Computer Operating Systems

Midterm Exam Spring 2025

Department of Computer Science,
Hofstra University

Q1. Multiple-choice. (20 pts)

1. What is a process in an operating system?

A) A static program stored on disk

B) An active entity with a program counter and stack
C) A thread of execution

D) A section of memory

Answer: B

2. What is dual-mode operation in an operating system?
A) Running two operating systems simultaneously

B) Providing two modes: kernel mode and user mode
C) Allowing two users to access the same process

D) Switching between two CPUs dynamically

Answer: B

3. What does "protection" in an operating system ensure?

A) That processes cannot interfere with each other or the OS itself
B) That all applications run in kernel mode for efficiency

C) That users have unrestricted access to hardware resources

D) That only one application can run at a time on the machine
Answer: A

4. Which of the following is NOT typically included in a process control block (PCB)?
A) Process ID

B) Program counter

C) Source code

D) Open file descriptors

Answer: C

5. What is the purpose of the fork() system call?
A) To create a new thread

B) To make a duplicate copy of the calling process
C) To execute a new program

D) To terminate a process

Answer: B

6. What is the purpose of the wait() system call?
A) Puts the calling process to sleep

B) Waits for any child process to terminate

C) Waits for any parent process to terminate

D) Waits for available CPU time

Answer: B

7. What is the main difference between a process and a thread?

A) Processes are in the kernel space, and threads are in the user space

B) Threads cannot have multiple instances, but processes can

C) Processes have their own address spaces, while threads can share an address space
D) Threads are managed by the kernel, while processes are managed by the user
Answer: C

8. What prevents starvation in the ticket lock implementation?
A) Random backoff

B) FIFO queue based on ticket numbers

C) Priority inheritance

D) Timeout mechanisms

Answer: B

9. What ensures fairness in ticket locks?
A) Test-and-Set instruction

B) Fetch-and-Add atomic operation

C) Compare-and-Swap

D) Disabling interrupts

Answer: B

10. What happens when sem_wait() is called on a semaphore with value 1?
A) Decrements the value to 0 and does not block

B) Increments the value to 2 and does not block

C) Blocks until sem_post() is called

D) It does not modify the value and does not block

Answer: A

Q1. Multiple-choice. (20 pts)

11. Which of the following is NOT a necessary condition for deadlock?
A) Mutual exclusion

B) Hold and wait

C) No preemption

D) Fair Scheduling

Answer: D

12. In a Resource-Allocation Graph (RAG), a deadlock is certain if:
A) There is a cycle and each resource has multiple instances

B) There is no cycle

C) There is a cycle and all resources have single instances

D) A thread requests two resources simultaneously

Answer: C

13. In the context of the Dining Philosophers problem, which solution can prevent deadlock?
A) Allowing each philosopher to pick up forks in any order

B) Requiring each philosopher to pick up both forks simultaneously in one atomic operation
C) Requiring each philosopher to pick up his left fork before his right fork

D) Removing all forks from the table

Answer: B

14. In the context of the two-armed lawyers problem, where there is a pile of chopsticks at the center of
the table, wher which solution can prevent deadlock?

A) Allowing each lawyer to pick up chopsticks in any order

B) Requiring each lawyer to pick up both chopsticks simultaneously in one atomic operation
C) Requiring each lawyer to pick up his left chopstick before his right chopstick

D) Removing all chopsticks from the table

Answer: B

15. In the producer-consumer problem, why must the mutex be acquired after sem_wait(emptySlots)?
A) To prevent buffer overflow

B) To avoid deadlock

C) To ensure proper scheduling

D) To maintain thread priority

Answer: B

16. What is the main difference between spinlocks and semaphores?

A) Spinlocks use busy waiting, while semaphores allow threads to sleep
B) Spinlocks are faster in all scenarios

C) Semaphores can only be used for mutual exclusion

D) Spinlocks can only be used on single-core systems

Answer: A

17. What is the purpose of using a "while" loop instead of an "if" statement when checking a condition
variable in a monitor?

A) To improve performance

B) To handle spurious wakeups

C) To reduce code complexity

D) To allow more threads to enter the critical section
Answer: B

18. OIflly in preemptive scheduling (not in non-preemptive scheduling), a process can transition directly
rom:

A) Running — Waiting
B) Running — Ready
C) Ready — Terminated
D) Waiting — Ready
Answer: B

19. Which of the following scheduling algorithm suffers from the Convoy effect, where short jobs are
stuck behind long jobs?

