CSC 112: Computer Operating Systems
Lecture 2

Processes and Threads

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming

Overview

Process concept

Process state

Process API (creation, wait)
Process tree

Process

e Program is a static entity stored on disk (executable file), process is active
— Program becomes process when executable file loaded into memory
— Process is an abstraction of CPU

e Execution of program started via Graphic User Interface (GUI) mouse clicks, command
line entry of its name, etc

e A physical CPU is shared by many processes
— Time sharing: run one process for a little while, then run another one, and so forth.
— Processes believe they are using CPU alone

Process

CPU Memory
Program _____ code
Counter (PC) . static data

i heap i

E E‘ ':

stack
Process

e A program becomes a
process when it is
selected to execute
and loaded into
memory.

e A process has an
address space

code

Disk

Loading:
Takes on-disk
program
and reads it into the
address space of
process

Process

e Consists of: OxFFFFFFFF

— Stack: Temporary data, e.g., 4
function parameters, return
addresses, local variables

— Heap: Dynamically allocated
memory 32-bit memory

— Static data: Global variables address space
— Code: Instructions

— Registers: SP (Stack Pointer), PC
(Program counter)

v

0x00000000

stack
(temporary data)
;
T
heap

(dynamic allocated mem)

static data
(data segment)

code
(text segment)

«— SP (Stack Pointer)

“— PC (Program Counter)

Process

struct proc {
struct spinlock lock; // p->lock must be held when using these: o A process is represented by a

held.

enum procstate state; // Process state

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

int xstate; // Exit status to be returned to parent's wait
int pid; // Process ID

// wait_lock must be held when using this:

struct proc *parent. // Parent process

// these are private to the process, so p->lock need not be

uint64 kstack; // Virtual address of kernel stack

uint64 sz: // Size of process memory (bytes)

pagetable_t pagetable; // User page table

struct trapframe *trapframe; // data page for trampoline.S
struct context context; // swtch() here to run process
struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

char name[16]; // Process name (debugging)

XV6 (proc.h)

process control block (PCB)
— Process ID (PID, unique)
— State
— Parent process pointer
— Opened files
— Many other fields

— PCB in XV6 does not include
pointers to child processes for
simplicity, but PCB in Linux
include them for convenient
references to its child
processes

Process States

e Process has different states
— READY FIOCESSS []

» Ready to run and pending for
running Running Ready

» Being executed by OS >

— BLOCKED I/0

» Suspended due to some other Block processing
events, e.g., I/0 requests

Scheduled Ready ﬂ I/0 Done

\ Running 1 Done

I/0 request
completion

. ‘VV

Running

Deschedule

BLOCKED

What is a Process in an Operating System?
https://www.youtube.com/watch?v=vLwWMI9gK4T8 7

https://www.youtube.com/watch?v=vLwMl9qK4T8

Process API

Process APl to manipulate processes
— CREATE
» Create a new process, e.g., double click, a command in terminal
— WAIT

» Wait for a process to stop
» Like /O request

— DESTROY
» Kill the processes

— STATUS
» Obtain the information of a process

— OTHERS

» Suspend or resume a process

Process Creation

e A process is created by another process, parent process or calling process

e Process creation relies on two system calls
— fork()
» Create a new process and clone its parent process

— exec()
» Overwrite the created process with a new program

fork()

A function without any arguments
— ret = fork()

Both parent process and child process continue to
execute the instruction following the fork()

TL_?dr)eturn value indicates which process it is (parent or
chi

— ret > 0 (pid of child process): code running in the parent
process,

— ret == 0: code running in the newly-created child process

— ret ==-1: an error or failure occurred when creating new
process

Fun analogy: imaging you are a process after fork, but you
don’t know if you are the child or parent process, as if you
are running inside of a Matrix. But you can identify which
process you are running, by looking up to the sky and see
the ret value from forka

Child process is a duplicate of its parent process and has
same

— instructions, data, stack
Child and parents have different
— PIDs, memory spaces

parent

!

