
Computer Operating Systems

Midterm Exam Spring 2025

Department of Computer Science,

Hofstra University

2

Q1 Multiple-choice questions: enter your answer keys here

1 2 3 4 5 6 7 8 9 10

B B C C A C B B B C

11 12 13 14 15 16 17 18 19 20

C B B C C C C C B A

3

Q1. Multiple-choice. (20 pts)
1. What is the "kernel" in an operating system?
A) The hardware component managing memory
B) The one program running at all times on a computer
C) A user interface for applications
D) A type of application program
Answer: B

2. What is dual-mode operation in an operating system?
A) Running two operating systems simultaneously
B) Providing two modes: kernel mode and user mode
C) Allowing two users to access the same process
D) Switching between two CPUs dynamically
Answer: B

3. Which system call replaces the current process image with a new one?
a) `fork()`
b) `wait()`
c) `exec()`
d) `exit()`
Answer: C

4. What is the purpose of the `wait()` system call?
a) To create a new process
b) To wait for I/O operations to complete
c) To suspend the parent process until a child process terminates
d) To destroy a process
Answer: C

5. What is the difference between `wait()` and `waitpid()`?
a) `waitpid()` allows specifying which child process to wait for, while `wait()` does not.
b) `wait()` waits for all processes, while `waitpid()` waits only for threads.
c) Both are identical in functionality.
d) `waitpid()` suspends processes, while `wait()` terminates them.
Answer: A

6. In which state is a process when it is waiting for an I/O operation to complete?
a) READY
b) RUNNING
c) BLOCKED
d) TERMINATED
Answer: C

7. What is the primary advantage of threads over processes?
a) Threads have separate address spaces.
b) Threads are cheaper to create and manage than processes.
c) Threads cannot share resources like processes can.
d) Threads only exist in kernel mode.
Answer: B

8. What does multithreading allow in modern operating systems?
a) Multiple address spaces per thread
b) Concurrent execution within the same address space
c) Execution of only one thread at any time in a system
d) Elimination of kernel threads
Answer: B

9. In the Readers/Writers problem, why might writers starve?
A) Writers have higher priority
B) New readers continuously acquire the lock before writers
C) Semaphores are initialized incorrectly
D) Mutex locks are not used
Answer: B

10. Which synchronization primitive combines a mutex with condition variables?
A) Spinlock
B) Semaphore
C) Monitor
D) Ticket lock
Answer: C

4

Q1. Multiple-choice. (20 pts)
11. What happens when sem_wait() is called on a semaphore with value 0?

A) Returns immediately

B) Increments the value to +1

C) Blocks until sem_post() is called

D) Causes a segmentation fault

Answer: C

12. Which condition variable operation wakes all waiting threads?

A) pthread_cond_signal()

B) pthread_cond_broadcast()

C) pthread_cond_wait()

D) pthread_cond_init()

Answer: B

13. A counting semaphore initialized to N allows:

A) Only one thread to access a resource

B) Up to N threads to access a resource simultaneously

C) Threads to bypass mutex locks

D) Priority inversion to occur

Answer: B

14. Which condition is NOT a necessary condition for deadlock?

A) Mutual exclusion

B) Hold-and-wait

C) Starvation

D) Circular wait

Answer: C

15. In a Resource-Allocation Graph (RAG), a deadlock is certain if:

A) There is a cycle and each resource has multiple instances

B) There is no cycle

C) There is a cycle and all resources have single instances

D) A thread requests two resources simultaneously

Answer: C

16. In a Resource Allocation Graph (RAG) with a cycle and multi-instance resources:

A) Deadlock is certain

B) Deadlock is impossible

C) Deadlock is possible but not certain

D) Starvation must occur

Answer: C

17. In Round Robin scheduling, if there are 10 jobs in the ready queue and time quantum=10ms,
what's the maximum wait time for any job?

