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Concurrency |

int x = 0;

//Thread TO //Thread T1
for (int 1=0; i<5; 1i++) { for (int 3=0; 3<5; J++) {
X =x + 1; X =X + 2;

} }

e Consider two concurrent threads TO, T1, which access a
shared variable x that has been initialized to 0. There is no
mutex protection.

e Q: What are the minimum, maximum, and all possible values
of x after the two threads have completed execution?



Concurrency | Answer

int x = 0;
//Thread TO //Thread T1
for (int 1=0; i<5; 1i++) { for (int 3=0; 3<5; J++) {
X =x + 1; X =X + 2;
} }

e ANS: Possible values of x after the two threads have completed
execution: 5,...15. Min: 5. Max: 15.

—The x=x+2 statements can be “erased” by “sneaking in between” the
load and store of an x=x+1 statement, and vice versa. Each x=x+1
statement can either do nothing (if erased by Thread T1) or increase x
by 1. Each x=x+2 statement can either do nothing (if erased by Thread
TO) or increase x by 2. Since there are 5 of each type, and since x
starts at 0, x has min 5 and max (5*1)+(5*2)=15. Possible values are
5,6,7,..15, e.g., If three increments from Thread TO and two
increments from Thread T1 are applied, then x=(3x1)+(2x2)=7.



Concurrency |l

e Consider three concurrent threads T1,
T2, T3, which access a shared variable D
that has been initialized to 100. There is
no mutex protection. What are the
minimum and maximum possible values
of D after the three threads have
completed execution?

e ANS:

//Initialization
int D=100;
//Thread T1
volid main () {
D=D+20;

}

//Thread T2
voilid main () {
D=D-50;

}

//Thread T3
void main () {
D=D+10;

}




Concurrency |l Answer

* Min 100 -50=50, max 100+ 20+ 10 =130

e Since each thread may read the value of int D, then write
them in arbitrary order, overwriting each other’s updates.
Other possible results include 100 + 10 =10, 100 + 20 = 120,
100 + 20—-50 =70, and so on.
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Recall: Locks: Loads/Stores

e This implementation does not ensure mutual exclusion, since both threads may grab

the lock:

o After Thread 1 reads flag==0 and exits the while loop, it is preempted/interrupted by
Thread 2, which also reads flag==0 and exits the while loop. Then both threads set

flag=1 and enter the critical section.

e Root cause: Lock is not an atomic operation!

typedef struct = lock t { int flag; } lock t;

vold init (lock_t *mutex) {
// 0 —> lock 1is available, 1 —-> held
mutex->flag = 0;

J

vold lock (lock_ t *mutex) {

while (mutex->flag == 1) // TEST the flag
; // spin-wait (do nothing)
mutex->flag = 1; // now SET it!

}

vold unlock (lock_t *mutex) {
mutex->flag = 0;
}

flag=0

Thread 1 Thread 2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call lock ()
while (flag ==1)
flag =1;

flag =1, // set flag to 1 (too!)

interrupt: switch to Thread 1



Mutual Exclusion |

Boolean SO, S1;
SO=false, Sl=false;

//Thread TO //Thread T1

while (true) { while (true) {
//Spin-waits if SO == S1 //Spin-waits if SO != S1
while (SO == S1); while (SO != S81);
//Critical section //Critical section
SO = S1; S1 = !50;

} }

Does it achieve one of more of the correctness properties of a concurrent program:
— Mutual exclusion: Only one thread in critical section at a time
— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

Does it need the TestAndSet() instruction for atomic execution like the previous slide “Locks:
Loads/Stores”?

What is its major flaw?
ANS:



Mutual Exclusion I: Sample Execution

Boolean SO,

SO=false, Sl=false;

S1;

//Thread TO
while (true) {

while (SO0 == S1);
//Critical section
SO = S1;

//Thread T1

while (true) {

while (SO != S1);
//Critical section
S1 = !S0;

e TO and T1 take turns to enter the critical section in

strict alternation order .

