CSC 112: Computer Operating Systems
Lecture 3

Synchronization

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming
And NTNU course on Operating Systems

Concurrency |

int x = 0;

//Thread TO //Thread TO
for (int i=0; 1i<5; 1i++) { for (int 3=0; 3<5; J++) {
X =x + 1; X =X + 2;

} }

e Consider two concurrent threads TO, T1, which access a
shared variable x that has been initialized to 0. There is no
mutex protection.

e Q: What are the minimum, maximum, and all possible values
of x after the two threads have completed execution?

Concurrency |l

e Consider three concurrent threads T1,
T2, T3, which access a shared variable D
that has been initialized to 100. There is
no mutex protection. What are the
minimum and maximum possible values
of D after the three threads have
completed execution?

e ANS:

//Initialization
int D=100;
//Thread T1
volid main () {
D=D+20;

}

//Thread T2
voilid main () {
D=D-50;

}

//Thread T3
void main () {
D=D+10;

}

e R v e = T ¥ 1 L - 0 e e I

e e e R e = e
= W N = O

Recall: Locks: Loads/Stores

e This implementation does not ensure mutual exclusion, since both threads may grab

the lock:

o After Thread 1 reads flag==0 and exits the while loop, it is preempted/interrupted by
Thread 2, which also reads flag==0 and exits the while loop. Then both threads set

flag=1 and enter the critical section.

e Root cause: Lock is not an atomic operation!

typedef struct = lock t { int flag; } lock t;

vold init (lock_t *mutex) {
// 0 —> lock 1is available, 1 —-> held
mutex->flag = 0;

J

vold lock (lock_ t *mutex) {

while (mutex->flag == 1) // TEST the flag
; // spin-wait (do nothing)
mutex->flag = 1; // now SET it!

}

vold unlock (lock_t *mutex) {
mutex->flag = 0;
}

flag=0

Thread 1 Thread 2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag ==1)
flag =1;

flag =1, // set flag to 1 (too!)

interrupt: switch to Thread 1

Mutual Exclusion |

Boolean SO, S1;
SO=false, Sl=false;
//Thread TO //Thread T1
while (true) { while (true) {
while (SO0 == 81); while (SO != S81);
//Critical section //Critical section
SO = S1; S1 = !S0;
} }

Does it achieve one of more of the correctness properties of a concurrent program:
— Mutual exclusion: Only one thread in critical section at a time
— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

Does it need the TestAndSet() instruction for atomic execution like the previous slide “Locks:
Loads/Stores”?

What is its major flaw?
ANS:

Mutual Exclusion Il

Boolean flagl[2];
flag[0]=false, flag[l]=false;

//Thread TO //Thread T1

while (true) { while (true) {
flag[0] = true; flag[l] = true;
while (flag[l]==true); while (flag[0]==true);
/* Critical Section */ /* Critical Section */
flag[0] = false; flag[l] = false;

} }

e Does it achieve one of more of the correctness properties of a concurrent
program:

— Mutual exclusion: Only one thread in critical section at a time
— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

e ANS:

Mutual Exclusion Il (Peterson’s Solution)

Boolean flag[Z2];
flag[0]=false, flag[l]l=false;

int turn = 0;
//Thread TO //Thread T1
while (true) { while (true) {
flag[0] = true; flag[l] = true;
turn = 1; turn = 0;
while (flag[l]==true && turn==1); while (flag[0O]==true && turn==0);
/* Critical Section */ /* Critical Section */
flag[0] = false; flag[l] = false;
} }

e Does it achieve one of more of the correctness properties of a concurrent
program:

— Mutual exclusion: Only one thread in critical section at a time
— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

e ANS:

Mutual Exclusion Il (Peterson’s Solution Variation)

Boolean flag[Z2];
flag[0]=false, flag[l]l=false;

int turn = 0;
//Thread TO //Thread T1
while (true) { while (true) {
flag[0] = true; flag[l] = true;
turn = 0; turn = 1;
while (flag[l]==true && turn==1); while (flag[0O]==true && turn==0);
/* Critical Section */ /* Critical Section */
flag[0] = false; flag[l] = false;
} }

e Does it achieve one of more of the correctness properties of a concurrent
program:

