
1

CS 168, Spring 2026 @ UC Berkeley

Slides credit: Sylvia Ratnasamy, Rob Shakir, Peyrin Kao, Iuniana Oprescu

Link-State Protocols, IP Addressing
Lecture 6 (Routing 3)

4.1 4.2 4.3 4.4 4.5 4.6



Link-State Protocols

• Overview

• Computing Paths

• Learning Graph Topology

IP Addressing

• Hierarchical Addressing

• Assigning Addresses

• Writing Addresses

• Aggregating Routes

• IPv6 Changes

Link-State 
Protocols
Lecture 5.3, Spring 2026



Routing Protocols – Roadmap

Routing protocols can be classified by:

● Where they operate. (Intra-domain or inter-domain.)

● How they operate. (Distance-vector, link-state, or path-vector.)

Today, we'll look at link-state protocols.

● Very common as an Interior Gateway Protocol.

● Major examples:

○ IS-IS (Intermediate System to Intermediate System).

○ OSPF (Open Shortest Path First).

Intra-domain
(Interior Gateway Protocol)

Inter-domain
(Exterior Gateway Protocol)

Distance-vector RIP –

Link-state IS-IS, OSPF –

Path-vector – BGP



Link-State Protocols: Definition

Link-state protocols:

1. Every router learns the full network graph.

2. Then, each router runs a shortest-path algorithm on the graph to populate the 

forwarding table.

Distance-vector:

● Local data: Each node only knows 

about part of the network.

● Global (distributed) computation: 

Each node computes part of the 

solution, working with other nodes.

Link-state:

● Global data: Each node knows about 

the full network graph.

● Local computation: Each node 

computes the full solution by itself.

How do routers learn this?

What algorithm do we run?



Global Data

Suppose R3 has learned the full network graph.

● We know all the links, their status (up or down?), and their costs.

● We know about all the destinations.

R3 can run a graph algorithm to compute paths.

● We can populate the forwarding table with the next-hop (in the computed path).

R3

R2

R1

R5

R4 1
1

1

7

2

1

10

A

B
1

R3's Table

Destination Next Hop

A R2

... ...

How do routers learn this?

What algorithm do we run?



Link-State Protocols

• Overview

• Computing Paths

• Learning Graph Topology

Computing Paths
Lecture 5.3, Spring 2026



Link-State Algorithms

What graph algorithm do we run to compute paths?

Any single source shortest-path algorithm will work.

● Need to find shortest paths from a single source (the router) to every host.

Some possible choices:

● Bellman-Ford (the original serial version).

● Dijkstra's algorithm.

● Breadth-first search.

● Dynamic shortest path.

● Approximate shortest path.

● Parallel single-source shortest path.



Ensuring Consistency

Each router can only influence its next hop.

No guarantee that routers compute the same paths!

We have to ensure that every router is using a "compatible" approach.

R3

R2

R1

R5

R4 A

B

R3

R2

R1

R5

R4 A

B

R2 forwards to R3.R3 forwards to R2.



Ensuring Consistency

Requirements for routers to produce valid, compatible decisions:

1. Everyone agrees on the network topology.

2. Everyone is minimizing the same cost metric.

3. All costs are positive.

4. All routers use the same tie-breaking rules.

Routers don't necessarily need to use the same shortest-path algorithm, as long as 

they follow these rules.

● In practice, easier to have everyone use the same algorithm.



Link-State Protocols

• Overview

• Computing Paths

• Learning Graph Topology

IP Addressing

• Hierarchical Addressing

• Assigning Addresses

• Writing Addresses

• Aggregating Routes

• IPv6 Changes

Learning Graph 
Topology
Lecture 5.3, Spring 2026



Steps of Learning Network Graph

Link-state protocols:

1. Every router learns the full network graph.

● Step 1A: Discover my neighbors.

● Step 1B: Tell everybody about my neighbors.

2. Then, each router runs a shortest-path algorithm on the graph to populate the 

forwarding table.

How do routers learn this?



Steps of Learning Network Graph (1/2) – Learn Neighbors

How do we discover who is adjacent to us and their identity? Say hello!

● Routers periodically send hello messages to their neighbors.

● If they stop saying hello, assume that they disappeared.

● This helps us learn about our direct neighbors, but not the whole network.