A) SJF

B) SRTF
C)RR

D) FP
Answer: A

20. In Round Robin scheduling, if there are 10 jobs in the ready queue and time quantum=10ms, what's
the maximum wait time for any job?

A) 40ms
B) 80ms
C) 90ms
D) 100ms
Answer: C

Q1 Multiple-choice questions: enter your answer keys here

11 |12 (13 |14 |15 |16 | 17 | 18 | 19 | 20

Q2 Processes and Threads (20 pts)

e For these questions, assume there is no error, i.e., the return value of
fork() is never negative. Assume round-robin scheduling algorithm
like in Windows or Linux.

e What is the output of the program below? If there may be multiple
possible outputs, list ALL possible outputs, and explain why.

e (You just need to provide the possible outputs and explain why. You
do not need to draw the figures in the next slides to show the parent
child relationships.)

Q2 a) (5 pts)

int ret = fork();
if (ret == 0) {

exec (SOME COMMAND); //SOME COMMAND is a

command that does not print anything

printf ("Child\n");

else {

}

walt (NULL) ;
printf ("Parent\n")

Linux °

start
parent _
continues child
process created

Output:
Parent

.

exec ()

v

exit ()

wait (NULL)®

l “Parent”

ANS: Parent\n

Code inside if(ret == 0){} block is executed by
Child process; code inside if(ret > 0){} block is
executed by Parent process; code outside of
if-then-else blocks is executed by both Child
and Parent

In Child process: exec() replaces the current
process image with a new program called
SOME_COMMAND. The child process will
execute the command and terminate. The
code following it (e.g., printf("Child\n")) will
not be executed because it is now running
SOME_COMMAND, not the code shown in the
text box.

In Parent process: wait for the child to finish
using wait(NULL) and then prints "Parent\n”

— wait(NULL) waits for any child process to
terminate, not a specific one. it returns PID of the
terminated child process

— It works as a “synchronization barrier” between
two processes

If non-preemptive scheduling, then output is
still “Parent”

Q2 b) (5 pts)

int ret = fork();

i£(ret=0) [e ANS: 123 or 213 or 231

printf ("1"); . .

connand that does not prine anyening - |* In Child process: printf("1") >

1 Srinte ("2m) ; exec(SOME_COMMAND). printf("3")
printf ("3"); in child will not be executed

Output: |® In Parent process: printf("2") -

123 printf("3"), output 23
pid=fork () 213 : . :
231 e The end result is any interleaving of

parent
continues

23 and 1, which has 3 alternatives

process created

2" e If non-preemptive scheduling, then
"3’ L1 output is 231, since Parent runs to

exec ()

L completion before Child can start to
run

Q2 c) (5 pts)

nt it = fork() Output: | * ANS: 1323 or 2313 or 1233 or 2133

s gzlg e In Child process: printf("1") >

el (L 1233 printf("3"), output 13

L inte(na) e133 |n Parent process: printf("2") -
printf("3"), output 23

start e The end result is any interleaving of

23 and 13, which has 4 alternatives
parent

continues o s cromd e If non-preemptive scheduling, then

‘2" output is 2313, since Parent runs to

£ 11 completion before Child can start to
run

pid=fork()

\4

Q2 d) (5 pts)

int main() {
printf (“A”);
int pid = fork();
printf (“B”);

if (pid>0) wait (NULL) ;

printf (“C”);

parent
continues

“B”

v

pid=fork ()

process created

Output:
ABBCC
ABCBC

“B”
“C”

wait (NULL) <

o
!

exit ()

ANS: ABBCC or ABCBC
Parent prints A

fork() is called. Concurrently:
— Parent prints B, then waits for child to finish
— Child prints B, then prints C

Parent continues after child finishes execution, and
prints C.

Output sequence can be either ABBCC and ABCBC

— Initially parent prints A first

— Parent’s printing of B and child’s printing of B, C can interleave
in arbitrary order, which has 3 alternatives, but only with two
possible outputs BBC or BCB, since the output is the same if
Parent prints B before Child prints B then C, or if Child prints B
before Parent prints B, then Child prints C

— The parent’s wait(NULL) ensures that parent prints C last.

If non-preemptive scheduling, then output is ABBCC,
since Parent runs, prints AB until wait(NULL); then Child
starts to run and prints BC; then Parent continues to run
and prints C after Child exits.

— When Parent calls fork(), it does not yield to Child due to non-
preemptive scheduling.