-

DATA

TEXT (instructions) user

space

[Resources (open files, etc)] space

kemel

fork() returns the PID
of the created child in
the parent

user
space

[Resources (open files, efc)] Space

kemel

v

-

fork() returns @ in the
the created child

Resources (open files, aic)

The child process is a
copy of the parent
.

user
space

kemel
space

10

fork()

Output
int main(int argc, char *argvl[]) hello world (pid:96744)
{ hello, I am parent of 96745 (pid:96744)
printf("hello world (pid:%d)\n", (int) getpid()); hello, I am child (pid:96745)
int ret = fork(); _
if (ret < 0) { e Assuming no error (ret
// fork failed; exit >_dO).' o if L
fprintf(stderr, "fork failed\n"); exit(1); * glo ?(I-nSIde | (reé B_ 0){}
: __ Child Process OCK Is executed by
} else if (ret == 0) { Child process
// child (new process) e Code inside if(ret > 0){}
printf("hello, I am child (pid:%d)\n", (int) getpid()); block is executed by
}else { Parent process
7/ parent goes down this path (original process) * Code outside of if-then-
printf("hello, | am parent of %d (pid:%d)\n", ret, (int) getpid()); gif%ggﬁcé(ﬁlié%ﬁedcggignt
i Parent Process
return O;

11

wait()

e Let the parent process wait for the completion of the
child process

— pid = wait()

e wait() suspends the execution of the calling process until
one of its child processes terminates.

— When a child process terminates, wait() retrieves its
termination status and allows the system to clean up the [fork()]
resources associated with that child. If the parent does not
call wait() to collect the child's exit status, the child
becomes a zombie process, which means its PCB persists [wait()]
in the process table, even though it is no longer running.

» While zombie processes do not consume processor or
memory resources, they occupy entries in the process
table. The process table is of finite size, and if too many
zombie processes accumulate, it can prevent new
processes from being created.

— If there are multiple child processes, wait() does not allow
the parent to specify which child process to wait for.
waitpid(pid) is an advanced version of wait. It allows the
parent process to specify which child process (or group of
processes) it wants to wait for.

wait()

int main(int argc, char *argv(])

{

printf("hello world (ret:%d)\n", (int) getpid());
int pid = fork();
if (pid < 0) {

// fork failed; exit

fprintf(stderr, "fork failed\n");

Child process sleeps for 1 second
Parent process waits for the child process
to finish sleeping

exit(1); .
} else if (pid == 0) { Chl |d Process
// child (new process)
printf("hello, | am child (pid:%d)\n", (int) getpid());
sleep(1);
} else {
// parent goes down this path (original process). wc (wait child) stores pid of the child process waited by parent
int ret = wait(NULL); //wc contains pid of the child process being waited for by parent process
printf("hello, | am parent of %d (wc:%d) (pid:%d)\n", pid, ret, (int) getpid());
}
return O; Par‘eﬂ'l' PI“OCeSS

13

wait()

e Without wait(): it is nondeterministic which process (parent or child) runs first

hello world (pid:96744)
hello, I am parent of 96745 (pid:96744)
hello, I am child (pid:96745)

e With wait(): child runs first, and parents waits for child to finish

hello world (pid:96848)
hello, I am child (pid:96849)
hello, I am parent of 96849 (wc:96849) (Eid:96848)

Fork() system call tutorial
https://www.youtube.com/watch?v=xVSPv-9x3gk

14

https://www.youtube.com/watch?v=xVSPv-9x3gk
https://www.youtube.com/watch?v=xVSPv-9x3gk
https://www.youtube.com/watch?v=xVSPv-9x3gk

exec()

e exec(cmd, argv) replaces the current process image with a new
process image specified by the path to an executable file.

— It does not return. It starts to execute the new program.

e There is a family of exec(), e.g., execl(), execvp()

— execl() takes a variable number of arguments that represent the
program name and its arguments.

» int execl(const char *path, const char *arg, ..., NULL);

— execvp() takes an array of arguments instead of a variable-length
argument list

» int execvp(const char *file, char *const argv(]);

rr

d B

Program 2
executable

user user
TEXT (instructions) space

exec()]—) o

Program 1
executable

TEXT (instructions)
DATA

—

kernel
Resources (open files, etc) space

[Resuumes (open files, etc)]

exec() Example

int main(int argc, char *argv(]) e Inthe child process (rc == 0), the execvp() function
{ replaces the current process image with the

printf("hello world (pid:%d)\n", (int) getpid());
int pid = fork();
if (pid < 0) {
// fork failed; exit
fprintf(stderr, "fork failed\n"); exit(1);
} else if (pid == 0) { // child (new process)
printf("hello, | am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup(“wc”); // program: “wc” (word count)
myargs[1] = strdup(“p3.c”); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // run word count
printf(“This line will never be executed.");

}else { // parent
int rc_wait = wait(NULL);

printf(“hello, | am parent of %d (rc_wait:%d) (pid:%d)\n”, rc, rc_wait, (int)

getpid());}

et O Mhello world (pid:97511)

hello, I am child (pid:97512)
32 123 966 p3.c

Output; hello, I am parent of 97512 (wc:97512) (pid:97511)

program named “wc”, a program that counts Lines,
Words, and Bytes in a file, with output
format: [lines] [words] [bytes] [filename].

