
Computer Operating Systems

Midterm Exam Spring 2025

Department of Computer Science, 

Hofstra University



2

Q1. Multiple-choice. (20 pts)
1. What is a process in an operating system?

A) A static program stored on disk

B) An active entity with a program counter and stack

C) A thread of execution

D) A section of memory

Answer: B

2. What is dual-mode operation in an operating system?

A) Running two operating systems simultaneously  

B) Providing two modes: kernel mode and user mode  

C) Allowing two users to access the same process  

D) Switching between two CPUs dynamically  

Answer: B

3. What does "protection" in an operating system ensure?

A) That processes cannot interfere with each other or the OS itself  

B) That all applications run in kernel mode for efficiency  

C) That users have unrestricted access to hardware resources  

D) That only one application can run at a time on the machine  

Answer: A

4. Which of the following is NOT typically included in a process control block (PCB)?

A) Process ID

B) Program counter

C) Source code

D) Open file descriptors

Answer: C

5. What is the purpose of the fork() system call?

A) To create a new thread

B) To make a duplicate copy of the calling process

C) To execute a new program

D) To terminate a process

Answer: B

6. What is the purpose of the wait() system call?

A) Puts the calling process to sleep

B) Waits for any child process to terminate

C) Waits for any parent process to terminate

D) Waits for available CPU time

Answer: B

7. What is the main difference between a process and a thread?

A) Processes are in the kernel space, and threads are in the user space

B) Threads cannot have multiple instances, but processes can

C) Processes have their own address spaces, while threads can share an address space

D) Threads are managed by the kernel, while processes are managed by the user

Answer: C

8. What prevents starvation in the ticket lock implementation?  

A) Random backoff  

B) FIFO queue based on ticket numbers  

C) Priority inheritance

D) Timeout mechanisms

Answer: B

9. What ensures fairness in ticket locks?  

A) Test-and-Set instruction  

B) Fetch-and-Add atomic operation  

C) Compare-and-Swap  

D) Disabling interrupts  

Answer: B

10. What happens when sem_wait() is called on a semaphore with value 1?  

A) Decrements the value to 0 and does not block 

B) Increments the value to 2 and does not block

C) Blocks until sem_post() is called  

D) It does not modify the value and does not block

Answer: A



3

Q1. Multiple-choice. (20 pts)
11. Which of the following is NOT a necessary condition for deadlock?

A) Mutual exclusion

B) Hold and wait

C) No preemption

D) Fair Scheduling

Answer: D

12. In a Resource-Allocation Graph (RAG), a deadlock is certain if: 

A) There is a cycle and each resource has multiple instances 

B) There is no cycle

C) There is a cycle and all resources have single instances

D) A thread requests two resources simultaneously

Answer: C

13. In the context of the Dining Philosophers problem, which solution can prevent deadlock?

A) Allowing each philosopher to pick up forks in any order

B) Requiring each philosopher to pick up both forks simultaneously in one atomic operation

C) Requiring each philosopher to pick up his left fork before his right fork 

D) Removing all forks from the table

Answer: B

14. In the context of the two-armed lawyers problem, where there is a pile of chopsticks at the center of 
the table, wher which solution can prevent deadlock?

A) Allowing each lawyer to pick up chopsticks in any order

B) Requiring each lawyer to pick up both chopsticks simultaneously in one atomic operation

C) Requiring each lawyer to pick up his left chopstick before his right chopstick

D) Removing all chopsticks from the table

Answer: B

15. In the producer-consumer problem, why must the mutex be acquired after sem_wait(emptySlots)?

A) To prevent buffer overflow

B) To avoid deadlock

C) To ensure proper scheduling

D) To maintain thread priority

Answer: B

16. What is the main difference between spinlocks and semaphores?

A) Spinlocks use busy waiting, while semaphores allow threads to sleep

B) Spinlocks are faster in all scenarios

C) Semaphores can only be used for mutual exclusion

D) Spinlocks can only be used on single-core systems

Answer: A

17. What is the purpose of using a "while" loop instead of an "if" statement when checking a condition 
variable in a monitor?