Init
T1in CS

TO in CS

T1in CS

TO in CS

F



Mutual Exclusion | Answer

Mutual Exclusion: Achieved. Only one thread can enter its critical section at a time because
the conditions SO == S1 and SO !=S1 ensure that only one thread can proceed.

Progress (Deadlock-Free): Achieved. It is not possible for each thread to be blocked forever
waiting for each other.

Bounded Waiting (Starvation-Free): Achieved. Both threads enter each one’s critical section in
strict alternation order, i.e., TO, T1, TO, T1...

TestAndSet Instruction: Not required. The solution uses simple Boolean variables and logical
operations. In the previous slide “Locks: Loads/Stores”, all threads read and update a single
global shared flag variable, so CPU atomic instructions like TestAndSet is needed to ensure
atomicity of (read+modify+write) of the shared flag variable. But in this solution, each thread
reads (I;)oéh SO and S1, but TO only updates SO and T1 only updates S1, so no mutual exclusion
is needed.

Major Flaw: The algorithm relies on both threads actively participating in strict alternation
order, i.e., TO, T1, TO, T1... If one thread stops due to some program bug or crashing, or is
delayed indefinitely, the other thread might be blocked forever, leading to a potential
deadlock. This may not happen for the example of two simple while loops, but it is just for
illustration, whereas in reality each thread may run a large program with complex control
flow, and use these instructions as lock/unlock instructions.



Mutual Exclusion Il

Boolean flagl[2];
flag[0]=false, flag[l]=false;

//Thread TO //Thread T1

while (true) { while (true) {
flag[0] = true; flag[l] = true;
while (flag[l]==true); while (flag[0]==true);
/* Critical Section */ /* Critical Section */
flag[0] = false; flag[l] = false;

} }

e Does it achieve one of more of the correctness properties of a concurrent
program:

— Mutual exclusion: Only one thread in critical section at a time
— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

e ANS:



Mutual Exclusion II: Sample Execution & Answer

Boolean flag[2];
flag[0]=false, flag[l]=false;

//Thread TO //Thread T1 Init F F
while (true) { while (true) { .
flag[0] = true; flag[1l] = true; TOtries T F
while (flag[l]==true); while (flag[0]==true); TOin CS
/* Critical Section */ /* Critical Section */ F F
flag[0] = false; flag[l] = false; T1 tries = T
} }
. . T1lin CS
e Mutual Exclusion: Achieved. The use of flags ensures that only one
thread can enter its critical section at a time. F F
TO tries T F
* Progress (Deadlock-Free?: Not satisfied. If both threads set their flags T1 tries T T
simultaneously, they will block each other indefinitely, resulting in
deadlock. Deadlock

e Bounded Waiting (Starvation-Free): Achieved. One thread cannot
repeatedly enter the CS and starve the other thread, if the other
thread is waiting. 1



Mutual Exclusion Il (Peterson’s Solution)

Boolean flag[Z2];
flag[0]=false,

int turn = 0;

flag[l]=false;

//Thread TO
while (true) {
flag[0] = true;

turn = 1;

/* Critical Section */
flag[0] = false;
}

while (flag[l]==true && turn==1);

//Thread T1
while (true) {

flag[l] = true;
turn = 0;
while (flag[0O]==true && turn==0);

/* Critical Section */
flag[l] = false;
}

e Does it achieve one of more of the correctness properties of a concurrent

program:

— Mutual exclusion: Only one thread in critical section at a time

— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

e ANS:

12



Mutual Exclusion lll (Peterson’s Solution): Sample Execution

& Answer
e Mutual Exclusion: Achieved. The combination of flag Flag[0] Flag[1] turn
and turn ensures that only one thread can enter its Init F F 0
critical section at a time. TOtries T F 1
TOin CS
e Progress (Deadlock-Free): Achieved. The turn F F
variable ensures that if both threads wantto enter  Titries F T 0

their critical sections, one will eventually proceed. It 11, cs
is not possible for each thread to be blocked forever

e F F 0
waiting for each other.

