CSC 112: Computer Operating Systems
Lecture 2

Processes and Threads Exercises

Department of Computer Science,
Hofstra University

Wait() |

int main() {
int i;

for (1 = 0; 1 < 2; i++) {
pid t pid = fork();

if (pid == 0) {

// Child process
printf ("Hello %d\n", 1);
return 0; // Exit child process

} else if (pid > 0) {
// Parent process

wait (NULL); // Wait for immediate child to
terminate
}
}

printf ("Parent exiting\n");
return 0;

e Due to the use of wait(NULL),
the parent waits for each child
to complete before creating
another child. This enforces
sequential execution, meaning
there is no interleaving
between outputs from different
iterations.

— Hello 0
— Hello 1
— Parent exiting

e “return 0” here is the same as

llexit()”

Wait() |

int main() {
int i;
for (i = 0; 1 < 2; 1i++) {
pid t pid = fork();
if (pid == 0) {

// Child process
printf ("Hello %d\n",
return 0; // Exit child process
} else if (pid > 0) {
// Parent process
walt (NULL); // Wait for immediate

1);

terminate

}
}

printf ("Parent exiting\n");
return 0;

child to

start

wait (NULL) <

walit

v

v

NULL) «

pid=fork ()
child

parent process created

continues

“Hello 0”

return O

child

bid=fork () process created

“Hello 1”7

return 0

“Parent exiting”

Wait() | with exec()

int main() {
int 1i;

(1 = 0; 1 < 2; i++) |
pid t pid = fork();

for

if (pid == 0) {
// Child process
printf ("Hello %d\n", 1i);
exec (SOME_COMMAND) ; //SOME COMMAND is a
Linux command that does not print anything
printf ("Hello again %d\n", 1i);
return 0; // Exit child process
} else if (pid > 0) {
// Parent process
wait (NULL); // Wait for immediate child to
terminate
}
}

printf ("Parent exiting\n");
return 0;

e In Child process: exec() replaces the
current process image with a new
program called SOME_COMMAND.
The child process will execute the
command and terminate. The code
following it (e.g., printf("Child\n"))
will not be executed because it is
now running SOME_COMMAND, not
the code shown in the text box.

e QOutput:
— Hello 0

— Hello 1
— Parent exiting

Wait() | with exec()

int main ()
int 1i;

{

for (1 = 0; 1 < 2; i++) {
pid t pid = fork();

if

(pid == 0) {

// Child process

printf ("Hello %d\n", 1i);

exec (SOME COMMAND) ; //SOME COMMAND is a

Linux command that does not print anything

} else 1f

terminate

}
}

printf ("Hello again %d\n", 1i);

return 0; // Exit child process

(pid > 0) |

// Parent process

wait (NULL); // Wait for immediate child to

printf ("Parent exiting\n");
return 0;

start

wait (NULL) <

walit

v

pid=fork ()
child

parent process created

continues

| “Hello 0”

exec ()

v

return O

child

bid=fork () process created

| “Hello 1”
exec ()
v v
NULL) < return O

“Parent exiting”

Wait() I

int main () {
int 1i;
for (i = 0; 1 < 2; 1i++) {

pid t pid = fork(); // Create a child process

if (pid == 0) {
// Child process
printf ("Hello %d\n", 1i);
return 0; // Exit child process

} else 1if (pid > 0) {
// Parent process continues to next

iteration

continue;

}

}

// Parent process waits for all child processes to
terminate
if (pid > 0) {
for (i = 0; 1 < 2; 1i++) {
wait (NULL); // Wait for a child process to
terminate
}
}
printf ("Parent exiting\n");
return 0;

e Since the parent does not wait
immediately after creating each
child, the outputs of "Hello"
messages from children can
interleave. However, due to the final
waiting loop (wait(NULL)), "Parent
exiting" is always printed last.

e Two possible outputs:
— Hello 0
— Hello 1
— Parent exiting
e Or
— Hello 1

— Hello 0
— Parent exiting

Wait() Il

int main () {
int 1i;

for (1 = 0; i < 2; i++) {
pid t pid = fork(); // Create a child process

if (pid == 0) {
// Child process
printf ("Hello %d\n", 1i);
return 0; // Exit child process
} else 1if (pid > 0) {
// Parent process continues to next
iteration
continue;

}

// Parent process waits for all child processes to
terminate
if (pid > 0) {
for (i = 0; 1 < 2; 1i++) {
wait (NULL); // Wait for a child process to
terminate
}
}
printf ("Parent exiting\n");
return 0;

start

pid=fork ()
child
process created

parent
continues

“Hello 07

process create

“Hello 1’

wait (NULL) €—— return O ¢
1

return 0O

walit (NULL) <

l

“Parent exiting”

Either child process may finish first, and Parent uses
wait(NULL) to wait for ANY child process to finish.

Quiz: Fork

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main ()
{
pid t pid = fork();
if (pid<0) {
perror ("fork fail");
exit (1) ;
}

printf ("Hello world!, process id(pid) =

$d\n", getpid()):
return 0;

}

examples.)

Output: parent before child

Hello world!, process_id(pid) = 32
Hello world!, process_id(pid) = 33
or child before parent

Hello world!, process_id(pid) = 33
Hello world!, process_id(pid) = 32

possible.

e |In the following examples, we omit
the check for p<0 and assume
fork() calls are always successful.

https://www.geeksforgeeks.org/fork-system-call/

® Since we do not check for return value
of fork(), both child process and
parent process run the same code
after fork, and print out its own pid.

(The pids 32, 33 shown are just

® Since parent process and child
process run concurrently without
wait(), two output interleavings are

https://www.geeksforgeeks.org/fork-system-call/
https://www.geeksforgeeks.org/fork-system-call/
https://www.geeksforgeeks.org/fork-system-call/
https://www.geeksforgeeks.org/fork-system-call/
https://www.geeksforgeeks.org/fork-system-call/

Quiz:

Fork

a = 5;
if (pid=fork()==0) {
a =a + 5;

printf (YIn child, a=%d, a memory
address=%d\n", a, &a):

}
else {

a =a — b;

printf (“In parent, a=%d, a memory
address=%d\n", a, &a):

}

Output:

In parent, a =0, a memory address=0x1234
In child, a=10, a memory address=0x1234
Or,

In child, a=10, a memory address=0x1234
In parent, a =0, a memory address=0x1234

e In Child (x),a=a+5 =10; In Parent (u), a
=a—-5=0.

e The physical addresses of ‘a’ in parent
and child must be different. But our
program accesses virtual addresses
(assuming we are running on an OS that
uses virtual memory). The child process
gets an exact copy of parent process and
virtual address of ‘a’ doesn’t change in
child process. Therefore, we get same
addresses in both parent and child.
(0x1234 is just an example address.)

. e |ngeneral, “for (i = 0; i < n; i++) fork();” creates
Qu |1Z. FO rk 1+2+...+2”(n-1)=(2”n)-1 child processes. Plus the
main process PO, we have a total of 2*n

int main () {

o ” . A .
: - Output: processes, hence “Hello” is printed 2”n times.
ot 1 o ”p Here n =3, 273 = 8.
for (i = 0; 1 < 3; i++) €lio — Main process: PO
{fork();} Hello — PO creates 1 child process by the 1st fork: P1

printf ("Hello\n"); //outside for loop

return O: Hello - |Iz(2)’ El create 2 child processes by the 2nd fork:
J Hello P
— PO, P1, P2, P3 create 4 child processes by the 3rd
Hello fork: P4, PS5, P6, P7
PO Hello — Each of the 8 processes PO to P7 prints a ”Hello”.
start | 99101 Hello e Order of process execution may vary depending

on how OS schedules these processes, so it is
continues non-deterministic which process gets which

process ID, and which Hello is printed by which
i=0 | 59101 59102 process.
B0 Y \ — None of the processes include a wait() call to
l l handle terminated child processes. When any of
these.child processes terminate, their PCBs
=1\ o910 59103 59102 59105) (5 Waiting on them restiting in somble processes.
! PO\ lpz\ l P1\ | P3\
=2 (59101) (59104 (59103) (59107) (59102) (59106) (59105) (59108)
PO P4 P2 P5 P1 P6 P3 P7

“Hello” “Hello” ¥'Hello” “Hello” ¥ “Hello” “Hello” ¥ “Hello” “Hello”

Hello

l parent

process created

10

Quiz: Fork

int main ()
int 1i;

for (1 =
{fork();

return 0;

}

{

0;

1 < 3; 1i++)

printf ("Hello i\n"); } //inside for loop

start

parent

continues

PO

process created

| P

59102 |“Hello 0"

e This program will print 14 lines.

Main process: PO

PO creates 1 child process by the 1st fork: P1. Then
PO and P1 each prints “Hello 0”

PO, P1 create 2 child processes by the 2nd fork: P2,
P3. Then PO, P1, P2, P3 each prints “Hello 1”

PO, P1, P2, P3 create 4 child processes by the 3rd
fork: P4, P5, P6, P7. Then PO to P7 each prints “Hello
2”

e Order of process execution may vary depending
on how OS schedules these processes, so it is non-
deterministic which process gets which process ID.
The order in which “Hello i” is printed will respect
the dependencies in the process creation tree, but
parallel branches in the tree may execute in any
order

e.g., “Hello 1” printed by P1 or P3 must appear after
“Hello 0” printed by P1, but it may appear before or
after “Hello 0” printed by PO

i=1 | 59101 |“Hello 1" [59103 | “Hello 17 [59102 |Hello 1 59105 |“Hello 1”
lPO\ lpz\

| P1\

L P\,

=2 C59101] [59104] [59103] [59107] [59102] [59106] [59105] [59108]
PO P4 P2 P5 P1 P6 P3 P7

“Hello 2" v*Hello 2" ¥'Hello 2" Y “Hello 2

“Hello 2 “Hello 2

“Hello 2" ¥ “Hello 2"

11

Quiz: Fork

int main () {
While (true) fork();
return O;

}

Ime@Proton ~ % ulimit -a
: cpu time (seconds)
+ file size (blocks)
: data seg size (kbytes)
: stack size (kbytes)
: core file size (blocks)

: address space (kbytes)
: locked-in-memory size (kbytes)
: processes
: file descriptors
me@Proton ~ % [

unlimited
unlimited
unlimited
8176

()
unlimited
unlimited
2666

2560

e Afork bomb is a type of denial-of-service
(DoS) attack designed to exhaust system
resources by creating an exponential
number of processes. This is achieved
through self-replicating code that
repeatedly calls the fork() system call. The
result is resource starvation, which can
slow down or crash the system.

e Prevention countermeasures:

— Limit User Processes: Use ulimit in Linux to
restrict the number of processes a user can
create:

» ulimit -u 30 # Limits user to 30 processes

— Configure /etc/security/limits.conf for
persistent limits:

» username hard nproc 30

12

1 #include <unistd.h>

2 1int main (void) {

3 pid t pidl = fork();

4 pid t pid2 = fork() - o
5 if (pidl>0 && pid2==0) {

6 if (pid3=fork()>0) {

7 pidd=fork () ;} ¢
8 } // end if .
9 return 0;

10} // end main

PO Call pidl=fork()

parent
continues

start
L3

child
process created

all pid2=fork()

59102

L4 Call pid2=fork(1 P1 \
59101 59103 59102 59104
45 CID N CI)
L6 pidl>0, pid2==0, pidl==0, P1 pidl==0,

l P2
rk() p1d2>0,stop pid2==0, stop
103

pid2>0, call pid3=f
stop 29 | 99105 '
pid3>0, pid3==0.

call pid4=fork()l PZ\ P4 stop

o [59103] C59106]P5

L7

Q: How many processes are generated in
total?

A: There are 6 processes in total.

The initial process PO calls pid1=fork() to
generate one child process P1. PO and P1
each calls pid2=fork() to generate child
processes P2 and P3.

The if condition (pidl > 0 && pid2 ==0) is
checked in all four processes PO to P3, and it
is true only in P2 created by the pid2=fork()
in PO, so P2 calls pid3=fork() to generate
child process P4.

The if condition (pid3> 0) is checked in both
P2 and P4. It is true in P2, so P2 calls
pid4=fork() to generate child process P5. It is
false in P4, so P4 stops here and does not call
any more fork().

13

Quiz: Fork

int main

oo w N

}

#include <unistd.h>

(void) {

if (pidl=fork()>0]| |pid2=fork()>0)
{pid3=fork () ;}
return O:

()

parent
continues

Call pidl=fork()

child
process created
pidl>0, call

oid3=fork ()

(59103 | I

P2 pld2>O c
pid3=fork(

pi(jizggéZ:fork() :
] P1~Q\\\\\\\‘
=11 | P1\Eldl
1d2——O Stop
(59102] [59105)

Q: How many processes are generated in total? In
C, the logical OR operator (| |) employs short-
circuit evaluation, meaning it evaluates
expressions from left to right and stops as soon as
the result of the entire expression is determined.
Specifically for (cond1| |cond2): If cond1 evaluates
to true (non-zero), the overall result of the | |
operation is already known to be true, so cond2 is
not evaluated. If cond1 evaluates to false (zero),
the evaluation proceeds to the next operand
cond2.

A: There are 5 processes in total.

The initial process PO calls pid1=fork() to create
child process P1. In PO, the if condition

(pid1>0] | ?) = (true&&?)=true, so PO skips the call
pid2=fork() and calls pid3=fork() to create child
process P2.

P1 has pid1==0, so it calls pid2=fork() and creates
child process P3. The if condition (pid1>0| |
pid2>0) is checked in both P1 and P3. In P1, it is
(false| |true)=true, so P1 calls pid3=fork() to
create child process P4. In P3, it is

(false| |false)=false, so it stops here and does not
call any more fork().

14

	Default Section
	Slide 1: CSC 112: Computer Operating Systems Lecture 2 Processes and Threads Exercises
	Slide 2: Wait() I
	Slide 3: Wait() I
	Slide 4: Wait() I with exec()
	Slide 5: Wait() I with exec()
	Slide 6: Wait() II
	Slide 7: Wait() II
	Slide 8: Quiz: Fork
	Slide 9: Quiz: Fork
	Slide 10: Quiz: Fork
	Slide 11: Quiz: Fork
	Slide 12: Quiz: Fork
	Slide 13
	Slide 14: Quiz: Fork