— When Parent calls wait(NULL), it blocks and yields to Child.
This is not pre-emption since Parent gives up the CPU
voluntarily.

Q3 Synchronization (10 pts)

e b) (5 pts) Consider the following concurrent program, where three threads
access a shared variable x within critical sections protected by mutex locks.
What are the possible final values of x after all threads finish execution?

Explain why.

pthread mutex t mutex =
PTHREAD MUTEX INITIALIZER;
int x=07 //x Is a global shared variable

//Thread T1:

pthread mutex lock (&mutex) ;

X =x + 1; o

pthread mutex unlock (&mutex) ;

//Thread T2:

pthread mutex lock (&mutex) ;

X =x - 1; o

pthread mutex unlock (&mutex) ;

//Thread T3:

pthread mutex lock (&mutex) ;
X =X * 2
pthread mutex unlock (&mutex) ;

Q3 Synchronization b) ANS

ANS: 0, 1, and -1

With mutex protection, no update to x will be erased. We consider all possible interleavings of the three
threads.

Case 1:if T1 and T2 both run before T3, then x=0
Case 2:if T1 and T2 both run after T3, then x=0
Case 3:if T1 before T3 before T2, then x=1

Case 4: if T2 before T3 before T1, then x=-1

pthread mutex t mutex =
PTHREAD MUTEX INITIALIZER;
int x=07 //x Is a global shared variable

//Thread T1:

pthread mutex lock (&mutex) ;

X =x + 1; o

pthread mutex unlock (&mutex) ;

//Thread T2:

pthread mutex lock (&mutex) ;

X =x - 1; o

pthread mutex unlock (&mutex) ;

//Thread T3:

pthread mutex lock (&mutex) ;

X =X * 2; o

pthread mutex unlock (&mutex) ;

Q3 Synchronization (10 pts)

e a) (5 pts) Consider the following concurrent program, where three threads
access a shared variable x without mutex locks. What are the possible final
values of x after all threads finish execution? Explain why.

int x=0; //x 1s a global shared variable

//Thread T1:
X =x + 1;

//Thread T2:
Xx =x - 1;

//Thread T3:
X =X * 2;

12

Q3 Synchronization a) ANS

ANS: -2,-1,0,1, or 2.

Each update x statement to x can be “erased” by “sneaking in between” the load and store of another
update x statement. The x=x+1 statement can either do nothing (if erased) or increase x by 1. The x=x-1
statement can either do nothing (if erased) or decrease x by 1. The x=x*2 statement can either do

nothing (if erased) or multiply x by 2.

g;ase 1: none of the update statements are erased, so we have 3 possible outputs 0, 1, and -1 as in part
Case 2: x=x+1in Tl is erased, and T2 runs before T3, then x=-2. This is the minimum possible value of x.
Case 3: x=x-1in T2 is erased, and T1 runs before T3, then x=2. This is the maximum possible value of x.

You may think of other cases, e.g., x=x*2 in T3 is erased, and T1, T2 run, then x=0; or x=x+1 in T1 and x=x-
1in T2 are both erased, then x=0, and so on. But it is not necessary to enumerate all these cases, as we
aIrIeady have the possible outputs O, 1, and -1 from part b), so these cases do not result in any new
values.

int x=0; //x 1s a global shared variable

//Thread T1:
x =x + 1;

//Thread T2:
X =x - 1;

//Thread T3:
X =X * 2;

13

Q4 Deadlocks (20 pts) Morning Section

e Consider the following Resource Allocation Graph
with 3 processes and 4 resource types. Number of
small circles in the box of resource Rj indicates the
number of instances of resource Rj. An arrow from
process Ti to resource Rj indicates that Ti requests 1
instance of Rj; an arrow from resource Rj to process Ti
indicates that Ti is holding 1 instance of Rj. Run
Banker’s algorithm to check if the current state is safe,
by writing out the matrices Max, Allocation and Need,
and vectors Total and Available. If yes, give a safe
sequence of process completions and fill in the table
with the sequence of process completions without
deadlock, and available resources after the
completion of each process.