The arguments for the program are passed as an
array (args[]), where the first element is the
program name “wc” and subsequent elements are
its arguments. The array must end with NULL.

After call to execvp(), the whole child process
address space is overwritten and replaced by the
wc program, so the line “printf(“This line will never
be executed.");” will never be executed.

Minor point: strdup() allocates memory on the
heap and stores a copy of the string there. This is
done to ensure that the strings are stored in
memory that can be safely modified or freed later
if needed. In this program, strdup() is not strictly
necessary, and you can pass strings directly to
myargs without using ‘strdup’, since the strings are
read only and not modified later.

16

|0 redirection and pipe

e By separating fork () and exec (), we can manipulate various settings just before
executing a new program and make the 10 redirection and pipe possible. (details
omitted.)

— 1O redirection: output of the left command redirected to be written to the file on the right

$ cat w3.c > newfile.txt

— Pipe: output of the left command passed as input to the right command

% echo hello world | wc

17

pipe

e A communication method between two processes

Whrite Read

Child Process I]]:I]I Child Process
(left) = =) (right)

(base) dliu@dhcp-10-24-18-121 my_code
#include <stdio.h>

int main()
{

printf("Hello World!\n");
return 0;

(base) dliu@dhcp-10-24-18-121 my_code
printf("Hello World!\n");
(base) dliu@dhcp-10-24-18-121 my_code

% cat hello.c

Command “cat” prints out content of hello.c file

Output of “cat” command passed through the pipe
to command “grep” to search for any lines that

contain “printf” @

% cat hello.c |grep printf

% I

18

Process Tree

e Typical Linux process tree

bash
pid = 8416

Ps
pid = 9298

pid = 8415

init
pid =1

login kthreadd

pid = 2

khelper
pid = 6

emacs
pid = 9204

sshd
pid = 3028

sshd
pid = 3610

tcsch
pid = 4005

19

Process Tree

e % pstree (to show the process tree in a hierarchy)

(base) dliu®dhcp-10-24-17-236 ~ % pstree
—+= 00001 root /sbin/launchd

|——= 00322 root /usr/libexec/logd
| -——= 00323 root /usr/libexec/smd
| -—= 00324 root /usr/libexec/UserEventAgent (System)

* % ps (to show all processes as a flat list)

STAT TIME COMMAND
Ss 17:57.36 /sbin/launchd
Rs 6:29.86 /usr/libexec/logd

Ss 0:00.19 /usr/libexec/smd
Ss 0:19.58 /usr/libexec/UserEventAgent (System)

20

User/Kernel Mode Separation

* User mode: restricted, limited operations

— Processes start in user mode

e Kernel mode: privileged, not restricted
— OS starts in kernel mode

e What if a process wants to perform some restricted operations?
— System calls: Allow the kernel services to provide some functionalities to user programs

21

User/Kernel Mode Separation

A process starts in user mode

If it needs to perform a restricted operation, it calls a system call by executing a trap instruction
The state and registers of the calling process are stored, the system enters kernel mode, OS completes

the syscall work

Return from syscall, restore the states and registers of the process, and resume the execution of the

process

user process

execute system call

user mode
user process executing =—» calls system call return from system call (mode bit= 1)
\ /
A J
AY V4
K | trap return
Ll mode bit = 0 mode bit = 1
kernel mode
(mode bit = 0)

22

Process Scheduling

e Switching Between Processes

e Cooperative approach
— Trust process to relinquish processor time to OS through yield()

e Non-cooperative approach
— The OS takes control periodically, e.g., timer interrupter

23

Process Summary

In OS, process is a running program and has an address space
We use process APl to create and manage processes
fork() to duplicate a process, exec() to replace the command

Process scheduling

24

What’s in a process?

e A process consists of:
— an address space
— the code for the running program
— the data for the running program
— at least one thread
» Registers, IP
» Floating point state
» Stack and stack pointer
— a set of OS resources

» open files, network connections, sound channels, ...

e Today: decompose process from threads of control

25

Concurrency

e |Imagine a web server that handles multiple requests concurrently

— Multiple worker threads: while waiting for the credit card server to approve a purchase for one client, it
could be retrieving the data requested by another client from disk, and assembling the response for a

third client from cached information
e |Imagine a web client (browser), which might like to initiate multiple requests concurrently

e |magine a parallel program running on a multiprocessor, which might like to employ parallelism =