— Mutual exclusion: Only one thread in critical section at a time
— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

e ANS:

Readers/Writers Solution - -
. . . int AR=0: Number of active readers;
using Monitors, Prefers Writers int WR=0: Number of waiting readers;
int AW=0: Number of active writers;
Q: Rewrite it to prefer readers int WW=0: Number of waiting writers;
(Seelectunashdes) Condition okToRead, okToWrite;
mutex t mutex = 1;
Reader () { Writer () |
mutex lock (&mutex) ; mutex lock (&mutex) ;
while ((AW + WW) > 0) {//Is it safe to read? while ((AW + AR) > 0) {//Is it safe to

WR++; //No. Writers exist
cond wait (&okToRead, &mutex) ;
WR--; //No longer waiting
}
AR++; //Reader active!
mutex unlock (&mutex) ;
AccessDatabase (ReadOnly) ;
mutex lock (&mutex);

AR--; //No longer active
if (AR == 0 && WW > 0)//No other active
readers

cond signal (&okToWrite);//Wake up one
writer
mutex unlock (&mutex) ;

write?
WW++; //No. Active users exist
cond wait (&okToWrite, &mutex) ;
WW--; //No longer waiting
}
AW++; //Writer active!
mutex unlock (&mutex) ;
AccessDatabase (ReadWrite) ;
mutex lock (&mutex) ;
AW--; //No longer active
if (Ww > 0){//Give priority to writers
cond signal (&okToWrite);//Wake up one
writer a
} else 1if (WR > 0) {//Otherwise, wake reader
cond broadcast (&okToRead);//Wake all
readers a

}

mutex unlock (&mutex) ;

Race Conditions

Consider the two threads each executing t1 and t2. Values of shared variables y and
z are initialized to O

int y=0, z=0;

1 £1 () { 1 t2 () {

2 int x; 2 y = 1;
3 X =y + z; 3 z = 2;
4} 4}

Q. Give all possible final values for x and the corresponding order of execution of
instructions in t1 and t2.

1) t1 runs to the end first; then t2 runs to the end: x=0+0=0
2) t2 to line 2; then t1 to the end; thent2 totheend: x=1+0=1
3) t2 to the end; thentl totheend: x=1+2=3

Are there other possibilities giving additional values?

Race Conditions

e Addition operation x=y+z consist of multiple machine instructions in assembly language:
A. fetch operand y into register r1
B. fetch operand z into register r2
C. add rl1 + r2, store result in r3
D. store r3 in memory location of x

e |f a task switch to t2 occurs between machine instructions A and B; then t2 runs to completion
before switching back to t1, then:

eyisreadas 0 (t2 didn’t set y yet)
e zis read as 2 (t2 sets z before execution instruction B of add. in t1)
e the sumisthenx=0+2=2

int y=0, z=0;

1 £l () { 1 £2(){
5 int x; 2 Y =
3 X =v + z; 3 z = 2

4} 4}

[

~e ~e

Race Conditions

Q. Give a solution using semaphores.

Solution: we protect the addition x =y + z within a critical section, using a
binary semaphore (mutex). This code guarantees that x can never have the
value 1 or 2, possible values are x=0, 3

(Line “int x” can be outside or inside the critical section with no difference. We use

a slightly different notation of s.wait()/s.signal() to denote sem_wait(&s) and
sem_ post(&s).

int y=0, z=0;

semaphore s = 1;
1 t1() { 1 t2 () |
5 int x; 2 s.wait () ;
3 s.wait () ; 3 y = 1;
4 X =y + z; 4z = 23
5 s.signal () ; 5 s.signal () ;
6 } 6 }

12

Semaphores |

t1:

1 1nt
2
3

4}

printf ("w");
printf ("d");

tl () |

t2:

1 1nt t2() {

5 printf("o");
3 printf("r");
4 printf("1");
5 printf("e");
6 }

Q. Use semaphores and insert wait/signal calls into the two threads so that

only “wordle” is printed.