TO tries T F 1

T1 tries T T 0

* Bounded Waiting (Starvation-Free): Achieved. Each 5. ¢ (T1 cannot enter CS)
thread gets a fair chance to enter its critical section

due to the alternation enforced by the turn variable. F T L

TO tries T T 1
T1in CS (TO cannot enter CS)
T F 1 (3



Mutual Exclusion Il (Peterson’s Solution Variation)

Boolean flag[Z2];
flag[0]=false,

int turn = 0;

flag[l]=false;

//Thread TO
while (true) {
flag[0] = true;

turn = 0;

/* Critical Section */
flag[0] = false;
}

while (flag[l]==true && turn==1);

//Thread T1
while (true) {

flag[l] = true;
turn = 1;
while (flag[0O]==true && turn==0);

/* Critical Section */
flag[l] = false;
}

e Does it achieve one of more of the correctness properties of a concurrent

program:

— Mutual exclusion: Only one thread in critical section at a time

— Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
— Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

e ANS:

14



Mutual Exclusion Il (Peterson’s Solution Variation)
Sample Execution & Answer

This variation is similar to Peterson's Solution but with an incorrect
implementation of the turn variable:

Mutual Exclusion: Achieved. Only one thread can enter its critical section
at a time due to the conditions on flag and turn.

Progress (Deadlock-Free): Achieved. It is not possible for each thread to
be blocked forever waiting for each other.

Bounded Waiting (Starvation-Free): Not satisfied. A thread may be
indefinitely delayed if the other repeatedly sets its flag and does not
allow alternation via the turn variable, i.e., one thread can repeatedly
enter the CS and starve the other thread.

TestAndSet Instruction: Not required.

Major Flaw: Incorrect handling of the turn variable leads to potential
livelock or starvation.

Init
TO tries
TO in CS

T1 tries
T1in CS

TO tries
T1 tries
T1in CS

T1 tries
T1in CS

Flag[0] Flag[1]

F
T

T

F
F

F

turn

TO experiences starvation

15



Race Conditions

Consider the two threads each executing t1 and t2. Values of shared variables y and
z are initialized to O

int y=0, z=0;

1 £1 () { 1 t2 () {

2 int x; 2 y = 1;
3 X =y + z; 3 z = 2;
4} 4}

Q. Give all possible final values for x and the corresponding order of execution of
instructions in t1 and t2.

1) t1 runs to the end first; then t2 runs to the end: x=0+0=0
2) t2 to line 2; then t1 to the end; thent2 totheend: x=1+0=1
3) t2 to the end; thentl totheend: x=1+2=3

Are there other possibilities giving additional values?



Race Conditions

e Addition operation x=y+z consist of multiple machine instructions in assembly language:
A. fetch operand y into register r1
B. fetch operand z into register r2
C. Set registerr3 =rl1+1r2

D. store r3 in memory location of x

e |f a task switch to t2 occurs between t1’s assembly instructions A and B; and then t2 runs to
completion before switching back to t1:

eyisreadas 0 (t2 didn’t set y yet)
e zis read as 2 (t2 sets z before execution instruction B of add. in t1)
e the sumisthenx=0+2=2

int y=0, z=0;

1 £l () { 1 £2(){
5 int x; 2 Y =
3 X =v + z; 3 z = 2

4} 4}

[

~e ~e




Race Conditions

Q. Give a solution using semaphores.

Solution: we protect the addition x =y + z within a critical section, using a
binary semaphore (mutex). This code guarantees that x can never have the
value 1 or 2, possible values are x=0, 3

(Line “int x” can be outside or inside the critical section with no difference. We use

a slightly different notation of s.wait()/s.signal() to denote sem_wait(&s) and
sem_ post(&s).