A) To improve performance

B) To handle spurious wakeups

C) To reduce code complexity

D) To allow more threads to enter the critical section

Answer: B

18. Only in preemptive scheduling (not in non-preemptive scheduling), a process can transition directly 
from:

A) Running → Waiting

B) Running → Ready

C) Ready → Terminated

D) Waiting → Ready

Answer: B

19. Which of the following scheduling algorithm suffers from the Convoy effect, where short jobs are 
stuck behind long jobs?

A) SJF

B) SRTF

C) RR

D) FP

Answer: A

20. In Round Robin scheduling, if there are 10 jobs in the ready queue and time quantum=10ms, what's 
the maximum wait time for any job?

A) 40ms

B) 80ms

C) 90ms

D) 100ms

Answer: C



4

Q1 Multiple-choice questions: enter your answer keys here

1 2 3 4 5 6 7 8 9 10

B B A C B B C B B A

11 12 13 14 15 16 17 18 19 20

D C B B B A B B A C



5

Q2 Processes and Threads (20 pts)

• For these questions, assume there is no error, i.e., the return value of 
fork() is never negative. Assume round-robin scheduling algorithm 
like in Windows or Linux.

• What is the output of the program below? If there may be multiple 
possible outputs, list ALL possible outputs, and explain why.

• (You just need to provide the possible outputs and explain why. You 
do not need to draw the figures in the next slides to show the parent 
child relationships.)



6

Q2 a) (5 pts)

Output: 
Parent

• ANS: Parent\n
• Code inside if(ret == 0){} block is executed by 

Child process; code inside if(ret > 0){} block is 
executed by Parent process; code outside of 
if-then-else blocks is executed by both Child 
and Parent

• In Child process: exec() replaces the current 
process image with a new program called 
SOME_COMMAND. The child process will 
execute the command and terminate. The 
code following it (e.g., printf("Child\n")) will 
not be executed because it is now running 
SOME_COMMAND, not the code shown in the 
text box.

• In Parent process: wait for the child to finish 
using wait(NULL) and then prints "Parent\n“

– wait(NULL) waits for any child process to 
terminate, not a specific one. it returns PID of the 
terminated child process

– It works as a “synchronization barrier” between 
two processes

• If non-preemptive scheduling, then output is 
still “Parent”

int ret = fork();
if(ret == 0) {
  exec(SOME_COMMAND); //SOME_COMMAND is a Linux 
command that does not print anything
  printf("Child\n");
}
else {
  wait(NULL);
  printf("Parent\n")
}

59102

start

59101

parent 
continues child

process created

pid=fork()

wait(NULL)

“Parent”

exit()

exec()



7

Q2 b) (5 pts)

Output: 
123
213
231

• ANS: 123 or 213 or 231

• In Child process: printf("1") → 
exec(SOME_COMMAND). printf("3") 
in child will not be executed

• In Parent process: printf("2") → 
printf("3"), output 23

• The end result is any interleaving of 
23 and 1, which has 3 alternatives

• If non-preemptive scheduling, then 
output is 231, since Parent runs to 
completion before Child can start to 
run

int ret = fork();
if(ret==0) {
  printf("1");
  exec(SOME_COMMAND); //SOME_COMMAND is a Linux 
command that does not print anything
} else {
  printf("2");
}
printf("3");

59102

start

59101

parent 
continues child

process created

pid=fork()

exec()
“1”

“2”

“3”



8

Q2 c) (5 pts)
int i;

int ret = fork();

if(ret==0) {

  printf("1");

} else {

  printf("2");

}

printf("3");

Output: 
1323
2313
1233
2133

• ANS: 1323 or 2313 or 1233 or 2133

• In Child process: printf("1") → 
printf("3"), output 13

• In Parent process: printf("2") → 
printf("3"), output 23

• The end result is any interleaving of 
23 and 13, which has 4 alternatives

• If non-preemptive scheduling, then 
output is 2313, since Parent runs to 
completion before Child can start to 
run