14

Q4 Deadlocks (20 pts) Morning Section ANS

(based on arrows from (based on arrows from

resource to process) process to resource)
Allocation Need
-mmm -EIEE -EIEE = -
T1 O 0 O 1 2

T21010T210 T2 0 0 O O

¥ N IR
T3 0 1.1 O T3 O 1 O O T3 0 0 1 O -
Total Available
R1|R2|R3|R4 R1|R2|R3|R4 Available
1 1 2 3 \:/ 0
(o]

0 0 0 3 -EIEE

O O 3
T2 1 0 1 3 R; =
4
Safe Sequence: T2, T3, T1 L T
T 1 1 2 3

or T2, T1, T3

Q4 Deadlocks (20 pts) Evening Section

e Consider the following Resource Allocation Graph
with 3 processes and 4 resource types. Number of
small circles in the box of resource Rj indicates the
number of instances of resource Rj. An arrow from
process Ti to resource Rj indicates that Ti requests 1
instance of Rj; an arrow from resource Rj to process Ti
indicates that Ti is holding 1 instance of Rj. Run
Banker’s algorithm to check if the current state is safe,
by writing out the matrices Max, Allocation and Need,
and vectors Total and Available. If yes, give a safe
sequence of process completions and fill in the table
with the sequence of process completions without
deadlock, and available resources after the
completion of each process.

16

Q4 Deadlocks (20 pts) Evening Section ANS

Allocation Need
-mmm -mmm -mmm Ri| IR
T1 O 0 O 2N A
T21110T21010 T2 0 1 O O
T30 1 0 1 T30 1 01 T30 0 0 O @
Total Available
mmm mmmm Available \:/
1 1 2 3 0 0 0 2 -Elmm °
R3
R,

T2 1

O O
T3010
1 1
T 1 1 2

w w w N

Safe Sequence: T3, T2, T1

Extra Exercise (Not in Exam)

Allocation Need

-E.IEEI -mmm -EIEE

T1 O 0 O

T21110T21010 T2 0 1 0 O

T3 0 1.1 O T3 O 1 O O T3 0 0 1 O
Total Available

R1|R2|R3|R4 EIEEEI

1 1 2 3 O 0 O

Deadlock, no safe sequence

18

Q5 Scheduling (30 pts)

* a) (10 pts) Consider the sequence of processes with CPU burst time in
parentheses: P1(10ms), P2(2ms), P3(2ms) arriving at time O in the order of P1,
P2, P3. Calculate the average response time under 1) First Come, First Served
(FCFS). 2) Shortest Job First (SJF). 3) Shortest Remaining Time First (SRTF). 4)
Round-Robin (RR) with time quantum 2. 5) Fixed-Priority scheduling with the
priority ordering P3>P2>P1. (There is no need to draw the Gantt chart, but
please show the response time of each process R1, R2, R3 and calculate
R=(R1+R2+R3)/3.)

e ANS:

e FCFS: P1->P2->P3, R=(10+12+14)/3=12

e SJF: P2->P3->P1 or P3->P2->P1, R=(14+2+4)/3=6.7

e SRTF: P2->P3->P1 or P3->P2->P1, R=(14+2+4)/3=6.7
e RR: P1(2)->P2(2)->P3(2)->P1(8): R=(14+4+6)/3=8

e FP: P3->P2->P1, R=(14+4+2)/3=6.7

19

Q5 Scheduling (30 pts) Morning Section

e b) (20 pts) Consider the set of 2 processes whose arrival time and CPU/I10 burst
times are given below. For each scheduling algorithm (FCFS, SJF, SRTF, RR, Fixed-
Priority (FP)), draw the Gantt chart by filling in the table with the PID that runs in

each time slot, and calculate the response time for each process, and the
average response time. For RR scheduling, the time quantum is 1. For FP

scheduling, assign P2 (PID 2) higher priority than P1 (PID 1). If a time slot is idle
with no active process executing, then fill in X. (Except for any possible idle time
slots at the end of schedule, leave them empty and do not fill in X.)

PID | Arriv. CPU IO CPU|FCFS Resp.| SJF Resp.|SRTF Resp.| RRResp.| FP Resp.
tfime | Burst| Burst| Burst Time Time Time Time Time

1 0 3 2 4

2 1 1 2 2
Avg RT Avg RT Avg RT Avg RT Avg RT

20

Q5 Scheduling (30 pts) Morning Section ANS

PID Arriv. CPU IO CPU FCFS|SJF Resp. SRTF| RR Resp.| FP Resp.
Time Burst Burst Burst Resp. Time Resp. Time Time
Time Time
1 0 3 2 4 9 9 10 10 10
2 1 1 2 2 10 10 5 5 5
AvgRT | AvgRT| AvgRT| AvgRT| AvgRT
9.5 9.5 7.5 7.5 7.5
FCFS |1 |1 |1 |2 | X |1 |1]|1]1}]2]|°2
SJF 1|1 |1 |2 |X|1 |11 |12]2
SRTF| 1 (2|1 |12 |2 11|11
RR 11211112211 1]1
FP 1121112211 1]1