A) 40ms

B) 80ms

C) 90ms

D) 100ms

Answer: C

18. Which scheduling algorithm requires prior knowledge of job execution times?

A) FCFS

B) RR

C) SJF

D) Multilevel Queue

Answer: C

19. In exponential averaging for burst prediction (τₙ = αtₙ₋₁ + (1-α)τₙ₋₁), what does α=1 imply?

A) Only consider historical average

B) Only consider most recent burst

C) Equal weight to all bursts

D) No prediction capability

Answer: B

20. What percentage of CPU time is lost to context switching if quantum=100 ms and switch
cost=1 ms?

A) 1%

B) 2%

C) 5%

D) 10%

Answer: A

5

Q2 Processes and Threads (20 pts)

• For these questions, assume there is no error, i.e., the return value of
fork() is never negative. Assume round-robin scheduling algorithm
like in Windows or Linux. (You need to provide the possible outputs
and explain why. You do not need to draw the figures to show the
parent child relationships.)

6

Q2 Processes and Threads (a) ANS

• What is the output of this program?
If there may be multiple possible
outputs, list ALL possible outputs,
and explain why. Assume the virtual
memory address of variable a in the
initial process, &a = 0x12345678.

• ANS: Arbitrary interleavings
between parent’s and child’s
printout:

– Parent: int a is 2 at 0x12345678 \n
– Child: int a is 0 at 0x12345678 \n

• Explanation: Processes do not share
the same memory space, so a = 1+1
= 2 in parent, and a = 1-1 = 0 in child.
Fork copies the address space of the
parent to the child, so both parent
and child print the same memory
address &a = 0x12345678. They
both write to the same file
descriptor STDOUT, since file
descriptors are copied over to the
new process.

1 int main(void) {

2 int a = 1;

3 pid_t fork_ret = fork();

4 if (fork_ret > 0) {

5 a++;

6 fprintf(stdout, "Parent: int a is %d at %p\n", a, &a);

7 } else if (fork_ret == 0) {

8 a--;

9 fprintf(stdout, "Child: int a is %d at %p\n", a, &a);

10 } else {

11 printf(“Fork error");

12 }

13 }

7

Q2 Processes and Threads (b) ANS
• For these questions, assume there is no error, i.e., all

fork calls succeed, and the return value of fork() is
never negative.

• 1. What does this program print?
• ANS: The program stops after printing 3, giving an

output of
– 0
– 1
– 2
– 3
– [Output of the 'ls' command, showing files in the current

directory]

• Explanation: The program loops and prints the
numbers 0, 1, 2, and 3. When i is 3, the execv function
is called, which replaces the current process' memory
and code with the /bin/ls program, and prints the
current directory contents, then terminates.

• Explanation of execv("/bin/ls", argv);
– The first argument ("/bin/ls") tells the operating system

which executable file to load and run. This must be a
valid path to the program.

– The second argument (argv) is an array of strings that
gets passed to the main function of the new program (ls
in this case).

• argv[0] = "/bin/ls";
– The very first element of the argv array (argv[0]) that a

program receives is its own name or the path that was
used to execute it.​

– When you run ls from your shell, the shell sets argv[0] to
"ls" before executing the program. The ls program (and
many others) uses argv[0] to know its own name, which
is often used for printing error messages (e.g., "ls:
cannot access 'no_such_file'").

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 execv("/bin/ls", argv);

10 }

11 }

12 return 0;

13 }

0

1

2

3

ls

Output

8

Q2 Processes and Threads (c) ANS

• For these questions,
assume there is no error,
i.e., all fork calls succeed,
and the return value of
fork() is never negative.
What does this program
print?

• ANS: Parent prints 0 to 3,
then calls fork() to create
a child. Currently with
arbitrary interleavings:

– Parent prints 4 to 9.

– Child prints the full output
of ls command then
terminates.

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 if(fork() == 0)

10 execv("/bin/ls", argv);

11 }

12 return 0;

13 }

0

1

2

3

4

5

6

7

8

9

ls
ChildParent

Output

9

Q2 Processes and Threads (d) ANS

• For these questions,
assume there is no error,
i.e., all fork calls succeed,
and the return value of
fork() is never negative.
What does this program
print?