59102

start

59101

parent 
continues child

process created

pid=fork()

“1”

“2”

“3”

“3”



9

Q2 d) (5 pts)
int main() {

  printf(“A”); 

  int pid = fork();

  printf(“B”); 

  if (pid>0) wait(NULL); 

  printf(“C”); 

}

Output: 
ABBCC
ABCBC

59102

start

59101

parent 
continues child

process created

“A”

“B”

“B”

“C”

pid=fork()

• ANS: ABBCC or ABCBC
• Parent prints A
• fork() is called. Concurrently:

– Parent prints B, then waits for child to finish
– Child prints B, then prints C

• Parent continues after child finishes execution, and 
prints C.

• Output sequence can be either ABBCC and ABCBC
– Initially parent prints A first
– Parent’s printing of B and child’s printing of B, C can interleave 

in arbitrary order, which has 3 alternatives, but only with two 
possible outputs BBC or BCB, since the output is the same if 
Parent prints B before Child prints B then C, or if Child prints B 
before Parent prints B, then Child prints C

– The parent’s wait(NULL) ensures that parent prints C last.

• If non-preemptive scheduling, then output is ABBCC, 
since Parent runs, prints AB until wait(NULL); then Child 
starts to run and prints BC; then Parent continues to run 
and prints C after Child exits.

– When Parent calls fork(), it does not yield to Child due to non-
preemptive scheduling.

– When Parent calls wait(NULL), it blocks and yields to Child. 
This is not pre-emption since Parent gives up the CPU 
voluntarily. 

wait(NULL)

“C”

exit()



10

Q3 Synchronization (10 pts)

• b) (5 pts) Consider the following concurrent program, where three threads 
access a shared variable x within critical sections protected by mutex locks. 
What are the possible final values of x after all threads finish execution? 
Explain why.

pthread_mutex_t mutex = 
PTHREAD_MUTEX_INITIALIZER;
int x=0; //x is a global shared variable

//Thread T1:
pthread_mutex_lock(&mutex);
x = x + 1;
pthread_mutex_unlock(&mutex);

//Thread T2:
pthread_mutex_lock(&mutex);
x = x - 1;
pthread_mutex_unlock(&mutex);

//Thread T3:
pthread_mutex_lock(&mutex);
x = x * 2;
pthread_mutex_unlock(&mutex);



11

Q3 Synchronization b) ANS
• ANS: 0, 1, and -1

• With mutex protection, no update to x will be erased. We consider all possible interleavings of the three 
threads.

• Case 1: if T1 and T2 both run before T3, then x=0

• Case 2: if T1 and T2 both run after T3, then x=0

• Case 3: if T1 before T3 before T2, then x=1

• Case 4: if T2 before T3 before T1, then x=-1

pthread_mutex_t mutex = 
PTHREAD_MUTEX_INITIALIZER;
int x=0; //x is a global shared variable

//Thread T1:
pthread_mutex_lock(&mutex);
x = x + 1;
pthread_mutex_unlock(&mutex);

//Thread T2:
pthread_mutex_lock(&mutex);
x = x - 1;
pthread_mutex_unlock(&mutex);

//Thread T3:
pthread_mutex_lock(&mutex);
x = x * 2;
pthread_mutex_unlock(&mutex);



12

Q3 Synchronization (10 pts)

• a) (5 pts) Consider the following concurrent program, where three threads 
access a shared variable x without mutex locks. What are the possible final 
values of x after all threads finish execution? Explain why. 

int x=0; //x is a global shared variable

//Thread T1:
x = x + 1;

//Thread T2:
x = x - 1;

//Thread T3:
x = x * 2;



13

Q3 Synchronization a) ANS

• ANS: -2,-1,0,1, or 2.
• Each update x statement to x can be “erased” by “sneaking in between” the load and store of another 

update x statement. The x=x+1 statement can either do nothing (if erased) or increase x by 1. The x=x-1 
statement can either do nothing (if erased) or decrease x by 1. The x=x*2 statement can either do 
nothing (if erased) or multiply x by 2.