semaphore sl=1,

s2=0

1 int tl(){
sl.wait ()¥

printf ("w");
sZ2.signal () ;7
sl.wailt () ;€—

/

1 1nt t2 () {

5 s2.wait () ;

3

4
: sl.signal ()

printf ("d");
sZ2.signal () ;7

o J o O w N

_&J'SZ.wait();

7
8

§

printf ("o");
printf ("r");

printf ("1");
printf ("e");

4
4
.
’

4
4

e t1 has to run first to print "w", so s1 should be
initialized to 1.

e t2 has to wait until the "w" has been printed by t1,
then it is woken up by t1 calling s2.signal(), so s2
should be initialized to O.

13

Semaphores Il

e The following three functions of a
program f1(), f2(), f3() run in separate
threads each and print some prime
numbers. All three threads are ready to
run at the same time. Use
synchronization using the semaphores
S1, S2 and S3 and wait/signal operations
on the semaphores to ensure that the
program outputs the prime numbers in
increasing order (2, 3, 5, 7, 11, 13).

Semaphore S1=0;
Semaphore S2=0;
Semaphore S3=0;

£10) |

printf ("3");
"5") ;

printf (
}

£2() |

printf ("2");
printf ("13");

}
£3(0) |

printf (Y“7");
printf ("11");

}

14

Semaphores Il Solution

e Solution 1 (left): With initial
values of all semaphores =0,
only f2 can run, prints 2, signals
S1 and then waits for S2.
S1.signal() starts f1, which was
waiting for S1 and can now print
3 and 5 and then signal S3.
S3.signal() now starts f3, which
prints 7 and 11 and signals S2.
This returns execution to f2,
which can then finally print 13.

Solution 2(right): s2 has initial
value 1, so f2 calls S2.wait() and
runs first. The rest of the same as
Solution 1. You can see that
initializing s2=0 has the same
effect as initializing s2=1 and let
f2 call S2.wait() first. So Solution
1 is better with one less call to
wait().

semaphore S1=0;
semaphore S2=0;
semaphore S3=0;
£10 A
Sl.wait ()
printf ("3");
printf ("5");
S3.signal () ;
}

£f2() |
printf ("2");
Sl.signal () ;
S2.wait () ;

printf ("13");

}

£3() |
S3.wait () ;
printf("7");
printf ("11");
S2.s1ignal () ;
}

semaphore S1=0;
semaphore S2=1;
semaphore S3=0;
£f1() A
S1l.wait () ;
printf ("3");
printf ("5");
S3.signal () ;
}

£2() A
S2.wait();
printf ("2");
Sl.signal();
S2.wait () ;
printf ("13");

}

£3() A
S3.wait () ;
printf ("7");
printf("11");
S2.signal () ;
}

Semaphores |l

semaphore s a=0, s b=0, s c=0; 1 int t3() {

2 while (1) {
1 int tl() { 1 1int t2() 3 s c.wait();
2 while (1) { 2 while (1) { 4 s c.walt();
3 printf ("A") ; 3 printf ("B") ; 5 printf ("C");
4 s c.signal(); | |4 s c.signal(); | |s s_a.signal();
5 s a.wait(); 5 s b.wait(); 7 s b.signal();
6 } 6 } 8 }
7} 7} 9 }

Q. Which strings can be output when running the 3 threads in parallel?

e Either t1 or t2 could start first, so the first letter can be Aor B
e Then both t1 and t2 signal s_c, only after both have signalled s_c, t3 can start and print C
e t3 signalss_a and s_b, which start in arbitrary order again
e Accordingly, the output is a regular expression ((AB|BA)C)+
e Print Aor B in arbitrary order, then print C, then the process repeats

Deadlocks |

//Initialization

int x=0, y=0, z=0;
semaphore lockl=1, lock2=1;

1 int tl() { 1 1int t2() {

2 z =z + 2; < 2 lock2.wait () ;

5 lockl.wait(); ¥ llo L v =1y + 1;

4 X = X + 2; 5 lockl.wait () ;

5 lock2.wait(); V¥V | |s x =x + 1;

6 lockl.signal () ; 6 lockl.signal () ;
7 y =y + 2; 7 lockZ2.signal () ;
8 lock2.signal () ; 8 z =z + 1;

9 } 9 }

Deadlock scenario 1:

® t2 runs first until line 2 (so lock2=0, lock1=1); switch to t1

® t1 starts and runs until line 3 (so lock1=0, lock2=0); back
to t2

® t2 waits for lock2 in line 4; switch to t1, waits for lockl in
line 5

® This results in a circular waiting condition, where each thread
grabs one lock and requests the other.