Tme O 1 2 3 4 H 6 7 8 9 10 11 12
Gantt Chart

P2 arrival [with SRTF, P2 runs whenever it is ready (at times 1 and 4) since it has shorter
P1 arrival remaining time than P1; With FP, P2 runs whenever it is ready (at times 1 and 4)
since it has higher priority than P1; with FCFS and SJF, P2 runs when P1 has finished
each of its CPU burst due to non-preemptive scheduling

Q5 Scheduling (30 pts) Evening Section

e b) (20 pts) Consider the set of 2 processes whose arrival time and CPU/I10 burst
times are given below. For each scheduling algorithm (FCFS, SJF, SRTF, RR, Fixed-
Priority (FP)), draw the Gantt chart by filling in the table with the PID that runs in
each time slot, and calculate the response time for each process, and the
average response time. For RR scheduling, the time quantum is 1. For FP
scheduling, assign P2 (PID 2) higher priority than P1 (PID 1). If a time slot is idle
with no active process executing, then fill in X. (Except for any possible idle time
slots at the end of schedule, leave them empty and do not fill in X.)

PID Arriv, CPU IO CPU FCFS|SJF Resp. SRTF| RR Resp.| FP Resp.
Time Burst Burst Burst Resp. Time Resp. Time Time
Time Time
1 0 3 2 4
2 1 1 3 3
AvgRT | AvgRT| AvgRT| AvgRT| AvgRT

22

Q5 Scheduling (30 pts) Evening Section ANS

PID Arriv. CPU IO CPU FCFS|SJF Resp. SRTF| RR Resp.| FP Resp.
time Burst Burst Burst Resp. Time Resp. Time Time
Time Time

1 0 3 2 4 9 9 12 12 12
2 1 1 3 3 11 11 7 9 7
AvgRT | AvgRT| AvgRT| AvgRT| AvgRT
10 10 95 10.5 95

FCFS | 1 1 112 | X1 1 1 11212 2

SJF 1 1 112 | X |1 1 1 1 (2|2]| 2

SRTF | 1 | 2 1 1 ([X| 2|2 | 2|1 1 1 1

RR 112 |1 1|1 X(2|1|2]|1]|2]|1 1

FP 1|2 1 1 ([X| 2|2 | 2|1 1 1 1

Tme O 1 2 3 4 5 6 7 8 9 10 11 12
| Gantt Chart
EZ arrival [with SRTF, P2 runs whenever it is ready (at times 1 and 4) since it has shorter
P1 arrival remaining time than P1; With FP, P2 runs whenever it is ready (at times 1 and 4)

since it has higher priority than P1; with FCFS and SJF, P2 runs when P1 has finished
each of its CPU burst due to non-preemptive scheduling

	Slide 1: Computer Operating Systems Midterm Exam Spring 2025
	Slide 2: Q1. Multiple-choice. (20 pts)
	Slide 3: Q1. Multiple-choice. (20 pts)
	Slide 4: Q1 Multiple-choice questions: enter your answer keys here
	Slide 5: Q2 Processes and Threads (20 pts)
	Slide 6: Q2 a) (5 pts)
	Slide 7: Q2 b) (5 pts)
	Slide 8: Q2 c) (5 pts)
	Slide 9: Q2 d) (5 pts)
	Slide 10: Q3 Synchronization (10 pts)
	Slide 11: Q3 Synchronization b) ANS
	Slide 12: Q3 Synchronization (10 pts)
	Slide 13: Q3 Synchronization a) ANS
	Slide 14: Q4 Deadlocks (20 pts) Morning Section
	Slide 15: Q4 Deadlocks (20 pts) Morning Section ANS
	Slide 16: Q4 Deadlocks (20 pts) Evening Section
	Slide 17: Q4 Deadlocks (20 pts) Evening Section ANS
	Slide 18: Extra Exercise (Not in Exam)
	Slide 19: Q5 Scheduling (30 pts)
	Slide 20: Q5 Scheduling (30 pts) Morning Section
	Slide 21: Q5 Scheduling (30 pts) Morning Section ANS
	Slide 22: Q5 Scheduling (30 pts) Evening Section
	Slide 23: Q5 Scheduling (30 pts) Evening Section ANS