int y=0, z=0;

semaphore s = 1;
1 t1() { 1 t2 () |
5 int x; 2 s.wait () ;
3 s.wait () ; 3 y = 1;
4 X =y + z; 4z = 23
5 s.signal () ; 5 s.signal () ;
6 } 6 }

18



Semaphores |

t1:

1 1nt
2
3

4}

printf ("w");
printf ("d");

tl () |

t2:

1 1nt t2() {

5 printf("o");
3 printf("r");
4 printf("1");
5 printf("e");
6 }

Q. Use semaphores and insert wait/signal calls into the two threads so that

only “wordle” is printed.

semaphore sl=1,

s2=0

1 int tl(){
sl.wait ()¥

printf ("w");
sZ2.signal () ;7
sl.wailt () ;€—

/

1 1nt t2 () {

5 s2.wait () ;

3

4
: sl.signal ()

printf ("d");
sZ2.signal () ;7

o J o O w N

_&J'SZ.wait();

7
8

§

printf ("o");
printf ("r");

printf ("1");
printf ("e");

4
4
.
’

4
4

e t1 has to run first to print "w", so s1 should be
initialized to 1.

e t2 has to wait until the "w" has been printed by t1,
then it is woken up by t1 calling s2.signal(), so s2
should be initialized to O.

19



Semaphores Il

e The following three functions of a
program f1(), f2(), f3() run in separate
threads each and print some prime
numbers. All three threads are ready to
run at the same time. Use
synchronization using the semaphores
S1, S2 and S3 and wait/signal operations
on the semaphores to ensure that the
program outputs the prime numbers in
increasing order (2, 3, 5, 7, 11, 13).

Semaphore S1=0;
Semaphore S2=0;
Semaphore S3=0;

£10) |

printf ("3");
"5") ;

printf (
}

£2() |

printf ("2");
printf ("13");

}
£3(0) |

printf (Y“7");
printf ("11");

}

20



Semaphores Il Solution

e Solution 1 (left): With initial
values of all semaphores =0,
only f2 can run, prints 2, signals
S1 and then waits for S2.
S1.signal() starts f1, which was
waiting for S1 and can now print
3 and 5 and then signal S3.
S3.signal() now starts f3, which
prints 7 and 11 and signals S2.
This returns execution to f2,
which can then finally print 13.

Solution 2 (right?: s2 has initial
value 1, so f2 calls S2.wait() and
runs first. The rest of the same as
Solution 1. You can see that
initializing s2=0 has the same
effect as initializing s2=1 and let
f2 call S2.wait() first. So Solution
1 is better with one less call to
wait().

semaphore S1=0;
semaphore S2=0;
semaphore S3=0;
£10 A
Sl.wait ()
printf ("3");
printf ("5");
S3.signal () ;
}

£f2() |
printf ("2");
Sl.signal () ;
S2.wait () ;

printf ("13");

}

£3() |
S3.wait () ;
printf("7");
printf ("11");
S2.s1ignal () ;
}

semaphore S1=0;
semaphore S2=1;
semaphore S3=0;
£f1() A
S1l.wait () ;
printf ("3");
printf ("5");
S3.signal () ;
}

£2() A
S2.wait();
printf ("2");
Sl.signal();
S2.wait () ;
printf ("13");

}

£3() A
S3.wait () ;
printf ("7");
printf("11");
S2.signal () ;
}




Semaphores |l

semaphore s a=0, s b=0, s c=0; 1 int t3() {

2 while (1) {
1 int tl() { 1 1int t2() 3 s c.wait();
2 while (1) { 2 while (1) { 4 s c.walt();
3 printf ("A") ; 3 printf ("B") ; 5 printf ("C");
4 s c.signal(); | |4 s c.signal(); | |s s_a.signal();
5 s a.wait(); 5 s b.wait(); 7 s b.signal();
6 } 6 } 8 }
7} 7} 9 }