• ANS: Parent prints 0 to 3,
then calls fork() to create
a child. Currently with
arbitrary interleavings:

– Parent prints the full output
of ls command then
terminates.

– Child prints 4 to 9.

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 if(fork() > 0)

10 execv("/bin/ls", argv);

11 }

12 return 0;

13 }

0

1

2

3

4

5

6

7

8

9

ls
ChildParent

10

Q2 Processes and Threads (e) ANS

• For these questions, assume
there is no error, i.e., all fork
calls succeed, and the return
value of fork() is never
negative. What does this
program print?

• ANS: Parent prints 0 to 3,
then calls fork() to create a
child. Sequentially (with no
interleaving)

– Parent calls wait(NULL) and
blocks.

– Child executes execv and
prints the output of the ls
command, then terminates.

– Parent resumes execution and
continues its loop, printing 4
to 9

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 ret = fork();

10 if(ret == 0)

11 execv("/bin/ls", argv);

12 if(ret > 0)

13 wait(NULL);

14 }

12 return 0;

13 }

0

1

2

3

4

5

6

7

8

9

ls

Child

Parent

11

Q3 Synchronization (a) ANS
• (a) (5 pts) Consider the following concurrent program, where three threads access a

shared variable x within critical sections protected by mutex locks. What are the
possible final values of x after all threads finish execution? Explain why.

• ANS: 0, -1, and 1

• With mutex protection, no update to x will be erased. We consider all possible
interleavings of the three threads.

– Case 1: if T1 and T2 both run before T3, then x=0

– Case 2: if T1 and T2 both run after T3, then x=0

– Case 3: if T1 before T3 before T2, then x=-1

– Case 4: if T2 before T3 before T1, then x=1

pthread_mutex_t mutex =
PTHREAD_MUTEX_INITIALIZER; //mutex is a
global shared mutex
int x=0; //x is a global shared variable

//Thread T1:
pthread_mutex_lock(&mutex);
x = x + 2;
pthread_mutex_unlock(&mutex);

//Thread T2:
pthread_mutex_lock(&mutex);
x = x - 2;
pthread_mutex_unlock(&mutex);

//Thread T3:
pthread_mutex_lock(&mutex);
x = x / 2;
pthread_mutex_unlock(&mutex);

12

Q3 Synchronization (b) ANS
• (b) (5 pts) Consider the following concurrent program, where three threads access a shared variable x

without mutex locks. What are the possible final values of x after all threads finish execution? Explain
why.

• ANS: -2,-1,0,1, or 2.
• Each update statement to x can be “erased” by “sneaking in between” the load and store of another

update x statement. (c.f. Slide 5 “Race Condition” in L3 Synchronization.) The x=x+2 statement can either
do nothing (if erased) or increase x by 2. The x=x-2 statement can either do nothing (if erased) or
decrease x by 2. The x=x/2 statement can either do nothing (if erased) or divide x by 2.

• Case 1: none of the update statements are erased, so we have 3 possible outputs 0, -1, and 1 as in part a)
• Case 2: x=x+2 in T1 and x=x/2 in T3 are both erased, so only x=x-2 in T2 runs successfully, then x=-2. This

is the minimum possible value of x.
• Case 2: x=x-2 in T2 and x=x/2 in T3 are both erased, so only x=x+2 in T1 runs successfully, then x=2. This is

the maximum possible value of x.
• You may think of other possible cases, but it is not necessary to enumerate all of them, since they do not

result in any new values for x.

int x=0; //x is a global shared variable

//Thread T1:
x = x + 2;

//Thread T2:
x = x - 2;

//Thread T3:
x = x / 2;

13

Q4 Deadlocks (20 pts)

• Consider the following Resource Allocation Graph with 4 processes and 2
resource types. Number of small circles in the box of resource Rj indicates
the number of instances of resource Rj. An arrow from process Ti to
resource Rj indicates that Ti requests 1 instance of Rj; an arrow from
resource Rj to process Ti indicates that Ti is holding 1 instance of Rj.