“true concurrency”
— For example, multiplying a large matrix — split the output matrix into k regions and compute the entries

in each region concurrently using k processors . .
& y sXP Thread for Displaying

Four score and seven | [nans that this nation
so

years ago, our fathers
brought forth upon this || dedicated, can long || altogether fitting and
c

might Live. It is||have consecraied it, far | |work which they who ||measure of ion,
above our poor power | |fought here have thus ||that we here highly

Web server process

| in a great civil war ||resting place for those || eround. br: Iis
testing whether that ||who here gave their|| men, living and dead,|| rather, to be dedicated | |to that cause for which || people, for the peopl

Dispatcher thread L g g
Worker thread User
> space
Web page cache Thread for
Thread for disk IO
keyboard input B
Kernel
Kernel space / %\
= Kernel
Keyboard Disk

Network Web S
connection eb server Web Browser 26

What’s needed?

e |n each of these examples of concurrency (web server, web client,
parallel program):

— Everybody wants to run the same code, access the same data, has the same
privileges, uses the same resources (open files, network connections, etc.)

e But you’d like to have multiple hardware execution states:
— an execution stack and stack pointer (SP)
» traces state of procedure calls made
— program counter (PC), indicating the next instruction
— a set of general-purpose registers

e Creating multiple processes is inefficient

e Key idea: separate the concept of a process (address space, etc.) from
that of a minimal “thread of control” (execution state: PC, etc.)

27

Processes and Threads

e Modern OSes support two entities:

— the process, which defines the address space and general process attributes
(such as open files, etc.)

— the thread, which defines a sequential execution stream within a process
e Athread is bound to a single process / address space

— address spaces, however, can have multiple threads executing within them

— threads in the same process share the same address space, making it easy to
share data among them

e Threads become the unit of scheduling

— processes / address spaces are just containers in which threads execute

28

+ Multiple threads within a process will share

+ Advantages

— PID

— The address space: code, most data (heap)
— Open files (file descriptors)
— Current working directory
— Other resources
Each thread has its own:
— Thread ID (TID)

— Set of registers, including Program Counter and Stack
Pointer

— Stack for local variables and return addresses

— Efficient and fast resource sharing

Processes and Threads

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
thread — «—

— thread

single-threaded process

— Efficient utilization of many CPU cores with only one

Process

— Less context switching overhead

multithreaded process

29

(old) Process address space

OxFFFFFFFF

y

A

address space

A

4

0x00000000

stack

(dynamic allocated mem)
!
T

heap

(dynamic allocated mem)

static data
(data segment)

code
(text segment)

+— SP (Stack Pointer)

“— PC (Program Counter)

30

OxFFFFFFFF

y

A

address space

A

4

0x00000000

(new) Process address space with threads

thread 1 stack

;

thread 2 stack

;

thread 3 stack

;
T

heap
(dynamic allocated mem

static data
(data segment)

code
(text segment)

«~— SP (T1)

«~ SP (T2)

«— SP (T3)

«— PC (T2)
PC (T1)
«— PC (T3)

31

Process/thread separation

e Concurrency (multithreading) is useful for:
— handling concurrent events (e.g., web servers and clients)
— building parallel programs (e.g., matrix multiply, ray tracing)
— improving program structure

e Multithreading is useful even on a uniprocessor

— even though only one thread can run at a time, multiple threads may be
executed in a time-sharing schedule, so they appear to run concurrently

e Supporting multithreading — that is, separating the concept of a
process (address space, files, etc.) from that of a minimal thread of
control (execution state), is a big win

— creating concurrency does not require creating new processes
— faster / better / cheaper

32

POSIX pthreads API

e POSIX thread -> pthread API
e A Portable Operating System

Functionality

heeroc roa an v L O GRS

1003.1c), written in C
language

e Pthread library: 60+
functions, API specifies
behavior of the thread
library

pthread_mutex_lock
pthread _mutex_unlock
sem_wait

sem_post

pthread _cond_wait

pthread cond_signal

pthread_cond_broadcast

Lock a mutex

Unlock a mutex

Wait on a semaphore

Signal or post on a semaphore
Wait on a condition variable

Wake up one thread waiting
on a condition variable

Wake up all threads waiting
on a condition variable

33

Pthread Fork-Join Pattern

void *mythread(void *arg) {
printf ("%s\n", (char *) argqg);
return NULL;

~ create
int main(int argc, char *argv[]) { .
pthread t pl, p2; N
printf ("main: begin\n"); 4;
pthread create(&pl, NULL, mythread, "A"); ‘. 4 B Y exit
pthread create(&p2, NULL, mythread, "B"); :}hiﬁgﬁi*“/”—
// join waits for the threads to finish join

pthread join(pl, NULL);
pthread join(p2, NULL);
printf ("main: end\n") ;
Main thread creates multiple sub-threads,

passing them args to work on... then joins with
them to collect results.