Q. Which strings can be output when running the 3 threads in parallel?

e Either t1 or t2 could start first, so the first letter can be Aor B
e Then both t1 and t2 signal s_c, only after both have signalled s_c, t3 can start and print C
e t3 signalss_a and s_b, which start in arbitrary order again
e Accordingly, the output is a regular expression ((AB|BA)C)+
e Print Aor B in arbitrary order, then print C, then the process repeats



Deadlocks |

//Initialization

int x=0, y=0, z=0;
semaphore lockl=1, lock2=1;

1 int tl() { 1 1int t2() {

2 z =z + 2; < 2 lock2.wait () ;

5 lockl.wait(); ¥ llo L v =1y + 1;

4 X = X + 2; 5 lockl.wait () ;

5 lock2.wait(); V¥V | |s x =x + 1;

6 lockl.signal () ; 6 lockl.signal () ;
7 y =y + 2; 7 lockZ2.signal () ;
8 lock2.signal () ; 8 z =z + 1;

9 } 9 }

Deadlock scenario 1:

® t2 runs first until line 2 (so lock2=0, lock1=1); switch to t1

® t1 starts and runs until line 3 (so lock1=0, lock2=0); back
to t2

® t2 waits for lock2 in line 4; switch to t1, waits for lockl in
line 5

® This results in a circular waiting condition, where each thread
grabs one lock and requests the other.

//Initialization
int x=0, y=0, z=0;
semaphore lockl=1l, lock2=1;

~N o o w N

8
9

int tl1() | 1 int t2() {
z =z + 2; > lock2.wait () ;
lockl.wait();l /3/‘3; = v + 1;
X = xX + 2; ///?::,lockl.wait();
lockZ.wait();fi;’5 X =x + 1;
lockl.signal () ; 6 lockl.signal () ;
vy =y t+ 2; 7 lock2.signal () ;
lock2.signal () ; 5 z =z + 1;

} 9 }

Deadlock scenario 2:

t1 runs first until line 4 (so lock1=0, lock2=1); switch to t2
t2 starts and runs until line 3 (so lock1=0, lock2=0); back to t1
t1 waits for lock2 in line 5; switch to t2, waits for lockl in line 4

(Other interleavings are possible, e.g., t1 grabs lock1, t2 grabs lock2
requests lock 1, t1 requests lock 2)

To prevent deadlocks, every thread should acquire locks in the same
order, e.g. both acquire lockl before lock2, or both acquire lock2 before
lockl 23



Deadlocks Il

Q. What are the possible values of x, y and z in the

deadlock state?

t1 runs until Line 5 lock2.wait() and t2 runs until Line 4 lock1.wait(),

sox=2,y=1,z=2

Q. What are the possible values of x, y and z if the
program finishes successfully without a deadlock?

t1 runs first to the end, then t2 (or vice versa): x=3, y=3, z=3

In t1, lock1.signal() sets lock1=1, lock2.signal() sets lock2=1, this

exiting the critical sections protected by lockl and lock?2.
Since Line 2 of t1 “z=z+2”, and Line 8 of t2 “z=z+1" are not

protected within a critical section, a thread switch may occur in
the middle of each line, and one of the updates to z may be lost:

— t1’s update z=z+2 is lost: t2 Line 8 reads z=0; before z is written back;
switch to t1 Line 2, run tl to the end; switch to t2 Line 8, write back

z=0+1=1.

— Or, t2’s update z=z+1 is lost: t1 Line 2 reads z=0; before z is written
back; switch to t2 Line 2, run t2 to the end; switch to t1 Line 2, write

back z=0+2=2.

——

——

int x=0, y=0, z=0;
semaphore lockl=1l, lock2=1;
1 int tl() | 1 int t2 () |
5 z =z + 2; 5 wait () ;
3 wait () ; 3 + 1;
4 + 2; 4 wait () ;
5 wait () ; 5 + 1;
6 signal () ; 5 signal () ;
7 + 2; 7 signal () ;
8 signal () ; 8 z =z + 1;
9 9
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