○ R1 does not know about the rest of the network (e.g. R3).

R1 R2 R3

Hello, I'm R2. Hello, I'm R2.

Hello, I'm R1. Hello, I'm R3.

My neighbor is R2. My neighbor is R2.

My neighbors 
are R1 and R3.



Steps of Learning Network Graph (2/2) – Propagate Neighbor Information

How do we learn about the rest of the network, beyond our neighbors?

● Solution: Flood information across the network.

● When local information changes, send it to everyone.

● When you receive information from your neighbor, send it to everyone.

R1

R1 and R2 are 
neighbors. 

Tell everyone!

R1 and R2 are 
neighbors. 

Tell everyone!

R2

R1 and R2 are 
neighbors. 

Tell everyone!

R3



Avoiding Infinite Flooding

Flooding: When you receive an update, send it to everybody.

We have to be careful of the same update being sent repeatedly.

R1 R2

R5 and R9 are neighbors.

R5 and R9 are neighbors.

R5 and R9 are neighbors.

R5 and R9 are neighbors.

R5 and R9 are neighbors.



Avoiding Infinite Flooding

Amplification: When there's a loop, copies of the same message get multiplied.

R1

R2 R3



Avoiding Infinite Flooding

Amplification: When there's a loop, copies of the same message get multiplied.

R1

R2 R3

R1 R3 R1 R2

R2 R3

R1 R2 R2 R3 R1 R3

R1 R2

R1 R3 R1 R2 R2 R3 R2 R3

R2 R3 R1 R3

This edge means, R1 
sends the message to R2.

Then, R2 sends it 
to R1, and so on.

R1 R3



Avoiding Infinite Flooding

Problem: Naive solution (send to all neighbors) causes amplification.

Solution:

● When local information (about yourself) changes, send it to all neighbors.

● When you receive a packet from a neighbor, send it to all neighbors...

● ...unless you've already seen the packet before.

To identify packets you've seen before, add a timestamp.

● Or some other unique identifier, e.g. strictly increasing sequence numbers.

✓ Seen it.

✓ Seen it. ✓ Seen it.

R1

R2 R3



Ensuring Reliability

The network is still best-effort. Updates could get dropped.

● Recall: We need all routers to agree on topology, or else paths might be invalid.

Solution: Periodically re-send the update.



Ensuring Convergence

The network could change. What happens if a link goes down?

● Wait for routers to detect the failure.

● Wait to flood new information.

● Wait to recompute paths.

While waiting for convergence, the routing state might be invalid.

● Dead ends and loops. Packets using longer routes.

Link is down, but R1 doesn't know!

R1 forwards to R3.

R3 knows about the link failure!

R3 forwards to R1.

R2

R1

R3

A

R2

R1

A

R3



Link-State vs. Distance-Vector

Link-state is relatively simple. All the complexity is in the details!

● Everyone floods link/destination information.

● Everyone has a global map of the network.

● Everyone independently computes next-hops.

Why might we want to use link-state over distance-vector?

● Link-state gives routers more control over the path they choose.

○ Distance-vector: We have to trust what our neighbor says, and we don't know 

the path they're using.

● Link-state might be better at converging.

○ Distance-vector: Wait for neighbor to recompute and re-advertise path.

○ Link-state: Flood information before recomputing.

Real networks often use a combination of path/distance-vector and link-state.


	Slide 1
	Slide 2: Link-State Protocols
	Slide 3: Routing Protocols – Roadmap
	Slide 4: Link-State Protocols: Definition
	Slide 5: Global Data
	Slide 6: Computing Paths
	Slide 7: Link-State Algorithms
	Slide 8: Ensuring Consistency
	Slide 9: Ensuring Consistency
	Slide 10: Learning Graph Topology
	Slide 11: Steps of Learning Network Graph
	Slide 12: Steps of Learning Network Graph (1/2) – Learn Neighbors
	Slide 13: Steps of Learning Network Graph (2/2) – Propagate Neighbor Information
	Slide 14: Avoiding Infinite Flooding
	Slide 15: Avoiding Infinite Flooding
	Slide 16: Avoiding Infinite Flooding
	Slide 17: Avoiding Infinite Flooding
	Slide 18: Ensuring Reliability
	Slide 19: Ensuring Convergence
	Slide 20: Link-State vs. Distance-Vector

