
Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates

Distance-Vector
Algorithm
Lecture 5.2, Spring 2026

1

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

A is 1 away from
me. I should tell
my neighbors.

A this way

2

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

A this way

A is 1 away
from me.

A is 1 away
from me.

3

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

A this way

We just found a way to
reach A. We should tell

our neighbors.

4

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

A this way

A is 2 away
from me.

A is 2 away.

A is 2 away.

A is 2 away.
5

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

A this way

We just found a way to
reach A. We should tell

our neighbors.

6

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

A this way

A is 3 away.

A is 3 away.

A is 3 away.

A is 3 away.

A is 3 away.

A is 3 away.

A is 3 away.

A is 3 away.
7

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

A this way

We did it! Everybody knows the next-hop to A now.

8

Distance-Vector Algorithm Sketch – Routing vs. Forwarding

R2

A

R3

R1

R5

R4

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Routing announcements ("I can reach A") propagated outward, away from A.

When forwarding packets toward A, packets travel inward, toward A.

9

Distance-Vector Algorithm Sketch – Multiple Destinations

What if there are multiple destinations?

● Run the same path propagation algorithm, once per destination.

● Routers use forwarding tables to keep track of the next-hop of each destination.

We'll focus on a single destination for simplicity.

● But the protocol can extend to multiple destinations.

10

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates

Rule 1: Bellman-
Ford Updates
Lecture 5.2, Spring 2026

11

Multiple Paths Advertised

What if you hear about multiple paths to a single destination?

● Accept the shorter path.

R5

R3

R4

R2

R1A

A is 3 away
from me.

A is 2 away
from me.

I prefer what
R4 is offering.

12

Multiple Paths Advertised

What if you hear about multiple paths to a single destination?

● Accept the shorter path.

R5

R3

R4

R2

R1A

13

Multiple Paths Advertised

You might not hear about both paths simultaneously.

● In the forwarding table, record the best-known cost to a destination.

● If your table doesn't have a path to a destination, accept any path you hear about.

R5

R3

R4

R2

R1A

A is 3 away
from me.

R5's Table

To: Via: Cost:

A R3 4

14

Multiple Paths Advertised

You might not hear about both paths simultaneously.

● In the forwarding table, record the best-known cost to a destination.

● If your table doesn't have a path to a destination, accept any path you hear about.

● If you hear about a better path later, update the table (next-hop and cost).

R5

R3

R4

R2

R1A

R5's Table

To: Via: Cost:

A
R3
R4

4
3

A is 2 away
from me.

I like this new
path better. I'll
abandon the

old one.

15

The Distance-Vector Algorithm So Far

For each destination:

● If you hear about a path to that destination, update table if:

○ The destination isn't in the table.

○ The advertised cost is better than best-known cost.

● Then, tell all your neighbors.

16

Unequal Costs

Not all link costs are 1.

● When a neighbor advertises a path, the cost via that path is the sum of:

○ Link cost from you to the neighbor.

○ Cost from neighbor to destination (as advertised by neighbor).

R3

R1

R2

1

10

A is 5 away
from me.

R3's Table

To: Via: Cost:

A R1 1+5 = 6

17

Unequal Costs

Not all link costs are 1.

● When a neighbor advertises a path, the cost via that path is the sum of:

○ Link cost from you to the neighbor.

○ Cost from neighbor to destination (as advertised by neighbor).

R3

R1

R2

1

10
R3's Table

To: Via: Cost:

A R1 1+5 = 6A is 3 away
from me.

This path actually costs
10+3=13. I'll keep using the
cost 6 path and reject this.

18

The Distance-Vector Algorithm So Far

For each destination:

● If you hear about a path to that destination, update table if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

● Then, tell all your neighbors.

19

Distributed Bellman-Ford Algorithm

This operation looks familiar.

● "If cost to neighbor + cost from neighbor to destination < best-known cost,

accept update."

● This is the relaxation operation in Dijkstra's shortest path algorithm!

Bellman-Ford is another relaxation-based shortest path algorithm.

● Relax every edge repeatedly until we get shortest paths.

● Unlike Dijkstra's, does not require relaxing the edges in any specific order.

Distance-vector algorithms are a distributed, asynchronous version of Bellman-Ford.

● Distributed: Each router relaxes its own links. No global mastermind.

● Asynchronous: Nobody is syncing when the routers do relaxations.

20

Distributed Bellman-Ford Algorithm

The centralized Bellman-Ford algorithm for a single destination:

def bellman_ford(dst, routers, links):

distance = {}; nexthop = {}

for r in routers:
distance[r] = INFINITY
nexthop[r] = None

distance[dst] = 0

for _ in range(len(routers)-1):
for (r1, r2, linkcost) in links:

if distance[r1] + linkcost < distance[r2]:
distance[r2] = distance[r1] + linkcost
nexthop[r2] = r1

return distance, nexthop

Everyone starts infinity away from the destination,
except for the destination itself (0 away).

The relaxation operation.

Loop through nodes and relaxes repeatedly.

In distance-vector, each router relaxes in parallel,
with both directions as links between routers.