//Initialization
int x=0, y=0, z=0;
semaphore lockl=1l, lock2=1;

~N o o w N

8
9

int tl1() | 1 int t2() {
z =z + 2; > lock2.wait () ;
lockl.wait();l /3/‘3; = v + 1;
X = xX + 2; ///?::,lockl.wait();
lockZ.wait();fi;’5 X =x + 1;
lockl.signal () ; 6 lockl.signal () ;
vy =y t+ 2; 7 lock2.signal () ;
lock2.signal () ; 5 z =z + 1;

} 9 }

Deadlock scenario 2:

t1 runs first until line 4 (so lock1=0, lock2=1); switch to t2
t2 starts and runs until line 3 (so lock1=0, lock2=0); back to t1
t1 waits for lock2 in line 5; switch to t2, waits for lockl in line 4

(Other interleavings are possible, e.g., t1 grabs lock1, t2 grabs lock2
requests lock 1, t1 requests lock 2)

To prevent deadlocks, every thread should acquire locks in the same
order, e.g. both acquire lockl before lock2, or both acquire lock2 before
lockl 17

Deadlocks Il

Q. What are the possible values of x, y and z in
the deadlock state?

t1 runs until Line 5 lock2.wait() and t2 runs until Line 4
lockl.wait(),sox=2,y=1,z=2

Q. What are the possible values of x, y and z if

the pro%(ram finishes successfully without a
deadlock?

t1 runs first to the end, then t2 (or vice versa): x=3, y=3, z=3

In t1, lockl.signal() sets lock1=1, Iock2.si§rtw)al) sﬂs Iogk|2=ﬁ,2
y lock1 and lock?2.

Since Line 2 of t1 “z=z+2”, and Line 8 of t2 “z=z+1” are not
protected within a critical section, a thread switch may occur

this exiting the critical sections protecte

In the middle of each line, e.g.,

— t2 Line 8 reads z=0; before z is written back; switch to t1 Line 2,

run tl to the end; switch to t2 Line 8, write back z=0+1=1.

— Or, t1 Line 2 reads z=0; before z is written back; switch to t2

Line 2, run t2 to the end; switch to t1 Line 2, write back
z=0+2=2.

——

int x=0, y=0,
semaphore lockl=1l, lock2=1;
1 1int tl() { 1 int t2 () |
5 z =z + 2; > lock2.wait () ;
3 lockl.wait (), 3 y =y + 1;
4 X =X + 2; 4 lockl.wait () ;
5 lock2.wait () ; 5 X =x + 1;
6 lockl.signal () ; 5 lockl.signal () ;
7 y =y + 2; 7 lock2.signal () ;
8 lock2.signal () ; 8 z =z + 1;
9 9

	Slide 1: CSC 112: Computer Operating Systems Lecture 3 Synchronization
	Slide 2: Concurrency I
	Slide 3: Concurrency II
	Slide 4: Recall: Locks: Loads/Stores
	Slide 5: Mutual Exclusion I
	Slide 6: Mutual Exclusion II
	Slide 7: Mutual Exclusion III (Peterson’s Solution)
	Slide 8: Mutual Exclusion III (Peterson’s Solution Variation)
	Slide 9: Readers/Writers Solution using Monitors, Prefers Writers
	Slide 10: Race Conditions
	Slide 11: Race Conditions
	Slide 12: Race Conditions
	Slide 13: Semaphores I
	Slide 14: Semaphores II
	Slide 15: Semaphores II Solution
	Slide 16: Semaphores III
	Slide 17: Deadlocks I
	Slide 18: Deadlocks II