34

“Where do threads come from?”

e The kernel is responsible for creating/managing threads
— for example, the kernel call to create a new thread would
» allocate an execution stack within the process address space
» create and initialize a Thread Control Block
e stack pointer, program counter, register values
» stick it on the ready queue
— we call these kernel threads

35

“Where do threads come from?” (2)

e Threads can also be managed at the user level (that is, entirely from
within the process)

— a library linked into the program manages the threads

» because threads share the same address space, the thread manager
doesn’t need to manipulate address spaces (which only the kernel can do)

» threads differ (roughly) only in hardware contexts (PC, SP, registers),
which can be manipulated by user-level code

» the Linux thread package multiplexes user-level threads on top of kernel
thread(s), which it treats as “virtual processors”

— we call these user-level threads

36

Kernel threads

e OS now manages threads and processes
— all thread operations are implemented in the kernel
— OS schedules all of the threads in a system

» if one thread in a process blocks (e.g., on 1/0), the OS knows about it,
and can run other threads from that process

» possible to overlap 1/0 and computation inside a process

e Kernel threads are cheaper than processes

— less state to allocate and initialize

e But they are still quite expensive (e.g., orders of magnitude more
expensive than a procedure call)

— thread context switch involves system calls, since OS must maintain
kernel state for each thread

37

User-level threads

° il'o rr|1ake threads cheap and fast, they may be implemented at the user
eve

— managed entirely by user-level library, e.g., 1ibpthreads.a

e User-level threads are small and fast

— each thread is represented simply by a PC, registers, a stack, and a small thread control
block (user-space TCB)

— creating a thread, switching between threads, and synchronizing threads are done via
procedure calls

» no kernel involvement is necessary!
— user-level thread operations can be 10-100x faster than kernel threads as a result
e The OS kernel scheduler schedules the kernel threads; the user-level thread

scheduler within each process schedules the user-level threads within the
time intervals that the underlying kernel thread runs.

— it uses queues to keep track of the thread states: run, ready, wait. Just like the OS
kernel scheduler, but implemented as a user-level library

Example implementations of user-level threads
— Fibers, co-routines

FANG Interview Question | Process vs Thread
https://www.youtube.com/watch?v=4rLW7zg21gl

38

https://www.youtube.com/watch?v=4rLW7zg21gI

Summary

® Processes
—In OS, process is a running program and has an address space
— We use process APl to create and manage processes
— fork() to duplicate a process, exec() to replace the command

e Threads:

— Multiple threads per process / address space

— Kernel threads are much more efficient than processes, but they’re still not
cheap

— User-level threads are very efficient

39

	Default Section
	Slide 1: CSC 112: Computer Operating Systems Lecture 2 Processes and Threads
	Slide 2: Overview
	Slide 3: Process
	Slide 4: Process
	Slide 5: Process
	Slide 6: Process
	Slide 7: Process States
	Slide 8: Process API
	Slide 9: Process Creation
	Slide 10: fork()
	Slide 11: fork()
	Slide 12: wait()
	Slide 13: wait()
	Slide 14: wait()
	Slide 15: exec()
	Slide 16: exec() Example
	Slide 17: IO redirection and pipe
	Slide 18: pipe
	Slide 19: Process Tree
	Slide 20: Process Tree
	Slide 21: User/Kernel Mode Separation
	Slide 22: User/Kernel Mode Separation
	Slide 23: Process Scheduling
	Slide 24: Process Summary
	Slide 25: What’s in a process?
	Slide 26: Concurrency
	Slide 27: What’s needed?
	Slide 28: Processes and Threads
	Slide 29: Processes and Threads
	Slide 30: (old) Process address space
	Slide 31: (new) Process address space with threads
	Slide 32: Process/thread separation
	Slide 33: POSIX pthreads API
	Slide 34: Pthread Fork-Join Pattern
	Slide 35: “Where do threads come from?”
	Slide 36: “Where do threads come from?” (2)
	Slide 37: Kernel threads
	Slide 38: User-level threads
	Slide 39: Summary