21

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates

Bellman-Ford
Demo
Lecture 5.2, Spring 2026

22

The Distance-Vector Algorithm So Far

For each destination:

● If you hear an advertisement, update table if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

● Then, advertise to all your neighbors.

Terminology note:

● Sending "I'm R1, and I can reach A with cost 5" is called announcing or

advertising a route.

23

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

24

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

Static routing: Someone
hard-codes R1's table to
say it can reach A. 25

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

I found a way to reach A!
Time to tell all my neighbors.

26

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

I'm R1, and
A is 1 away

from me.

New advertisement!
I don't have a way to reach

A yet, so I'll accept.

R2's Table

To: Via: Cost:

A R1 1+1=2

1 (link cost to R1), plus
1 (advertised cost).

27

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R3's Table

To: Via: Cost:

Time to tell everyone about
my shiny new path to A.

R2's Table

To: Via: Cost:

A R1 2

28

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R3's Table

To: Via: Cost:

R2's Table

To: Via: Cost:

A R1 2

I'm R2, and
A is 2 away

from me.

I'm R2, and
A is 2 away

from me.

Notice: R2's announcement doesn't include the next-hop.
Nobody else cares how R2 reaches A, just that R2 can reach A.

29

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R3's Table

To: Via: Cost:

R2's Table

To: Via: Cost:

A R1 2

I'm R2, and
A is 2 away

from me.

I'm R2, and
A is 2 away

from me.

New advertisement?!

This new path costs 1+2=3.

I already have a cost 1 path.

No thanks.

30

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R3's Table

To: Via: Cost:

R2's Table

To: Via: Cost:

A R1 2

I'm R2, and
A is 2 away

from me.

New advertisement?!?
I don't have a path to A

yet, so I'll accept.I'm R2, and
A is 2 away

from me.

R3's Table

To: Via: Cost:

A R2 1+2=3

1 (link cost to R2), plus
1 (advertised cost).

31

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

A R1 2

Time to advertise my
exciting new path to A.

R3's Table

To: Via: Cost:

A R2 3

32

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

A R1 2

R3's Table

To: Via: Cost:

A R2 3

I'm R3, and
A is 3 away

from me.

New advertisement?!??!?!!!?

This new path costs 1+3=4.

I already have a cost 2 path.

No thanks.

33

Bellman-Ford Demo

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

A R1 2

R3's Table

To: Via: Cost:

A R2 3

We did it! Everybody has a way to reach A now.

A this way A this way A this way

34

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates

Rule 2: Updates
from Next-Hop
Lecture 5.2, Spring 2026

35

Updates From the Current Next-Hop

Recall our routing challenges: Topology can change.

● So far: We update if we get a better path (or if we didn't have a path before).

● Fix: If our current next hop sends us an announcement, accept it,

even if the path is worse.

● This lets the next-hop notify us if the topology changed.

R3

R1

R2

R3's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

A R2 1+3 = 4

I'm R2, and
A is 3 away

from me.

A wasn't in my table.
Accept!

36

Updates From the Current Next-Hop

Recall our routing challenges: Topology can change.

● So far: We update if we get a better path (or if we didn't have a path before).

● Fix: If our current next hop sends us an announcement, accept it,

even if the path is worse.

● This lets the next-hop notify us if the topology changed.

R3

R1

R2

R3's Table

To: Via: Cost:

A R2 4

I'm R1, and
A is 8 away

from me.

1+8=9 is worse than 4.
Reject!

37

Updates From the Current Next-Hop

Recall our routing challenges: Topology can change.

● So far: We update if we get a better path (or if we didn't have a path before).

● Fix: If our current next hop sends us an announcement, accept it,

even if the path is worse.

● This lets the next-hop notify us if the topology changed.

R3

R1

R2 I'm R2, and
A is 8 away

from me.

R2 is the next-hop.
Accept!

R3's Table

To: Via: Cost:

A R2 4

R3's Table

To: Via: Cost:

A R2 1+8=9

Hi, it's R2 again. I know I said A is 3 away from
me earlier, but that's changed. Now A is 8 away.

What R2 is really saying:

38

Convergence

If the network never changes:

● After running this protocol for some time, it will converge.

● Everyone's forwarding table has the least-cost next hop.

● All future announcements will be rejected.

If a change happens (e.g. a link goes down):

● Some new announcements are sent.

● Some forwarding tables are updated.

● Eventually, we converge again to the new routing state.

The network topology is constantly changing, so routers run the protocol indefinitely.

● Steady-state occurs when the network has converged.

● In steady-state, everything stays the same until the next topology change.

39

The Distance-Vector Algorithm So Far

For each destination:

● If you hear an advertisement, update table if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

● Then, advertise to all your neighbors.

40

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates

Rule 3: Resending
Lecture 5.2, Spring 2026

41

Ensuring Reliability

Recall our routing challenges: Packets can get dropped.

Solution: Resend advertisements every X seconds.

● X is the "advertisement interval."

● This should work eventually, assuming the link is functional (>0% delivery rate).

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

I'm R1, and
A is 1 away

from me.

