Distance-Vector Correctness
 Algorithm Sketch

Distance-Vector
Algorithm

Lecture 5.2, Spring 2026

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R8

R4

Ais 1 away from
me. | should tell R2
my neighbors.

N\
A this way
O

R9

R10

RS

R11

R12

R6

R13

R3

R14

R7

L)

R15

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

R8

R4

R9

Ais 1 away
from me. R2

R10

\

RS

R11

A this way
O

R12

R6

R13

Ais 1 away R3
from me.

i

R14

R7

L)

R15

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

We just found a way to
reach A. We should tell
our neighbors.

R8

R4

R9

R10

RS

R11

A this way
W—

R12

R6

R13

R14

R7

L)

R15

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

A is 2 away
from me.
<)
————~Jrs

i
L)

R8

R9

N

R10

A this way R11
<—

®

R12

R6

R13

w

R14

=N

R15

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

We just found a way to
reach A. We should tell
our neighbors.

R8

R9

R10

R11

A this way
<—

®

R12

R13

R14

R15

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

[A is 3 away.]

__— Rr8
WR4<
CTTTr R
——
/

n
his-
Wa
v . R11

A this way
W—

sWe

R12

e R6<
TR

Ath/’sWa R7<
————R15

N
y

Distance-Vector Algorithm Sketch

One-line algorithm: If you hear about a path to a destination, tell all your neighbors.

We did it! Everybody knows the next-hop to A now.

A this Way

R8
w R4 <
“——R9
A this way
is way
T~ LRI
A thi way R5 <
@ A this way A this way R11
AthiS W To17
S
St —R13
is way
T~ A R14
A this way 1R7 < —
A thIS WQy

Distance-Vector Algorithm Sketch — Routing vs. Forwarding

Routing announcements ('l can reach A") propagated outward, away from A.

A 4

When forwarding packets toward A, packets travel inward, toward A.

RS
R4 <
RO
R2
R10
RS <
R11
R12
R6 <
R13
R3
R14]
R7 <
R15

Distance-Vector Algorithm Sketch — Multiple Destinations

What if there are multiple destinations?

e Run the same path propagation algorithm, once per destination.
e Routers use forwarding tables to keep track of the next-hop of each destination.

We'll focus on a single destination for simplicity.

e But the protocol can extend to multiple destinations.

10

Rule 1: Bellman-
Ford Updates

Lecture 5.2, Spring 2026

Distance-Vector Correctness

Rule 1: Bellman-Ford Updates

11

Multiple Paths Advertised

What if you hear about multiple paths to a single destination?

e Accept the shorter path.

A is 3 away
from me.

/
\

R2

R3

s
Y

R4

Ais 2 away
from me.

:

| prefer what
R4 is offering.

12

Multiple Paths Advertised

What if you hear about multiple paths to a single destination?

e Accept the shorter path.

R2 R3

R5

o
\

~_

R4

Multiple Paths Advertised

You might not hear about both paths simultaneously.

e Inthe forwarding table, record the best-known cost to a destination.
e If yourtable doesn't have a path to a destination, accept any path you hear about.

A is 3 away
from me.
R2 R3
R5's Table
To: Via: Cost:

\ S
A—I RS
AN

14

Multiple Paths Advertised

You might not hear about both paths simultaneously.

e Inthe forwarding table, record the best-known cost to a destination.
e If yourtable doesn't have a path to a destination, accept any path you hear about.
e If you hear about a better path later, update the table (next-hop and cost).

| like this new

R2 R3 |
path better. I'll R5's Table
abandon the . . -
old one. 1o e cost
A RS :
(A—r1 \ / RS R4 3
R4 ///f

A is 2 away
from me.

15

The Distance-Vector Algorithm So Far

For each destination:

e If you hear about a path to that destination, update table if:
o The destination isn't in the table.
o The advertised cost is better than best-known cost.

e Then, tell all your neighbors.

16

Unequal Costs

Not all link costs are 1.

e When a neighbor advertises a path, the cost via that path is the sum of:
o Link cost from you to the neighbor.
o Cost from neighbor to destination (as advertised by neighbor).

R1

R2

Ais 5 away }

Qﬁ;m me.
1

10

R3

R3's Table
To: Via: Cost:

A R1 1+5=6

17

Unequal Costs

Not all link costs are 1.

e When a neighbor advertises a path, the cost via that path is the sum of:
o Link cost from you to the neighbor.
o Cost from neighbor to destination (as advertised by neighbor).

R1

R2

10

This path actually costs
10+3=13. I'll keep using the
cost 6 path and reject this.

R3

|

-

is 3 away
from me.

