

Lectures 5.2 5.3 Distance Vector & Link State Routing Quiz ANS

1. What is the Bellman-Ford equation used for?

- A) Calculating the bandwidth of a link
- B) Computing the shortest path in Distance-Vector routing
- C) Encrypting packets for secure transmission
- D) Converting IPv4 addresses to IPv6

ANS:

2. In Distance-Vector routing, what information does a node send to its neighbors?

- A) The entire network topology map
- B) Only the cost to its direct neighbors
- C) Its entire distance vector (estimates to all destinations)
- D) The list of all packets it has received

ANS:

3. What triggers a node to send a routing update in a Distance-Vector protocol?

- A) Only when a timer expires
- B) Only when the administrator manually reboots the router
- C) When a local link cost changes or it receives an update from a neighbor
- D) Every time it forwards a packet

ANS:

4. What is the 'Count-to-Infinity' problem?

- A) A loop where routing updates bounce back and forth, incrementing costs indefinitely
- B) When a router runs out of memory
- C) When a packet takes too many hops to reach the destination
- D) When the network bandwidth is infinite

ANS:

5. Which technique prevents a routing loop between two immediate neighbors?

- A) Poisoned Reverse
- B) Infinite Bandwidth
- C) Manual Configuration
- D) Using IPv6

ANS:

6. Does Poisoned Reverse solve all counting-to-infinity loops?

- A) Yes, it solves all loops permanently
- B) No, it only works for loops involving 2 nodes
- C) No, it only works for loops involving 3 or more nodes
- D) It creates more loops

ANS:

7. What defines the 'state' of a node in Distance-Vector routing?

- A) Its physical location
- B) Its distance vector (costs to all destinations) and its forwarding table
- C) The amount of RAM it has
- D) The number of cables plugged in

ANS:

8. How does 'Good News' propagate in Distance-Vector routing?

- A) Very slowly (count-to-infinity)
- B) Fast
- C) It never propagates
- D) It causes loops

ANS:

9. How does 'Bad News' propagate in Distance-Vector routing?

- A) Very fast
- B) Slowly
- C) Instantly
- D) It is ignored

ANS:

10. What is a key disadvantage of Distance-Vector routing?

- A) It requires a central server
- B) It suffers from slow convergence and routing loops
- C) It uses too much bandwidth for good news
- D) It cannot handle more than 5 routers

ANS:

11. In Distance-Vector, does a node know the full network topology?

- A) Yes, it has a complete map
- B) No, it only knows costs to neighbors and estimates to destinations
- C) Yes, but only for Class A networks
- D) No, it knows nothing at all

ANS:

12. What does RIP stand for?

- A) Routing Information Protocol
- B) Real-time Internet Protocol
- C) Rapid Inter-domain Protocol
- D) Rest In Peace

ANS:

13. In Distance-Vector, if neighbor V advertises a cost of 5 to destination Y, and the link cost $c(x,v)$ is 2, what is x's cost to Y via V?

- A) 2
- B) 5
- C) 7
- D) 3

ANS:

14. When does the Distance-Vector algorithm terminate?

- A) Never, it runs forever
- B) When there are no more updates to send (quiescence)
- C) After exactly 10 iterations
- D) When the administrator stops it

ANS:

15. Why is Poisoned Reverse not a complete solution?

- A) It is too expensive to implement
- B) It only prevents loops of size 2, not larger loops
- C) It stops forwarding all packets
- D) It requires manual configuration

ANS:

16. What is the fundamental difference between Link-State (LS) and Distance-Vector (DV)?

- A) LS is slower
- B) LS provides every router with a complete map of the network topology
- C) LS only works for small networks
- D) LS does not use costs

ANS:

17. Which algorithm is typically used in Link-State routing to compute paths?

- A) Bellman-Ford
- B) Dijkstra's Algorithm

- C) Diffie-Hellman
- D) Round Robin

ANS:

18. What information is flooded in a Link-State protocol?

- A) The entire forwarding table
- B) Distance vectors to all destinations
- C) Link State Advertisements (LSAs) containing neighbors and link costs
- D) User data packets

ANS:

19. What is the time complexity of Dijkstra's algorithm with a naive implementation?

- A) $O(1)$
- B) $O(N^2)$
- C) $O(N \log N)$
- D) $O(N)$

ANS:

20. How does a router in LS ensure it has the latest topology information?

- A) By polling the central server
- B) Through Reliable Flooding of LSAs
- C) By guessing
- D) By rebooting every 5 minutes

ANS:

21. What happens if different routers in LS have different views of the topology (inconsistent state)?

- A) Nothing bad happens
- B) Routing loops can form
- C) The network becomes faster
- D) Security is improved

ANS:

22. In Link-State, does a router send its forwarding table to neighbors?

- A) Yes, always
- B) No, it only sends link state info (LSAs)
- C) Only to the root node
- D) Only during startup

ANS:

23. What prevents an LSA from looping forever during flooding?

- A) Sequence numbers and checking if the LSA is new
- B) It loops forever until power off
- C) LSAs have no TTL
- D) The administrator deletes them

ANS:

24. Why might route oscillation occur in Link-State routing?

- A) Because cables are loose
- B) If link costs depend on traffic load
- C) Because Dijkstra's algorithm is random
- D) It never happens

ANS:

25. Comparing LS and DV: Which one generates more control traffic initially?

- A) DV
- B) LS (due to flooding the whole topology)
- C) They are exactly the same
- D) Neither generates traffic

ANS:

26. Comparing LS and DV: Which one typically converges faster?

- A) DV
- B) LS
- C) They are the same
- D) DV never converges

ANS:

27. What is the robustness issue with Distance Vector?

- A) A single router broadcasting incorrect costs can screw up the whole network
- B) It is too secure
- C) It requires too much CPU
- D) It fails if one cable breaks

ANS:

28. What is the robustness issue with Link State?

- A) A router can advertise incorrect link costs, but only for its own links
- B) It crashes the internet
- C) It cannot handle large tables
- D) It deletes files

ANS:

29. Why don't we use Link-State for the entire Internet (Inter-domain)?

- A) Dijkstra is too hard to spell
- B) Privacy and Scalability
- C) It is too fast
- D) IS-IS is patented

ANS:

30. In Link-State routing, what is Dijkstra's Algorithm used to calculate?

- A) The physical distance between routers in kilometers
- B) The shortest path tree from the source node to all other nodes in the network
- C) The total number of packets dropped in the last hour
- D) The encryption key for secure communication

ANS: