase # of

empty slots

Decrease # of

full slots

//Incorrect code

 Producer(item) {
 sem_wait(&mutex);
 sem_wait(&emptySlots);
 enqueue(item);
 sem_post(&fullSlots);
 sem_post(&mutex);
}
Consumer(item) {
 sem_wait(&mutex);
 sem_wait(&fullSlots);
 enqueue(item);
 sem_post(&emptySlots);
 sem_post(&mutex);
}

• Can we put sem_wait()/sem_post() for mutex outside of
sem_wait()/sem_post() for emptySlots and fullSlots?

• No! This may cause deadlock. Suppose the queue is initially
empty. Producer enters the critical section, calls
sem_wait(&emptySlots) and is blocked waiting for Consumer
to put items into the queue; Consumer calls
sem_wait(&mutex) and is blocked waiting to enter the critical
section. But Producer will never exit the critical section and
call sem_post(&mutex) to wake up Consumer!

• Similar deadlock situation when the queue is full, Consumer
is blocked on sem_wait(&fullSlots) and Producer is blocked
on sem_wait(&mutex).

35

36

Deadlock

Thread
1

Thread
2

Resource 1

Resource 2

Wanted

Wanted

Held

Held

• Definition: A set of threads are said to be in a deadlock state when
every thread in the set is waiting for an event that can be caused
only by another thread in the set

• Conditions for Deadlock

• Mutual exclusion

– Only one thread at a time can use a given resource

• Hold-and-wait

– Threads hold resources allocated to them while waiting for
additional resources

• No preemption

– Resources cannot be forcibly removed from threads that are
holding them; can be released only voluntarily by each holder

• Circular wait

– There exists a circle of threads such that each holds one or
more resources that are being requested by next thread in the
circle Not a perfect analogy, just a fun image!

Monitors

• Semaphores are dual purpose, used for both mutex and
scheduling constraints

• Monitors provide a higher-level abstraction that
encapsulates shared state and condition variables.

• Monitor: a mutex lock and one or more condition variables
for managing concurrent access to shared data

– A paradigm for concurrent programming

– Use lock for mutual exclusion and condition variables for
scheduling constraints. (Must hold lock when doing condition
operations!)

– Java supports monitors natively

Monitor with Condition Variables (CV)
• thread_mutex_t mutex: a mutex lock

– Provides mutual exclusion to critical section
– Acquire before entering, release upon exiting critical section

• pthread_cond_t cond: one or more condition variables:
– For each condition variable, a queue of threads may be waiting for it to be signaled

inside the critical section.
» Key idea: allow threads to wait on a condition variable (sleeping) inside the critical

section, since the mutex lock is released (implicitly) when a thread goes to sleep
» Contrast with semaphores: cannot wait on a semaphore inside critical section,

otherwise it leads to a deadlock since mutex lock is still held
– There may be an entry queue of threads waiting on the lock outside of the critical

section
• Condition operations:

– pthread_cond_wait(&cond, &mutex): it releases the mutex lock temporarily and enters
the monitor's wait queue to go to sleep. This allows other threads to acquire the lock
and proceed with their tasks. When the waiting/sleeping thread is signaled, it re-
acquires the lock before resuming execution.

– pthread_cond_signal(&cond): Wake up one waiter, if any (if no waiter thread, then the
signal is lost/has no effect)

– pthread_cond_broadcast(&cond): Broadcast(): Wake up all waiters (if no waiter thread,
then the signal is lost/has no effect)

Monitor with Condition Variables (CV)

CV Common Usage Pattern
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

bool flag; //Initialization value is application-specific, hence omitted here

// Signaler thread

Signaler(){

pthread_mutex_lock(&mutex);

update_flag();

//Either signal 1 thread, or broadcast to all threads, but not both

pthread_cond_signal(&cond);

//pthread_cond_broadcast(&cond);

pthread_mutex_unlock(&mutex);

}

// Waiter thread

Waiter(){

pthread_mutex_lock(&mutex);

//Thread goes to sleep during waiting

while (!flag){pthread_cond_wait(&cond, &mutex);}

// Process data

pthread_mutex_unlock(&mutex);

}

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t prod_CV = PTHREAD_COND_INITIALIZER;

pthread_cond_t cons_CV = PTHREAD_COND_INITIALIZER;

Producer(item) {

 pthread_mutex_lock(&mutex);

 while(buffer full){pthread_cond_wait(&prod_CV, &mutex);}

 enqueue(item);

 pthread_cond_signal(&cons_CV);

 pthread_mutex_unlock(&mutex);

}

Consumer() {

 pthread_mutex_lock(&mutex);

 while(buffer empty){pthread_cond_wait(&cons_CV, &mutex);}

 item = dequeue();

 pthread_cond_signal(&prod_CV);

 pthread_mutex_unlock(&mutex);

 return item

}

P/C Problem with Condition Variable

This program has the same behavior as previous program using semaphores.

(Code for updating buffer status and setting Boolean flags “buffer full” or “buffer empty” are omitted)

Wake up any

waiting producer

thread blocked on

a full buffer (if any)

Wake up any waiting consumer

thread blocked on an empty buffer

(if any)

While vs. if for Checking Boolean flag

• Consider the dequeue code in Consumer thread:
 while(buffer empty){ //NOT if(buffer empty)

 cond_wait(&cons_CV, &mutex);

 }

 item = dequeue(&queue); // Get next item

• Why do we use a while loop to check the Boolean

flag “buffer empty”?

–Most OSes use Mesa-style monitor (named after

Xerox-Park Mesa Operating System), where the waiter

thread may start to run some time after Signaler

thread calls cond_signal()

Mesa monitors
• Inside cond_wait(), Waiter thread releases the mutex lock temporarily and enters the

monitor's wait queue to go to sleep. This allows Signaler thread to acquire the mutex lock and
proceed with its task.

• When Signaler thread calls cond_signal() to signal Waiter thread, Waiter thread is put on the
ready queue (not woken up immediately). Signaler thread continues execution and releases
the mutex lock. When Waiter thread gets to run on the CPU when OS actually schedules it, it
re-acquires the mutex lock, exits cond_wait(), enters the critical section, and finally releases
the mutex lock.

• Waiter thread must use a while loop to re-check condition upon wakeup
– Another thread may be scheduled before Waiter thread gets to run, and "sneak in" to modify the

state (e.g., empty the queue), so the condition may be false again (called “spurious wakeups”).

unlock(&mutex);

…

while(buffer empty) {

 cond_wait(&cons_CV,&mutex);

}

…

unlock(&mutex);

…

lock(&mutex);

…

cond_signal(&cons_CV);

…

unlock(&mutex);

Put Waiter

thread on

ready queue

Waiter threadSignaler thread

44

The Thread Join Problem

Parent

Child

• A parent thread creates a child thread and waits for the child thread to finish by calling
thr_join(); the child thread signals completion by calling thr_exit(). We need to
implement functions thr_join() and thr_exit().

int main(int argc, char *argv[]) {

 printf("parent: begin\n");

 pthread_t p;

 pthread_create(&p, NULL, child,
NULL);

 thr_join(); // wait

 printf("parent: end\n");

 return 0;

}

void *child(void *arg) {

 printf("child\n");

 thr_exit(); // signal

 return NULL;

}

45

Thread Join with Semaphore

• Semaphore sem acts as the synchronization
flag. sem is initialized to 0.

• Works correctly regardless of whether parent
or child executes first:

• If parent waits first: parent calls thr_join(),
sem_wait(&sem) blocks since sem==0, until child
calls thr_exit(), sem_post(&sem) to wake it up.

• If child finishes first: child calls thr_exit(),
sem_post(&sem) increments sem from 0 to 1;
subsequently, parent calls thr_join(),
sem_wait(&sem) decrements sem from 1 to 0, and
parent continues immediately without blocking.

• No Race Condition:
– Semaphores maintain state; No need for additional

flags or mutex protection. (In contrast to condition
variables.)

semaphore sem = 0;

//Child

void thr_exit(){

sem_post(&sem); //Signal parent

}

//Parent

void thr_join(){

 sem_wait(&sem); // Wait for child

}

46

Thread Join with Condition Variable
• Condition variables do not maintain state

like semaphores do, so we need a shared
boolean flag “done” to track whether the
child thread has completed. (Similar to
Boolean flags “buffer full” and “buffer
empty” in P/C problem.)

• If parent waits first: parent calls thr_join()
and cond_wait (&c) before child calls
thr_exit() and cond_signal(&c). The signal
on condition variable c will wake up
parent.

• If child finishes first: child calls thr_exit()
and cond_signal(&c) before parent calls
thr_join(). Parent will detect that “done” is
already set so it will not call cond_wait(&c)
and block indefinitely. (While loop around
cond_wait(&c) ensures correctness in case
of spurious wakeups.)

pthread_mutex_t m =

PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t c = PTHREAD_COND_INITIALIZER;

bool done = false;

//Child

void thr_exit() {

 pthread_mutex_lock(&m);

 done = true;

 pthread_cond_signal(&c);

 pthread_mutex_unlock(&m);

}

//Parent

void thr_join() {

 pthread_mutex_lock(&m);

 while (!done) {//Check if child has

finished

 pthread_cond_wait(&c, &m);

 }

 pthread_mutex_unlock(&m);

}

47

Thread Join with Condition Variables: Incorrect

pthread_mutex_t m =

PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t c =

PTHREAD_COND_INITIALIZER;

//Child

void thr_exit(){

 pthread_mutex_lock(&m);//A

 pthread_cond_signal(&c);//B

 Pthread_mutex_unlock(&m);}//C

//Parent

void thr_join(){

 pthread_mutex_lock(&m);//X

 pthread_cond_wait(&c, &m);//Y

 pthread_mutex_unlock(&m);}//Z

Parent X Y Z

Child A B C

Parent X Y

Child A B C

Scenario 2: Child calls thr_exit() first.
Parent blocks forever!

• If we remove Boolean flag “done”, then the
program is incorrect. Condition variables do
not maintain state (queue signals) if no
thread is waiting at the time of signal.

• If child finishes first: child calls thr_exit() and
cond_signal(&c) before parent calls
thr_join(). Child’s signal on condition
variable c will be lost, and parent will wait
forever in cond_wait(&c).

Scenario 1: Parent calls thr_join() first.
Works OK.

Dinning Philosophers

• N philosophers sit at a round table.
• They spend their lives alternating

thinking and eating.
• They do not communicate with their

neighbors.
• Each philosophers occasionally tries to

pick up his left and right forks (one at a
time) to eat.

• Needs both forks to eat, then releases
both when done eating.

• Suppose we have 5 philosophers
numbered 1-5, and 5 forks numbered 1-
5; philosopher i has left fork numbered i,
and right fork (i+1)%5.

0

1

2

34

0 1

2

3

4

Semaphore-based Solution: Deadlock

• Each fork (or chopstick) is modeled
as a binary semaphore that is
initially set to 1, meaning it is
available. When a philosopher
wants to eat, they perform a wait
(or P) operation to pick up a fork
and a signal (or V) operation to
release it afterward.

• Deadlock situation: Each
philosopher first executes a
blocking wait to pick up the left fork
and then tries to pick up the right
fork. If all philosophers adopt this
pattern simultaneously, every
philosopher may pick up their left
fork and then block waiting for the
right fork (which is held by its
neighbor), resulting in a deadlock,
circular wait where none can
proceed.

#define N 5 // Number of philosophers and

forks

semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher(int i) {

 while (true) {

 think();

 sem_wait(&fork[i]); // Pick up left fork

 sem_wait(&fork[(i + 1) % N]); // Pick up

right fork

 eat();

 sem_post(&fork[i]); // Put down left fork

 sem_post(&fork[(i + 1) % N]); // Put down

right fork

 }

}

Semaphore-based Solution 0: Global Lock

• We use the global semaphore
mutex to ensure that only one
philosopher can pick up forks
and eat at any one time.

• This solution works, but is
very inefficient, since only
one philosopher can be eating
at one time; it should be
possible for two philosophers
to eat at the same time, since
there are 5 forks.

#define N 5 // Number of philosophers and
forks

semaphore mutex = 1;

semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher(int i) {

 while (true) {

 think();

 sem_wait(&mutex); // Pick up both forks in
one atomic operation

 sem_wait(&fork[i]); // Pick up left fork

 sem_wait(&fork[(i + 1) % N]); // Pick up
right fork

 eat();

 sem_post(&fork[i]); // Put down left fork

 sem_post(&fork[(i + 1) % N]); // Put down
right fork

 sem_post(&mutex);

 }

}

Semaphore-based Solution: Deadlock

• One solution is to let each philosopher pick
up (and put down) both left and right forks
atomically within a critical section,
protected by the global semaphore mutex.

• Deadlock situation: This solution is flawed
because it can lead to deadlock, similar to
the deadlock situation in the P/C problem.

• Philosopher A gets mutex, is blocked trying
to get a fork (left or right); meanwhile, his
neighbor Philosopher B (who has both
forks) finishes eating and tries to put down
forks. But B is blocked trying to get mutex
(which A holds). Now we have a circular
wait condition: A holds mutex, waiting for
fork; B holds fork, waiting for mutex.

– Philosopher B does not have to be A’s direct
neighbor. There may be a chain of
philosophers starting from A, each holding
his left fork, and B may be the last one’s
neighbor.

#define N 5 // Number of philosophers and
forks

semaphore mutex = 1;

semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher(int i) {

 while (true) {

 think();

 sem_wait(&mutex); // Pick up both forks
within a critical section

 sem_wait(&fork[i]); // Pick up left fork

 sem_wait(&fork[(i + 1) % N]); // Pick up
right fork

 sem_post(&mutex);

 eat();

 sem_wait(&mutex); // Put down both forks
within a critical section

 sem_post(&fork[i]); // Put down left fork

 sem_post(&fork[(i + 1) % N]); // Put down
right fork

 sem_post(&mutex);

 }

}

Semaphore-based Solution I

• The solution is to let each philosopher pick
up, but not put down, both left and right
forks atomically within a critical section,
protected by the global semaphore
pickup_mutex.

• No deadlock: If philosopher i is in the critical
section protected by mutex, blocked in
sem_wait() waiting for any fork (left or right),
the neighbor who is holding the requested
fork and eating can freely put down both
forks without blocking, thus allowing
philosopher i to pick up both forks.

• Poor efficiency: If philosopher i is in the
critical section protected by pickup_mutex,
waiting for any fork (left or right), then no
other philosopher can enter the critical
section before some other philosopher
finishes eating and puts down his forks to let
philosopher i exit the critical section and
start eating, even for a philosopher with both
left and right forks free. This is unnecessary
blocking that reduces concurrency.

#define N 5 // Number of philosophers and
forks

semaphore pickup_mutex = 1;

semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher(int i) {

 while (true) {

 think();

 sem_wait(&pickup_mutex); // Pick up both
forks in one atomic operation

 sem_wait(&fork[i]); // Pick up left fork

 sem_wait(&fork[(i + 1) % N]); // Pick up
right fork

 sem_post(&pickup_mutex);

 eat();

 sem_post(&fork[i]); // Put down left fork

 sem_post(&fork[(i + 1) % N]); // Put down
right fork

 }

}

Semaphore-based Solution II

• Introduce an additional
“room” semaphore that
limits the number of
philosophers permitted to
start eating concurrently.
For example, if there are
N=5 philosophers, room is
initialized to N-1=4. With 5
forks and at most 4
philosophers competing, at
least one philosopher can
always get both forks

#define N 5 // Number of philosophers and
forks

semaphore room = N-1;

semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher(int i) {

 while (true) {

 think();

 sem_wait(&room); // Limit number of
philosophers simultaneously hungry to 4

 sem_wait(&fork[i]); // Pick up left fork

 sem_wait(&fork[(i + 1) % N]); // Pick up
right fork

 eat();

 sem_post(&fork[i]); // Put down left fork

 sem_post(&fork[(i + 1) % N]); // Put down
right fork

 sem_post(&room); // Leave the room

 }

}

Semaphore-based Solution III
• Adjust the order in which resources are requested

(for instance, having one philosopher, the (N-1)-th
philosopher, pick up his right fork first while all the
others pick up the left fork first), which disrupts the
cycle that could lead to deadlock.

• This method forces each philosopher to pick up
lower-numbered fork before higher-numbered fork,
i.e., assign a total order to the resources, and
establish the convention that all resources will be
requested in the same order. Here the order of
forks is 0, 1, 2, 3, 4, so each philosopher picks up
the lower numbered fork before the higher-
numbered fork.

• Philosopher 0 picks up left fork 0 before right fork 1;
• Philosopher 1 picks up left fork 1 before right fork 2;
• Philosopher 2 picks up left fork 2 before right fork 3;
• Philosopher 3 picks up left fork 3 before right fork 4;
• Philosopher 4 picks up right fork 0 before left fork 4.
• A variant is to let even-numbered philosophers pick

up right fork first.
• The order of acquiring resources (forks) must be

controlled to prevent deadlock, but the release
order doesn't matter. So this program can be
simplified to let all philosophers put down left fork
first.

#define N 5 // Number of philosophers and forks

semaphore fork[N] = {1, 1, 1, 1, 1};

void philosopher(int i) {

 while (true) {

 think();

 if (id == N - 1) {//One of the philosophers

 //or if (i % 2 == 0){// Even numbered philosophers

 sem_wait(&fork[i+1]); // Pick up right fork

 sem_wait(&fork[(i) % N]);} // Pick up left fork

 else {

 sem_wait(&fork[i]); // Pick up left fork

 sem_wait(&fork[(i + 1) % N]);} // Pick up right
fork

 eat();

 if (id == N - 1) {

 //or if (i % 2 == 0){// Even numbered philosophers

 sem_post(&fork[i+1]); // Put down right fork

 sem_post(&fork[(i) % N]);} // Put down left fork

 else {

 sem_post(&fork[i]); // Put down left fork

 sem_post(&fork[(i + 1) % N]);} // Put down right
fork

 }

}

Semaphore-based Solution IV
• A semaphore self[i] is created for each philosopher i.

• Each philosopher can be in any one of three states
(THINKING, HUNGRY, or EATING). All philosophers have
initial state of THINKING.

• When philosopher i becomes hungry, he calls pickup(i),
which sets their state to HUNGRY and calls test(i) to
check if any of its two neighbors are eating.

• If both adjacent philosophers are not eating,
philosopher i’s state is changed to EATING, and calls
sem_post(&self[i]) to increment self[i] by 1, and it next
calls sem_wait(&self[i]) to decrement self[i] by 1, and
start eating. Otherwise, philosopher i’s state stays to be
HUNGRY, and it is blocked on sem_wait(&self[i]).

• Upon finishing eating, philosopher i calls putdown(i),
updates their state to THINKING, and then tests if
adjacent philosophers can now eat by signaling their
semaphore variables. This structure prevents the
circular waiting condition that leads to deadlock.