• Case 1: none of the update statements are erased, so we have 3 possible outputs 0, 1, and -1 as in part 
b)

• Case 2: x=x+1 in T1 is erased, and T2 runs before T3, then x=-2. This is the minimum possible value of x.
• Case 3: x=x-1 in T2 is erased, and T1 runs before T3, then x=2. This is the maximum possible value of x.
• You may think of other cases, e.g., x=x*2 in T3 is erased, and T1, T2 run, then x=0; or x=x+1 in T1 and x=x-

1 in T2 are both erased, then x=0, and so on. But it is not necessary to enumerate all these cases, as we 
already have the possible outputs 0, 1, and -1 from part b), so these cases do not result in any new 
values.

int x=0; //x is a global shared variable

//Thread T1:
x = x + 1;

//Thread T2:
x = x - 1;

//Thread T3:
x = x * 2;



14

Q4 Deadlocks (20 pts) Morning Section

• Consider the following Resource Allocation Graph 
with 3 processes and 4 resource types. Number of 
small circles in the box of resource Rj indicates the 
number of instances of resource Rj. An arrow from 
process Ti to resource Rj indicates that Ti requests 1 
instance of Rj; an arrow from resource Rj to process Ti  
indicates that Ti is holding 1 instance of Rj. Run 
Banker’s algorithm to check if the current state is safe, 
by writing out the matrices Max, Allocation and Need, 
and vectors Total and Available. If yes, give a safe 
sequence of process completions and fill in the table 
with the sequence of process completions without 
deadlock, and available resources after the 
completion of each process.



15

Q4 Deadlocks (20 pts) Morning Section ANS

R1 R2 R3 R4

T1 1 0 1 0

T2 1 0 1 0

T3 0 1 1 0

R1 R2 R3 R4

T1 0 0 1 0

T2 1 0 1 0

T3 0 1 0 0

R1 R2 R3 R4

1 1 2 3

Max

(based on arrows from
resource to process)

Allocation

Total Available

R1 R2 R3 R4

0 0 0 3

R1 R2 R3 R4

T1 1 0 0 0

T2 0 0 0 0

T3 0 0 1 0

T1 T2 T3

R1 R2

R3
R4

Safe Sequence: T2, T3, T1 
or T2, T1, T3

R1 R2 R3 R4

0 0 0 3

T2 1 0 1 3

T3 1 1 1 3

T1 1 1 2 3

Available

(based on arrows from
process to resource)

Need



16

Q4 Deadlocks (20 pts) Evening Section

• Consider the following Resource Allocation Graph 
with 3 processes and 4 resource types. Number of 
small circles in the box of resource Rj indicates the 
number of instances of resource Rj. An arrow from 
process Ti to resource Rj indicates that Ti requests 1 
instance of Rj; an arrow from resource Rj to process Ti  
indicates that Ti is holding 1 instance of Rj. Run 
Banker’s algorithm to check if the current state is safe, 
by writing out the matrices Max, Allocation and Need, 
and vectors Total and Available. If yes, give a safe 
sequence of process completions and fill in the table 
with the sequence of process completions without 
deadlock, and available resources after the 
completion of each process.



17

Q4 Deadlocks (20 pts) Evening Section ANS 

R1 R2 R3 R4

T1 1 0 1 0

T2 1 1 1 0

T3 0 1 0 1

R1 R2 R3 R4

T1 0 0 1 0

T2 1 0 1 0

T3 0 1 0 1

R1 R2 R3 R4

1 1 2 3

Max Allocation

Total Available

Safe Sequence: T3, T2, T1

R1 R2 R3 R4

0 0 0 2

R1 R2 R3 R4

T1 1 0 0 0

T2 0 1 0 0

T3 0 0 0 0

Need

T1 T2 T3

R1 R2

R3
R4

R1 R2 R3 R4

0 0 0 2

T3 0 1 0 3

T2 1 1 1 3

T1 1 1 2 3

Available



18

Extra Exercise (Not in Exam)