Huh? Did someone
say something?

42

The Distance-Vector Algorithm So Far

For each destination:

● If you hear an advertisement, update table if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

● Advertise to all your neighbors when the table updates, and periodically. (#3)

43

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates

Rule 4: Expiring
Lecture 5.2, Spring 2026

44

Handling Failures

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite

time to live (TTL).

● Periodic advertisements help us confirm that a route still exists.

○ When we get an advertisement, reset ("recharge") the TTL.

● If a link goes down, the router attached to that link stops advertising a route to that

destination, so neighboring routers stop receiving TTL refreshes for that route.

○ e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer

receives refreshes for the TTL of its route to A. (R3 still hears from R2, but no

longer hears about a route to A through R2)

○ If the TTL expires, delete the entry from the table.§

R3R2

Didn't have a path to A.
Accept!

R3's Table

To: Via: Cost: TTL:

I'm R2, and A is
5 away from me.

R3's Table

To: Via: Cost: TTL:

A R2 6 11

t = 0

Need another confirmation of this
route in the next 11 seconds.

A

45

Handling Failures

R3's Table

To: Via: Cost: TTL:

A R2 6 10

t = 1t = 2

9

t = 3

8

t = 4

7
R3R2A

46

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite

time to live (TTL).

● Periodic advertisements help us confirm that a route still exists.

○ When we get an advertisement, reset ("recharge") the TTL.

● If a link goes down, the router attached to that link stops advertising a route to that

destination, so neighboring routers stop receiving TTL refreshes for that route.

○ e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer

receives refreshes for the TTL of its route to A.

○ If the TTL expires, delete the entry from the table.§

Handling Failures

R3's Table

To: Via: Cost: TTL:

A R2 6 11

t = 5

We got a confirmation!
Reset TTL back to 11.

I'm still R2, and A is
still 5 away from me.

R3R2A

47

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite

time to live (TTL).

● Periodic advertisements help us confirm that a route still exists.

○ When we get an advertisement, reset ("recharge") the TTL.

● If a link goes down, the router attached to that link stops advertising a route to that

destination, so neighboring routers stop receiving TTL refreshes for that route.

○ e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer

receives refreshes for the TTL of its route to A.

○ If the TTL expires, delete the entry from the table.§

Handling Failures

R3's Table

To: Via: Cost: TTL:

A R2 6 10

t = 6

9

t = 7

8

t = 8

7

t = 9

Link
goes

down!

6

t = 10

5

t = 11

4

t = 12

3

t = 13

2

t = 14

1

t = 15

R3R2A

48

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite

time to live (TTL).

● Periodic advertisements help us confirm that a route still exists.

○ When we get an advertisement, reset ("recharge") the TTL.

● If a link goes down, the router attached to that link stops advertising a route to that

destination, so neighboring routers stop receiving TTL refreshes for that route.

○ e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer

receives refreshes for the TTL of its route to A.

○ If the TTL expires, delete the entry from the table.§

Handling Failures

49

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite

time to live (TTL).

● Periodic advertisements help us confirm that a route still exists.

○ When we get an advertisement, reset ("recharge") the TTL.

● If a link goes down, the router attached to that link stops advertising a route to that

destination, so neighboring routers stop receiving TTL refreshes for that route.

○ e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer

receives refreshes for the TTL of its route to A.

○ If the TTL expires, delete the entry from the table.§

R3's Table

To: Via: Cost: TTL:

A R2 6 0

t = 16

Timeout! Delete expired entry.
Link
goes

down!

R3R2A

Timers

Routers maintain multiple timers:

● Advertisement interval: How long before we advertise routes to neighbors.

○ Usually one timer for all entries in the table.

● TTL: How long before we expire a route.

○ Each table entry has its own TTL.

Summary: Distance-Vector Rules

1. Bellman-Ford Updates: Accept if advertised cost + link cost to neighbor < best-known cost.

2. Updates From Next-Hop: Accept if advertisement is from next hop.

3. Resending: Advertise periodically.

4. Expiring: Expire an entry if TTL runs out.

The Distance-Vector Algorithm:

For each destination:

● If you hear an advertisement, update table and reset TTL if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

● Advertise to all your neighbors when the table updates, and periodically. (#3)

● If a table entry expires, delete it. (#4)
51

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates

Rule 5: Poison
Expired Routes
Lecture 5.2, Spring 2026

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

● R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R3's Table

To: Via: Cost: TTL:

A R2 2 13

t = 3

12
R3R2

R1

A

Assume that by t=3, R3 knows a route to A.

t = 4

11

t = 5

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

● R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R3's Table

To: Via: Cost: TTL:

R2 A 2 10

t = 6

Pause right here.
● At this point, we know the path via R2 is broken.
● But R3 won't know until the timeout 10s later.
● If R3 knew now, it could accept the new path.

Instead, R3 rejects the new path, thinking the
broken path is still valid.

Link
goes

down!

No thanks, I already
have a cost 2 path.

I'm R1, and A is
1 away from me.

R3R2

R1

A

R3's Table

To: Via: Cost: TTL:

R2 A 2 9876

t = 7t = 8t = 9t = 10

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

● R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R3R2

R1

A

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

● R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R3's Table

To: Via: Cost: TTL:

R2 A 2 5

t = 11

Again, R3 is forced to reject this new path, because it's
still waiting for the broken path to time out.

No thanks, I already
have a cost 2 path.

I'm R1, and A is
1 away from me.

R3R2

R1

A

R3's Table

To: Via: Cost: TTL:

R2 A 2 4321

t = 12t = 13t = 14t = 15

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

● R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R3R2

R1

A

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

● R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R3's Table

To: Via: Cost: TTL:

R2 A 2 0

t = 16

Timeout! Delete expired entry.

R3R2

R1

A

Sure, I'll accept, my old
path just expired.

I'm R1, and A is
1 away from me.

Can we alert R3 of the failure sooner, so
it can delete the old broken path earlier
(and start accepting new paths)?

Poison for Fast Route Expiry

Waiting for routes to expire is slow.

● You keep a broken path in the forwarding table for a long time.

○ Packets might get lost during this time.

○ You might advertise that broken route to other people.

● You might reject new paths, thinking the broken path is still valid.

○ Could have converged on a better path earlier.

● Key problem: When something fails, nobody's reporting it.

Solution: Poison.

● Explicitly advertise that a path is broken.

● A path with cost infinity represents a broken path.

● This path propagates just like any other path.

○ Routers accept the poison path to invalidate the route.

● Can be much faster than waiting for timeouts!

Poison for Fast Route Expiry

Poison lets us detect broken routes faster. Let's watch the demo again.

R3's Table

To: Via: Cost: TTL:

A R2 2 13

t = 3

12
R3R2

R1

A

Assume that by t=3, R3 knows a route to A.

t = 4

11

t = 5

R3's Table

To: Via: Cost: TTL:

A R2 2 10

Poison for Fast Route Expiry

Poison lets us detect broken routes faster. Let's watch the demo again.

t = 6

R3 updates the table to indicate the path is broken.
TTL recharges, just like any other update.

Link
goes

down!

Looks like the path
via R2 is broken.

R3R2

R1

A

I'm R2, and A is
∞ away from me.

R3's Table

To: Via: Cost: TTL:

A R2 ∞ 16

R3's Table

To: Via: Cost: TTL:

A R2 ∞ 16

R3's Table

To: Via: Cost: TTL:

A R1 2 16

Poison for Fast Route Expiry

Poison lets us detect broken routes faster. Let's watch the demo again.

t = 6

R3 was able to accept the new route way earlier!
t=6 with poison, t=16 without poison.

Link
goes

down!

Sure, I'll accept, that's
better than infinity.

I'm R1, and A is
1 away from me.

R3R2

R1

A

Accepting and Advertising Poison

Where does poison come from?

● One of your routes times out.

● You notice a local failure, e.g. one of your links goes down.

When one of those occurs:

● Poison the entry: Set cost to infinity, reset TTL.

● Advertise the poison to your neighbors.

Accepting and Advertising Poison

When you get a poison advertisement from the current next-hop:

● Accept it, even if you have a better path.

○ Because the next-hop is telling you that the route no longer exists.

○ Similar to Rule #2: accept worse paths from current next-hop.

When you update the table with a poison route:

● Reset the TTL, just like any other table update.

● Advertise the poison to your neighbors, so they also know about the broken route.

Don't forward packets along a poisoned route.

To: Via: Cost:

A R1 ∞
Don't forward to R1.

The Distance-Vector Algorithm So Far

For each destination:

● If you hear an advertisement, update table and reset TTL if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

Includes poison advertisements. (#5)

● Advertise to all your neighbors when the table updates, and periodically. (#3)

● If a table entry expires, make the entry poison and advertise it. (#4, #5)

Rule 6A:
Split Horizon

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates
Lecture 5.2, Spring 2026

Split Horizon – The Problem

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

A R1 2

R3's Table

To: Via: Cost:

A R2 3

We ran the algorithm for some time, and we converged to this steady-state.
All subsequent advertisements will be rejected.

Split Horizon – The Problem

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

A R1 2

R3's Table

To: Via: Cost:

A R2 3

I'm R3, and
A is 3 away

from me.

Rejected. I have cost 2, and
you're offering cost 1+3=4.

R2's Table

To: Via: Cost:

A R1 2

Split Horizon – The Problem

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

A R2 3

A link goes down, and R2's entry expires (no more updates from R1).
What happens now?

Split Horizon – The Problem

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

A R2 3

I'm R3, and
A is 3 away

from me.

My table's empty, so that
sounds good to me.

R2's Table

To: Via: Cost:

A R3 4

R2's Table

To: Via: Cost:

A R3 4

Split Horizon – The Problem

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R3's Table

To: Via: Cost:

A R2 3

A this way A this way

We made a routing loop!

Split Horizon – The Problem

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

A R2 3

I'm R3, and
A is 3 away

from me.

My table's empty, so that
sounds good to me.

R2's Table

To: Via: Cost:

A R3 4

Problem ("me" = R2):

● I gave R3 a path via me, and R3 accepted.

● Then, R3 turned around and gave me that same path.

● I'm being offered a path that goes through myself!

● Normally, I would never accept, because a path with a loop is longer.

● But if I lost my earlier route, I might accept and create a loop.

Split Horizon – The Problem

The split horizon problem: When I give someone a path, they advertise it back to me.

● Path goes from me → them → me.

● Path with extra loop is always longer, so I'd never accept.

● But if I lost my earlier routes, I might accept, since I might not realize the path is

going through me.

Solution: Don't advertise a path back to the router that gave it to you.

● R2 advertises a path-to-A to R3.

● R3 can advertise that path-to-A to everybody except R2, its next-hop on the path-

to-A.

The Distance-Vector Algorithm So Far

For each destination:

● If you hear an advertisement, update table and reset TTL if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

Includes poison advertisements. (#5)

● Advertise to all your neighbors when the table updates, and periodically. (#3)

○ But don't advertise it back to the next-hop. (#6A)

● If a table entry expires, make the entry poison and advertise it. (#4, #5)

Rule 6B:
Poison Reverse

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates
Lecture 5.2, Spring 2026

Poison Reverse

Split horizon: If R1 gave me a route, don't advertise it to R1.

● Don't tell R1 anything.

● Never advertise a route back to the next-hop neighbor that you learned it from.

Poison reverse: If R1 gave me a route, advertise poison back to R1.

● Explicitly tell R1: "Do not forward packets to me.“

● Advertise the route back to the next-hop neighbor, but with infinite cost.

Poison reverse is an alternative way to avoid routing loops.

Poison Reverse vs. Split Horizon

R2

I can
reach A.

Split Horizon:

I can
reach A.

Poison Reverse:

R2

R2

I can
reach A.

R2

I can
reach A.

I cannot
reach A.

Don't advertise anything back to R1. Explicitly advertise poison back to R1.

R1 R1

R1 R1

Technique
What R2 tells R1 about

A
Philosophy

Split Horizon Says nothing Silence avoids confusion

Poison Reverse Says ∞ (unreachable) Explicit warning

Poison Reverse

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

A R1 2

R3's Table

To: Via: Cost:

A R2 3

Let's watch the demo again, but with poison reverse this time.
As before, we first reach steady state.

R2's Table

To: Via: Cost:

A R1 2

Poison Reverse

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

A R2 3

A link goes down, and R2's entry expires (no more updates from R1).
What happens now?

Poison Reverse

R1A R2 R3

R1's Table

To: Via: Cost:

A Direct 1

R2's Table

To: Via: Cost:

R3's Table

To: Via: Cost:

A R2 3

I'm R3, and
A is ∞ away

from me.

My table's empty, so that
sounds good to me.

R2's Table

To: Via: Cost:

A R3 ∞

R2's table now explicitly says: Do not send packets to R3.

● Because R3 would just send the packet back to R2.

Poison Reverse vs. Split Horizon

Suppose we end up with a routing loop somehow.

Split horizon: No poison is sent.

● Loop stays until the routes expire.

R2's Table

To: Via: Cost:

A R3 4

R2 R3

R3's Table

To: Via: Cost:

A R2 3

I got this route from R3,
so don't send it to R3.

I got this route from R2,
so don't send it to R2.

Poison Reverse vs. Split Horizon

Suppose we end up with a routing loop somehow.

Poison reverse: R3 explicitly sends poison back to R2.

● Loop is immediately eliminated!

● Faster than split horizon.

R2's Table

To: Via: Cost:

A R3 4

R2 R3

R3's Table

To: Via: Cost:

A R2 3

I'm R3, and
A is ∞ away

from me.

R3 is my next-hop, so
I accept.

R2's Table

To: Via: Cost:

A R3 ∞

I got this route from R2,
so send poison to R2.

Rule 5: Poison Expired Routes vs. Rule 6B: Poison Reverse

● Rule 5: Poison Expired Routes vs. Rule 6B: Poison Reverse

● They sound similar, but we can think of one of them as being “honest” while the

other one is “lying.”

● Poisoned reverse encourages routers to tell a white lie. With poisoned reverse, we

tell a neighbor that we have no path to a certain destination if our path goes

through that neighbor. Since we actually do have a path, our message is not

strictly true.

● On the other hand, poisoning an expired route happens when a link goes down,

and we actually lose our path to some destination. Thus, we’re telling the truth

when we advertise a distance of infinity to this destination (given that an infinitely

long path is equivalent to no path).

83

The Distance-Vector Algorithm So Far

For each destination:

● If you hear an advertisement, update table and reset TTL if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

Includes poison advertisements. (#5)

● Advertise to all your neighbors when the table updates, and periodically. (#3)

○ But don't advertise back to the next-hop. (#6A)

○ ...Or, advertise poison back to the next-hop. (#6B)

● If a table entry expires, make the entry poison and advertise it. (#4, #5)

Rule 7: Count to
Infinity

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates
Lecture 5.2, Spring 2026

Count to Infinity – The Problem

Split horizon (or poison reverse) helps us avoid length-2 loops.

● R1 forwards to R2.

● R2 forwards to R1.

But we can still get routing loops with 3 or more routers.

Count to Infinity – The Problem

Suppose the tables reach steady-state.

A

R3's Table

To: Via: Cost:

A Direct 1

R1's Table

To: Via: Cost:

A R3 2

R2's Table

To: Via: Cost:

A R3 2

R1

R2

R3

I'm R3, and A is
∞ away from me.

Count to Infinity – The Problem

Link goes down! A now unreachable.

R3 updates table and sends poison.

Poison reaches R2, but not R1!

R1

R2

R3A

R3's Table

To: Via: Cost:

A Direct 1

R1's Table

To: Via: Cost:

A R3 2

R2's Table

To: Via: Cost:

A R3 2

R3's Table

To: Via: Cost:

A Direct ∞

I'm R3, and A is
∞ away from me.

R2's Table

To: Via: Cost:

A R3 ∞

Count to Infinity – The Problem

At this point, R3 and R2 know A is unreachable.

But R1 still thinks there's a path to A!

A

R1

R2

R3

R3's Table

To: Via: Cost:

A Direct ∞

R1's Table

To: Via: Cost:

A R3 2

R2's Table

To: Via: Cost:

A R3 ∞

Count to Infinity – The Problem

R1 announces it can reach A.

Split horizon: R1's path came from R3, so don't tell R3.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A Direct ∞

R1's Table

To: Via: Cost:

A R3 2

R2's Table

To: Via: Cost:

A R3 ∞

I'm R1, and A is
2 away from me.

R2's Table

To: Via: Cost:

A R1 3

Count to Infinity – The Problem

R2 announces it can reach A.

Split horizon: R2's path came from R1, so don't tell R1.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A Direct ∞

R1's Table

To: Via: Cost:

A R3 2

R2's Table

To: Via: Cost:

A R1 3

I'm R2, and A is
3 away from me.

R3's Table

To: Via: Cost:

A R2 4

Count to Infinity – The Problem

R3 announces it can reach A.

Split horizon: R3's path came from R2, so don't tell R2.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 4

R1's Table

To: Via: Cost:

A R3 2

R2's Table

To: Via: Cost:

A R1 3

I'm R3, and A is
4 away from me.

R1's Table

To: Via: Cost:

A R3 5

Count to Infinity – The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 4

R1's Table

To: Via: Cost:

A R3 5

R2's Table

To: Via: Cost:

A R1 3

I'm R1, and A is
5 away from me.

R2's Table

To: Via: Cost:

A R1 6

Count to Infinity – The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 4

R1's Table

To: Via: Cost:

A R3 5

R2's Table

To: Via: Cost:

A R1 6

I'm R2, and A is
6 away from me.

R3's Table

To: Via: Cost:

A R2 7

Count to Infinity – The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 7

R1's Table

To: Via: Cost:

A R3 5

R2's Table

To: Via: Cost:

A R1 6

I'm R3, and A is
7 away from me.

R1's Table

To: Via: Cost:

A R3 8

Count to Infinity – The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 7

R1's Table

To: Via: Cost:

A R3 8

R2's Table

To: Via: Cost:

A R1 6

I'm R1, and A is
8 away from me.

R2's Table

To: Via: Cost:

A R1 9

Count to Infinity – The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 7

R1's Table

To: Via: Cost:

A R3 8

R2's Table

To: Via: Cost:

A R1 9

I'm R2, and A is
9 away from me.

R3's Table

To: Via: Cost:

A R2 10

Count to Infinity – The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 10

R1's Table

To: Via: Cost:

A R3 8

R2's Table

To: Via: Cost:

A R1 9

I'm R3, and A is
10 away from me.

R1's Table

To: Via: Cost:

A R3 11

Count to Infinity – The Problem

The problem, restated:

● Poison wasn't propagated properly. A router had a broken path.

● broken path is advertised in a loop.

Split horizon won't save us.

● We're never advertising a path back to the next-hop.

R1

R2

R3

2

5

8

3
6

9

10
7

4

Count to Infinity – Solution

Solution: Enforce a maximum cost.

● 15 is a common choice.

● All numbers ≥ 16 are considered infinity.

Result:

● Loop will stop when all costs reach 16.

● broken path will expire, or get replaced by another non-infinite-cost path.

Count to Infinity – Solution

All numbers ≥ 16 are considered infinity.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 10

R1's Table

To: Via: Cost:

A R3 11

R2's Table

To: Via: Cost:

A R1 9

I'm R1, and A is
11 away from me.

R2's Table

To: Via: Cost:

A R1 12

Count to Infinity – Solution

All numbers ≥ 16 are considered infinity.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 10

R1's Table

To: Via: Cost:

A R3 11

R2's Table

To: Via: Cost:

A R1 12

I'm R2, and A is
12 away from me.

R3's Table

To: Via: Cost:

A R2 13

Count to Infinity – Solution

All numbers ≥ 16 are considered infinity.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 13

R1's Table

To: Via: Cost:

A R3 11

R2's Table

To: Via: Cost:

A R1 12

I'm R3, and A is
13 away from me.

R1's Table

To: Via: Cost:

A R3 14

Count to Infinity – Solution

All numbers ≥ 16 are considered infinity.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 13

R1's Table

To: Via: Cost:

A R3 14

R2's Table

To: Via: Cost:

A R1 12

I'm R1, and A is
14 away from me.

R2's Table

To: Via: Cost:

A R1 15

Count to Infinity – Solution

All numbers ≥ 16 are considered infinity.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 13

R1's Table

To: Via: Cost:

A R3 14

R2's Table

To: Via: Cost:

A R1 15

R3's Table

To: Via: Cost:

A R2 16 ∞

I'm R2, and A is
15 away from me.

Count to Infinity – Solution

All numbers ≥ 16 are considered infinity.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 ∞

R1's Table

To: Via: Cost:

A R3 14

R2's Table

To: Via: Cost:

A R1 15

I'm R3, and A is
∞ away from me.

R1's Table

To: Via: Cost:

A R3 ∞

Count to Infinity – Solution

All numbers ≥ 16 are considered infinity.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 ∞

R1's Table

To: Via: Cost:

A R3 ∞

R2's Table

To: Via: Cost:

A R1 15

I'm R1, and A is
∞ away from me.

R2's Table

To: Via: Cost:

A R1 ∞

Count to Infinity – Solution

We've reached steady state!

● Future advertisements won't change the tables.

● Routes for A will soon expire.

○ Or, if another route to A appears, it'll replace the infinite-cost entry.

A

R1

R2

R3

R3's Table

To: Via: Cost:

A R2 ∞

R1's Table

To: Via: Cost:

A R3 ∞

R2's Table

To: Via: Cost:

A R1 ∞

The Distance-Vector Algorithm So Far

For each destination:

● If you hear an advertisement, update table and reset TTL if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

Includes poison advertisements. (#5)

● Advertise to all your neighbors when the table updates, and periodically. (#3)

○ But don't advertise back to the next-hop. (#6A)

○ ...Or, advertise poison back to the next-hop. (#6B)

○ Any cost ≥ 16 is advertised as ∞. (#7)

● If a table entry expires, make the entry poison and advertise it. (#4, #5)

Eventful Updates

Distance-Vector Correctness

• Algorithm Sketch

• Rule 1: Bellman-Ford Updates

• Bellman-Ford Demo

• Rule 2: Updates From Next-Hop

• Rule 3: Resending

• Rule 4: Expiring

Distance-Vector Enhancements

• Rule 5: Poison Expired Routes

• Rule 6A: Split Horizon

• Rule 6B: Poison Reverse

• Rule 7: Count To Infinity

• Eventful Updates
Lecture 5.2, Spring 2026

Eventful Updates

When do we send advertisements?

● Periodically (once every "advertisement interval").

● When a table entry expires.

● When the table changes (triggered updates).

○ When we accept a new advertisement.

○ When a new link is added. (Add static routes and advertise them.)

○ When a link goes down. (Poison routes and advertise poison.)

Triggered updates are an optimization for faster convergence.

● Instead of advertising when the table changes, we could just wait for the interval.

Protocol is still correct.

Our Completed Distance-Vector Algorithm

For each destination:

● If you hear an advertisement, update table and reset TTL if:

○ The destination isn't in the table.

○ Advertised cost + link cost to neighbor < best-known cost. (#1)

○ The advertisement is from current next-hop. (#2)

Includes poison advertisements. (#5)

● Advertise to all your neighbors when the table updates, and periodically. (#3)

○ But don't advertise back to the next-hop. (#6A)

○ ...Or, advertise poison back to the next-hop. (#6B)

○ Any cost ≥ 16 is advertised as ∞. (#7)

● If a table entry expires, make the entry poison and advertise it. (#3, #5)

Summary: Distance-Vector Rules

1. Bellman-Ford Updates: Accept if advertised cost + link cost to neighbor < best-known cost.

2. Updates From Next-Hop: Accept if advertisement is from next hop.

3. Resending: Advertise periodically.

4. Expiring: Expire an entry if TTL runs out.

5. Poison Expired Routes: Send poison if an entry expires.

6A. Split Horizon: Don't advertise path back to the person who gave it to you.

6B. Poison Reverse: Send poison back to the person who gave you the path.

7. Count To Infinity: Any cost ≥ 16 is advertised as ∞.

This is now a pretty good routing protocol!

	Slide 1: Distance-Vector Algorithm
	Slide 2: Distance-Vector Algorithm Sketch
	Slide 3: Distance-Vector Algorithm Sketch
	Slide 4: Distance-Vector Algorithm Sketch
	Slide 5: Distance-Vector Algorithm Sketch
	Slide 6: Distance-Vector Algorithm Sketch
	Slide 7: Distance-Vector Algorithm Sketch
	Slide 8: Distance-Vector Algorithm Sketch
	Slide 9: Distance-Vector Algorithm Sketch – Routing vs. Forwarding
	Slide 10: Distance-Vector Algorithm Sketch – Multiple Destinations
	Slide 11: Rule 1: Bellman-Ford Updates
	Slide 12: Multiple Paths Advertised
	Slide 13: Multiple Paths Advertised
	Slide 14: Multiple Paths Advertised
	Slide 15: Multiple Paths Advertised
	Slide 16: The Distance-Vector Algorithm So Far
	Slide 17: Unequal Costs
	Slide 18: Unequal Costs
	Slide 19: The Distance-Vector Algorithm So Far
	Slide 20: Distributed Bellman-Ford Algorithm
	Slide 21: Distributed Bellman-Ford Algorithm
	Slide 22: Bellman-Ford Demo
	Slide 23: The Distance-Vector Algorithm So Far
	Slide 24: Bellman-Ford Demo
	Slide 25: Bellman-Ford Demo
	Slide 26: Bellman-Ford Demo
	Slide 27: Bellman-Ford Demo
	Slide 28: Bellman-Ford Demo
	Slide 29: Bellman-Ford Demo
	Slide 30: Bellman-Ford Demo
	Slide 31: Bellman-Ford Demo
	Slide 32: Bellman-Ford Demo
	Slide 33: Bellman-Ford Demo
	Slide 34: Bellman-Ford Demo
	Slide 35: Rule 2: Updates from Next-Hop
	Slide 36: Updates From the Current Next-Hop
	Slide 37: Updates From the Current Next-Hop
	Slide 38: Updates From the Current Next-Hop
	Slide 39: Convergence
	Slide 40: The Distance-Vector Algorithm So Far
	Slide 41: Rule 3: Resending
	Slide 42: Ensuring Reliability
	Slide 43: The Distance-Vector Algorithm So Far
	Slide 44: Rule 4: Expiring
	Slide 45: Handling Failures
	Slide 46: Handling Failures
	Slide 47: Handling Failures
	Slide 48: Handling Failures
	Slide 49: Handling Failures
	Slide 50: Timers
	Slide 51: Summary: Distance-Vector Rules
	Slide 52: Rule 5: Poison Expired Routes
	Slide 53: Route Expiry is Slow
	Slide 54: Route Expiry is Slow
	Slide 55: Route Expiry is Slow
	Slide 56: Route Expiry is Slow
	Slide 57: Route Expiry is Slow
	Slide 58: Route Expiry is Slow
	Slide 59: Poison for Fast Route Expiry
	Slide 60: Poison for Fast Route Expiry
	Slide 61: Poison for Fast Route Expiry
	Slide 62: Poison for Fast Route Expiry
	Slide 63: Accepting and Advertising Poison
	Slide 64: Accepting and Advertising Poison
	Slide 65: The Distance-Vector Algorithm So Far
	Slide 66: Rule 6A: Split Horizon
	Slide 67: Split Horizon – The Problem
	Slide 68: Split Horizon – The Problem
	Slide 69: Split Horizon – The Problem
	Slide 70: Split Horizon – The Problem
	Slide 71: Split Horizon – The Problem
	Slide 72: Split Horizon – The Problem
	Slide 73: Split Horizon – The Problem
	Slide 74: The Distance-Vector Algorithm So Far
	Slide 75: Rule 6B: Poison Reverse
	Slide 76: Poison Reverse
	Slide 77: Poison Reverse vs. Split Horizon
	Slide 78: Poison Reverse
	Slide 79: Poison Reverse
	Slide 80: Poison Reverse
	Slide 81: Poison Reverse vs. Split Horizon
	Slide 82: Poison Reverse vs. Split Horizon
	Slide 83: Rule 5: Poison Expired Routes vs. Rule 6B: Poison Reverse
	Slide 84: The Distance-Vector Algorithm So Far
	Slide 85: Rule 7: Count to Infinity
	Slide 86: Count to Infinity – The Problem
	Slide 87: Count to Infinity – The Problem
	Slide 88: Count to Infinity – The Problem
	Slide 89: Count to Infinity – The Problem
	Slide 90: Count to Infinity – The Problem
	Slide 91: Count to Infinity – The Problem
	Slide 92: Count to Infinity – The Problem
	Slide 93: Count to Infinity – The Problem
	Slide 94: Count to Infinity – The Problem
	Slide 95: Count to Infinity – The Problem
	Slide 96: Count to Infinity – The Problem
	Slide 97: Count to Infinity – The Problem
	Slide 98: Count to Infinity – The Problem
	Slide 99: Count to Infinity – The Problem
	Slide 100: Count to Infinity – Solution
	Slide 101: Count to Infinity – Solution
	Slide 102: Count to Infinity – Solution
	Slide 103: Count to Infinity – Solution
	Slide 104: Count to Infinity – Solution
	Slide 105: Count to Infinity – Solution
	Slide 106: Count to Infinity – Solution
	Slide 107: Count to Infinity – Solution
	Slide 108: Count to Infinity – Solution
	Slide 109: The Distance-Vector Algorithm So Far
	Slide 110: Eventful Updates
	Slide 111: Eventful Updates
	Slide 112: Our Completed Distance-Vector Algorithm
	Slide 113: Summary: Distance-Vector Rules