• Since state is explicitly maintained in an array state[N],
we need mutex protection in both pickup() and
putdown() methods.

#define N 5 // Number of philosophers and forks

enum { THINKING, HUNGRY, EATING } state[N];

mutex_t mutex = 1;

semaphore self[N] = {0, 0, 0, 0, 0}; // Semaphore for each
philosopher

// Initialize to 0

void philosopher(int i) {

 while (true) {

 think();

 pickup(i);

 eat();

 putdown(i);

 }

}

void pickup(int i) {

 mutex_lock(&mutex);

 state[i] = HUNGRY;

 test(i);

 mutex_unlock(&mutex);

 sem_wait(&self[i]); //Block if forks weren't acquired

}

void putdown(int i) {

 mutex_lock(&mutex);

 state[i] = THINKING;

 test((i + 4) % N); // Test left neighbor

 test((i + 1) % N); // Test right neighbor

 mutex_unlock(&mutex);

}

void test(int i) {

 if (state[i] == HUNGRY &&

 state[(i + 4) % N] != EATING &&

 state[(i + 1) % N] != EATING) {

 state[i] = EATING;

 sem_post(&self[i]);

 }

}

Monitor-based Solution
• A monitor self[i] is created for each philosopher i.
• Each philosopher can be in any one of three states

(THINKING, HUNGRY, or EATING). All philosophers
have initial state of THINKING.

• When philosopher i becomes hungry, he calls
pickup(i) inside the monitor, which sets their state
to HUNGRY and calls test(i) to check if any of its two
neighbors are eating.

• If both adjacent philosophers are not eating,
philosopher i’s state is changed to EATING
(cond_signal(&self[i]) has no effect and the signal is
lost since no other philosopher is waiting on self[i]);
otherwise, philosopher i waits on condition variable
self[i].

• Upon finishing eating, philosopher i calls
putdown(i), updates their state to THINKING, and
then tests if adjacent philosophers can now eat by
signaling their condition variables.

• Note that cond_signal(&self[i]) in test(i) has no
effect during pickup(), but it is used to wake up
waiting hungry philosophers during putdown(i).

#define N 5 // Number of philosophers and forks

enum { THINKING, HUNGRY, EATING } state[N];

mutex_t mutex = 1; // Monitor's mutex

condition self[N]; // Condition variable for each
philosopher

void philosopher(int i) {

 while (true) {

 think();

 pickup(i);

 eat();

 putdown(i);

 }

}

void pickup(int i) {

 mutex_lock(&mutex);

 state[i] = HUNGRY;

 test(i);

 while (state[i] != EATING)

 cond_wait(&self[i], &mutex); //Block if forks
weren't acquired

 mutex_unlock(&mutex);

}

void putdown(int i) {

 mutex_lock(&mutex);

 state[i] = THINKING;

 test((i + 4) % N); // Test left neighbor

 test((i + 1) % N); // Test right neighbor

 mutex_unlock(&mutex);

}

void test(int i) {

 if (state[i] == HUNGRY &&

 state[(i + 4) % N] != EATING &&

 state[(i + 1) % N] != EATING) {

 state[i] = EATING;

 cond_signal(&self[i]);

 }

}

Semaphores vs. Monitors

• Semaphores: Like integers with restricted interface
– Initialize value to any non-negative value

– Two operations:

»sem_wait(): Wait/sleep if zero; decrement when becomes non-zero

»sem_post(): also called signal(). Increment and wake up a waiting/sleeping
thread (if one exists)

– Use a separate semaphore for each constraint

• Monitors: A mutex lock plus one or more condition variables
– Always acquire lock before accessing shared data

– Use condition variables to wait inside critical section

– Three operations: wait(), signal(), and broadcast()

» Wait if necessary (inside a while loop to check a Boolean flag)