R1 R2 R3 R4

T1 1 0 1 0

T2 1 1 1 0

T3 0 1 1 0

R1 R2 R3 R4

T1 0 0 1 0

T2 1 0 1 0

T3 0 1 0 0

R1 R2 R3 R4

1 1 2 3

Max Allocation

Total Available

R1 R2 R3 R4

0 0 0 3

R1 R2 R3 R4

T1 1 0 0 0

T2 0 1 0 0

T3 0 0 1 0

Need

T1 T2 T3

R1 R2

R3
R4

Deadlock, no safe sequence



19

Q5 Scheduling (30 pts)

• a) (10 pts) Consider the sequence of processes with CPU burst time in 
parentheses: P1(10ms), P2(2ms), P3(2ms) arriving at time 0 in the order of P1, 
P2, P3. Calculate the average response time under 1) First Come, First Served 
(FCFS). 2) Shortest Job First (SJF). 3) Shortest Remaining Time First (SRTF). 4) 
Round-Robin (RR) with time quantum 2. 5) Fixed-Priority scheduling with the 
priority ordering P3>P2>P1. (There is no need to draw the Gantt chart, but 
please show the response time of each process R1, R2, R3 and calculate 
R=(R1+R2+R3)/3.)

• ANS: 
• FCFS: P1->P2->P3, R=(10+12+14)/3=12
• SJF: P2->P3->P1 or P3->P2->P1, R=(14+2+4)/3=6.7 
• SRTF: P2->P3->P1 or P3->P2->P1, R=(14+2+4)/3=6.7 
• RR: P1(2)->P2(2)->P3(2)->P1(8): R=(14+4+6)/3=8 
• FP: P3->P2->P1, R=(14+4+2)/3=6.7



20

Q5 Scheduling (30 pts) Morning Section

• b) (20 pts) Consider the set of 2 processes whose arrival time and CPU/IO burst 
times are given below. For each scheduling algorithm (FCFS, SJF, SRTF, RR, Fixed-
Priority (FP)), draw the Gantt chart by filling in the table with the PID that runs in 
each time slot, and calculate the response time for each process, and the 
average response time. For RR scheduling, the time quantum is 1. For FP 
scheduling, assign P2 (PID 2) higher priority than P1 (PID 1). If a time slot is idle 
with no active process executing, then fill in X. (Except for any possible idle time 
slots at the end of schedule, leave them empty and do not fill in X.)

PID Arriv.
time

CPU 
Burst

IO 
Burst

CPU 
Burst

FCFS Resp.  
Time

SJF Resp.  
Time

SRTF Resp.  
Time

RR Resp.  
Time

FP Resp.  
Time

1 0 3 2 4

2 1 1 2 2

Avg RT Avg RT Avg RT Avg RT Avg RT



21

Q5 Scheduling (30 pts) Morning Section ANS

FCFS 1 1 1 2 X 1 1 1 1 2 2

SJF 1 1 1 2 X 1 1 1 1 2 2

SRTF 1 2 1 1 2 2 1 1 1 1

RR 1 2 1 1 2 2 1 1 1 1

FP 1 2 1 1 2 2 1 1 1 1

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Gantt Chart

P1 arrival
P2 arrival

PID Arriv.
time

CPU 
Burst

IO 
Burst

CPU 
Burst

FCFS 
Resp.  
Time

SJF Resp.  
Time

SRTF 
Resp.  
Time

RR Resp.  
Time

FP Resp.  
Time

1 0 3 2 4 9 9 10 10 10

2 1 1 2 2 10 10 5 5 5

Avg RT
9.5

Avg RT
9.5

Avg RT
7.5

Avg RT
7.5

Avg RT
7.5

With SRTF, P2 runs whenever it is ready (at times 1 and 4) since it has shorter 
remaining time than P1; With FP, P2 runs whenever it is ready (at times 1 and 4) 
since it has higher priority than P1; with FCFS and SJF, P2 runs when P1 has finished 
each of its CPU burst due to non-preemptive scheduling