• Run Banker’s algorithm to check if the current state is safe, by writing out
the matrices Max, Allocation and Need, and vectors Total and Available. If
yes, give a safe sequence of process completions and fill in the table with
the sequence of process completions without deadlock, and available
resources after the completion of each process.

14

Q4 Deadlocks Con’t (20 pts)

R1 R2

T1

T2

T3

T4

R1 R2

Max Allocation

Total Available

R1 R2

Need

T1

T2

T3

R2

R1

T4

R1 R2

T1

T2

T3

T4

R1 R2

T1

T2

T3

T4

R1 R2

Init 0 0

Available

T1

T2

T3

R2

R1

T4

(a) (b)

15

Q4 Deadlocks (a) ANS

R1 R2

T1 1 1

T2 1 0

T3 1 1

T4 0 1

R1 R2

2 2

Max Allocation

Total Available

R1 R2

0 0

Need

No deadlock

T1

T2

T3

R2

R1

T4

Cycle,

but No Deadlock

(T2 or T4 may release res)

R1 R2

T1 0 1

T2 1 0

T3 1 0

T4 0 1

R1 R2

T1 1 0

T2 0 0

T3 0 1

T4 0 0

Safe Sequence: T4, T3, T1, T2)
(or T2, T4, T1, T3)
Or other as T2, T4 can finish anytime

Available

R1 R2

Init 0 0

T4 0 1

T3 1 1

T1 1 2

T2 2 2

16

Q4 Deadlocks (b) ANS

R1 R2

T1 1 1

T2 1 0

T3 1 1

T4 0 1

R1 R2

1 2

Max Allocation

Total Available

R1 R2

0 0

Need

No deadlock

T1

T2

T3

R2

R1

T4

Cycle,

but No Deadlock

(T4 may release res)

R1 R2

T1 0 1

T2 0 0

T3 1 0

T4 0 1

R1 R2

T1 1 0

T2 1 0

T3 0 1

T4 0 0

Safe Sequence: T4, T3, T1, T2)
(or T4, T3, T2, T1)

R1 R2

Init 0 0

T4 0 1

T3 1 1

T1 1 2

T2 1 2

Available

17

Q4 Deadlocks (c)

• Consider the Dining Lawyers problem. There are 3 lawyers P1 to P3,
each with a different number of arms. P1 has 1 arm and needs 1 fork
to eat; P2 has 2 arms and needs 2 forks to eat; P3 has 3 arms and
needs 3 forks to eat. There is a pile of 3 forks at center of the table.
Each lawyer picks up one fork at a time, and when he gets enough
forks, he eats and then puts down all his forks. Use Banker’s
algorithm to check if it is possible for the system to be deadlocked. If
no, give a safe sequence of process completions without deadlock. If
yes, show an unsafe state that will result in a deadlock. (You need to
give the Max, Allocation, Need matrices, Total and Available vectors,
and Available resources after completion of each process.)

18

Q4 Deadlocks (c) ANS

Initially, all
forks are
free.

1

2

3

Max Allocation Need

0

0

0

3

Total

3

Available

Max Allocation

3

Total

0

Available

P2 grabs 1 fork
and P3 grabs 2
forks

R1

Init 0

Deadlock

Available resources after
completion of each process

Current state is a deadlock.

With 3 forks total, P2 holding
1 and P3 holding 2 leaves 0
available and each process
still needs more forks

1

2

3

0

1

2

1

1

1

19

Q4 Deadlocks (c) ANS (Thought Experiment)

Initially, all
forks are
free.

1

2

3

Max Allocation Need

0

0

0

3

Total

3

Available

Max Allocation

3

Total

0

Available

P1 grabs 1 fork
and P2 grabs 2
forks

R1

Init 0

P1 1

P2 3

P3 3

Available resources after
completion of each process

Current state is not a deadlock.
With 3 forks total, P1 holding 1 fork can
finish, P2 holding 2 forks can finish, and
P3 can then finish
If you give this scenario in the exam, it is
incorrect, because I asked for a deadlock
scenario if one exists.