» Signal (or broadcast) when something is changed to wake up one waiting
thread (or all waiting threads)

References

• Process Synchronisation Concepts in Operating System,
HowTo

– https://www.youtube.com/playlist?list=PLbu9W4c-
C0iAGUc7dQlqXIsXkGnHMaTEz

• What is difference between Semaphore and Mutex, HowTo

– https://www.youtube.com/watch?v=DvF3AsTglUU

https://www.youtube.com/playlist?list=PLbu9W4c-C0iAGUc7dQlqXIsXkGnHMaTEz
https://www.youtube.com/playlist?list=PLbu9W4c-C0iAGUc7dQlqXIsXkGnHMaTEz
https://www.youtube.com/playlist?list=PLbu9W4c-C0iAGUc7dQlqXIsXkGnHMaTEz
https://www.youtube.com/playlist?list=PLbu9W4c-C0iAGUc7dQlqXIsXkGnHMaTEz
https://www.youtube.com/watch?v=DvF3AsTglUU
https://www.youtube.com/watch?v=DvF3AsTglUU

	Slide 1: CSC 112: Computer Operating Systems Lecture 3 Synchronization
	Slide 2: Outline
	Slide 3: Different Types of Concurrencies
	Slide 4: Concurrency
	Slide 5: Race Condition
	Slide 6: Race Condition & Critical Section
	Slide 7: Lock to Protect a Critical Section
	Slide 8: Locks
	Slide 9: Locks: Disable Interrupts
	Slide 10: Locks: Loads/Stores
	Slide 11: Locks: Test-and-Set
	Slide 12: Locks: Compare-and-Swap
	Slide 13: Locks: Busy Waiting
	Slide 14: Ticket Lock
	Slide 15: Ticket Lock
	Slide 16: Ticket Lock
	Slide 17: Ticket Lock
	Slide 18: Ticket Lock
	Slide 19: Recap
	Slide 20: Semaphores
	Slide 21: POSIX pthreads API
	Slide 22: Semaphores Like Integers Except…
	Slide 23: Implementing Semaphores with TestAndSet
	Slide 24: Two Uses of Semaphores
	Slide 25: Using Semaphores for Scheduling
	Slide 26: Readers/Writers Problem
	Slide 27: Readers/Writers using Semaphores, Prefers Readers
	Slide 28: Readers/Writers Solution using Monitors, Prefers Writers
	Slide 29: Readers/Writers Solution: Prefers Writers
	Slide 30: Readers/Writers Solution using Monitors, Prefers Readers
	Slide 31: Readers/Writers Solution: Prefers Readers
	Slide 32: Producer/Consumer Problem
	Slide 33: Producer/Consumer Problem
	Slide 34: Full Solution to Bounded Buffer (coke machine)
	Slide 35: Discussions
	Slide 36: Deadlock
	Slide 37: Monitors
	Slide 38: Monitor with Condition Variables (CV)
	Slide 39: Monitor with Condition Variables (CV)
	Slide 40: CV Common Usage Pattern
	Slide 41: P/C Problem with Condition Variable
	Slide 42: While vs. if for Checking Boolean flag
	Slide 43: Mesa monitors
	Slide 44: The Thread Join Problem
	Slide 45: Thread Join with Semaphore
	Slide 46: Thread Join with Condition Variable
	Slide 47: Thread Join with Condition Variables: Incorrect
	Slide 48: Dinning Philosophers
	Slide 49: Semaphore-based Solution: Deadlock
	Slide 50: Semaphore-based Solution 0: Global Lock
	Slide 51: Semaphore-based Solution: Deadlock
	Slide 52: Semaphore-based Solution I
	Slide 53: Semaphore-based Solution II
	Slide 54: Semaphore-based Solution III
	Slide 55: Semaphore-based Solution IV
	Slide 56: Monitor-based Solution
	Slide 57: Semaphores vs. Monitors
	Slide 58: References