22

Q5 Scheduling (30 pts) Evening Section

• b) (20 pts) Consider the set of 2 processes whose arrival time and CPU/IO burst 
times are given below. For each scheduling algorithm (FCFS, SJF, SRTF, RR, Fixed-
Priority (FP)), draw the Gantt chart by filling in the table with the PID that runs in 
each time slot, and calculate the response time for each process, and the 
average response time. For RR scheduling, the time quantum is 1. For FP 
scheduling, assign P2 (PID 2) higher priority than P1 (PID 1). If a time slot is idle 
with no active process executing, then fill in X. (Except for any possible idle time 
slots at the end of schedule, leave them empty and do not fill in X.)

PID Arriv.
time

CPU 
Burst

IO 
Burst

CPU 
Burst

FCFS 
Resp.  
Time

SJF Resp.  
Time

SRTF 
Resp.  
Time

RR Resp.  
Time

FP Resp.  
Time

1 0 3 2 4

2 1 1 3 3

Avg RT Avg RT Avg RT Avg RT Avg RT



23

Q5 Scheduling (30 pts) Evening Section ANS

FCFS 1 1 1 2 X 1 1 1 1 2 2 2

SJF 1 1 1 2 X 1 1 1 1 2 2 2

SRTF 1 2 1 1 X 2 2 2 1 1 1 1

RR 1 2 1 1 X 2 1 2 1 2 1 1

FP 1 2 1 1 X 2 2 2 1 1 1 1

Time 0 1 2 3 4 5 6 7 8 9 10 11 12

Gantt Chart

P1 arrival
P2 arrival

PID Arriv.
time

CPU 
Burst

IO 
Burst

CPU 
Burst

FCFS 
Resp.  
Time

SJF Resp.  
Time

SRTF 
Resp.  
Time

RR Resp.  
Time

FP Resp.  
Time

1 0 3 2 4 9 9 12 12 12

2 1 1 3 3 11 11 7 9 7

Avg RT
10

Avg RT
10

Avg RT
9.5

Avg RT
10.5

Avg RT
9.5

With SRTF, P2 runs whenever it is ready (at times 1 and 4) since it has shorter 
remaining time than P1; With FP, P2 runs whenever it is ready (at times 1 and 4) 
since it has higher priority than P1; with FCFS and SJF, P2 runs when P1 has finished 
each of its CPU burst due to non-preemptive scheduling


	Slide 1: Computer Operating Systems   Midterm Exam Spring 2025
	Slide 2: Q1. Multiple-choice. (20 pts)
	Slide 3: Q1. Multiple-choice. (20 pts)
	Slide 4: Q1 Multiple-choice questions: enter your answer keys here
	Slide 5: Q2 Processes and Threads (20 pts)
	Slide 6: Q2 a) (5 pts)
	Slide 7: Q2 b) (5 pts)
	Slide 8: Q2 c) (5 pts)
	Slide 9: Q2 d) (5 pts)
	Slide 10: Q3 Synchronization (10 pts)
	Slide 11: Q3 Synchronization b) ANS
	Slide 12: Q3 Synchronization (10 pts)
	Slide 13: Q3 Synchronization a) ANS
	Slide 14: Q4 Deadlocks (20 pts) Morning Section
	Slide 15: Q4 Deadlocks (20 pts) Morning Section ANS
	Slide 16: Q4 Deadlocks (20 pts) Evening Section
	Slide 17: Q4 Deadlocks (20 pts) Evening Section ANS 
	Slide 18: Extra Exercise (Not in Exam)
	Slide 19: Q5 Scheduling (30 pts)
	Slide 20: Q5 Scheduling (30 pts) Morning Section
	Slide 21: Q5 Scheduling (30 pts) Morning Section ANS
	Slide 22: Q5 Scheduling (30 pts) Evening Section
	Slide 23: Q5 Scheduling (30 pts) Evening Section ANS