1

2

3

1

2

0

0

0

3

20

Q5 Scheduling (20 pts)

• Consider the set of 2 processes whose arrival time and CPU/IO burst times
are given below. For each scheduling algorithm (FCFS, SJF, SRTF, RR, Fixed-
Priority (FP)), draw the Gantt chart by filling in the table with the PID that
runs in each time slot, and calculate the response time for each process,
and the average response time. Assume that context switch overhead is 0.
For RR scheduling, the time quantum is 1. For RR, assume that an arriving
process is scheduled to run at the beginning of its arrival time, i.e., it is
added to the head ofthe queue upon arrival. For FP scheduling, assign P2
(PID 2) higher priority than P1 (PID 1). In case of a tie, prefer the running
process to the newly arrived process, and if everything else is equal,
prefer the process with smaller index. If a time slot is idle with no active
process executing, then fill in X. (Except for any possible idle time slots at
the end of schedule, leave them empty and do not fill in X.)

21

Q5 Scheduling Cont’

FCFS

SJF

SRTF

RR

FP

Gantt Chart

P1 arrival

P2 arrival

PID Arriv.
time

CPU
Burst

IO
Burst

CPU
Burst

FCFS
Resp.
Time

SJF Resp.
Time

SRTF
Resp.
Time

RR Resp.
Time

FP Resp.
Time

1 0 5 3 2

2 3 1 2 3

Avg RT Avg RT Avg RT Avg RT Avg RT

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

22

Q5 Scheduling ANS

FCFS 1 1 1 1 1 2 x x 1 1 2 2 2

SJF 1 1 1 1 1 2 x x 1 1 2 2 2

SRTF 1 1 1 2 1 1 2 2 2 1 1

RR 1 1 1 2 1 1 2 2 2 1 1

FP 1 1 1 2 1 1 2 2 2 1 1

Gantt Chart

P1 arrival

P2 arrival

PID Arriv.
time

CPU
Burst

IO
Burst

CPU
Burst

FCFS
Resp.
Time

SJF Resp.
Time

SRTF
Resp.
Time

RR Resp.
Time

FP Resp.
Time

1 0 5 3 2 10 10 11 11 11

2 3 1 2 3 10 10 6 6 6

Avg RT
10

Avg RT
10

Avg RT
8.5

Avg RT
8.5

Avg RT
8.5

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

FCFS: Time 8: Tie broken to prefer P1 with smaller index

SJF: Time 8: P1 runs before P2 since its CPU burst

of 2 is shorter than P2’s CPU burst of 3

SRTF, RR, FP: at time 3, P2 preempts P1; after time 4,

P1 and P2 have perfect overlap of CPU and IO bursts,

so there is no CPU contention, and the 3 scheduling

algorithms give the same trace

	Slide 1: Computer Operating Systems Midterm Exam Spring 2025
	Slide 2: Q1 Multiple-choice questions: enter your answer keys here
	Slide 3: Q1. Multiple-choice. (20 pts)
	Slide 4: Q1. Multiple-choice. (20 pts)
	Slide 5: Q2 Processes and Threads (20 pts)
	Slide 6: Q2 Processes and Threads (a) ANS
	Slide 7: Q2 Processes and Threads (b) ANS
	Slide 8: Q2 Processes and Threads (c) ANS
	Slide 9: Q2 Processes and Threads (d) ANS
	Slide 10: Q2 Processes and Threads (e) ANS
	Slide 11: Q3 Synchronization (a) ANS
	Slide 12: Q3 Synchronization (b) ANS
	Slide 13: Q4 Deadlocks (20 pts)
	Slide 14: Q4 Deadlocks Con’t (20 pts)
	Slide 15: Q4 Deadlocks (a) ANS
	Slide 16: Q4 Deadlocks (b) ANS
	Slide 17: Q4 Deadlocks (c)
	Slide 18: Q4 Deadlocks (c) ANS
	Slide 19: Q4 Deadlocks (c) ANS (Thought Experiment)
	Slide 20: Q5 Scheduling (20 pts)
	Slide 21: Q5 Scheduling Cont’
	Slide 22: Q5 Scheduling ANS