R3's Table
To: Via: Cost:
A R1 1+5=6

18

The Distance-Vector Algorithm So Far

For each destination:

e If you hear about a path to that destination, update table if:

o The destination isn't in the table.

o Advertised cost + link cost to neighbor < best-known cost. (#1)
e Then, tell all your neighbors.

19

Distributed Bellman-Ford Algorithm

This operation looks familiar.

e 'If cost to neighbor + cost from neighbor to destination < best-known cost,
accept update.”
e This is the relaxation operation in Dijkstra's shortest path algorithm!

Bellman-Ford is another relaxation-based shortest path algorithm.

e Relax every edge repeatedly until we get shortest paths.
e Unlike Dijkstra's, does not require relaxing the edges in any specific order.

Distance-vector algorithms are a distributed, asynchronous version of Bellman-Ford.

e Distributed: Each router relaxes its own links. No global mastermind.
e Asynchronous: Nobody is syncing when the routers do relaxations.

20

Distributed Bellman-Ford Algorithm

The centralized Bellman-Ford algorithm for a single destination:

def bellman ford(dst, routers, links):

(distance = {}; nexthop = {}‘\
for r in routers:
distance[r] = INFINITY
nexthop[r] = None
distance[dst] = ©
- J

Everyone starts infinity away from the destination,
except for the destination itself (0 away).

Loop through nodes and relaxes repeatedly.

In distance-vector, each router relaxes in parallel,
with both directions as links between routers.

for _ in range(len(routers)-1):

for (rl, r2, linkcost) in links:

The relaxation operation.

if distance[rl] + linkcost < distance[r2]:
distance[r2] = distance[rl] + linkcos
nexthop[r2] = ril

return distance, nexthop

21

Bellman-Ford
Demo

Lecture 5.2, Spring 2026

Distance-Vector Correctness

Bellman-Ford Demo

22

The Distance-Vector Algorithm So Far

For each destination:

e If you hear an advertisement, update table if:

o The destination isn't in the table.

o Advertised cost + link cost to neighbor < best-known cost. (#1)
e Then, advertise to all your neighbors.

Terminology note:

e Sending "I'm R1, and | can reach A with cost 5" is called announcing or
advertising a route.

23

Bellman-Ford Demo

R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:

24

Bellman-Ford Demo

@ R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A Direct 1

Static routing: Someone
hard-codes R1's table to

say it can reach A.

Bellman-Ford Demo

| found a way to reach Al
Time to tell all my neighbors.

R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1

26

Bellman-Ford Demo

New advertisement!

'mR1, and | don't have a way to reach
Ais 1 away A yet, so I'll accept.
from me.
R1 ~ 1Rr2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 1+1=2

1 (link cost to R1), plus
1(

advertised cost).

27

Bellman-Ford Demo

Time to tell everyone about

my shiny new path to A.

R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2

28

Bellman-Ford Demo

I'm R2, and I'm R2, and
Ais 2 away A is 2 away
from me. from me.
R1— R2 ~ 1R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2

Notice: R2's announcement doesn't include the next-hop.
Nobody else cares how R2 reaches A, just that R2 can reach A.

29

Bellman-Ford Demo

New advertisement?!
This new path costs 1+2=3.
| already have a cost 1 path.

I'm R2, and
No thanks. Ais 2 away
—\ | fromme.
O, R1— R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2

30

Bellman-Ford Demo

New advertisement?!?
| don't have a pathto A

l\m R22: and yet, so I'll accept.
is 2 away
from me. y
R1 R2 ~ {R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2 A R2 1+2=3

1 (link cost to R2), plus
1 (advertised cost).

Bellman-Ford Demo

Time to advertise my
exciting new path to A.

w
R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2 A R2 3

32

Bellman-Ford Demo

This new path costs 1+3=4.
| already have a cost 2 path.

I'm R3, and
No thanks. Ais 3 away
T—\ | fromme.
R1 R2— R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2 A R2 3

33

Bellman-Ford Demo

We did it! Everybody has a way to reach A now.

A this way A this way A this way
: R1 : R2 : R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2 A R2 3

34

Rule 2: Updates
from Next-Hop

Lecture 5.2, Spring 2026

Distance-Vector Correctness

Rule 2: Updates From Next-Hop

35

Updates From the Current Next-Hop

Recall our routing challenges: Topology can change.

So far: We update if we get a better path (or if we didn't have a path before).
Fix: If our current next hop sends us an announcement, accept it,

even if the path is worse.

This lets the next-hop notify us if the topology changed.

R1

Accept! ;
To: Via: Cost:
A R2 1+3 =4

2 A wasn't in my table. R3's Table

R3

R2 ﬁ;z, and}

Ais 3 away

from me. 36

Updates From the Current Next-Hop

Recall our routing challenges: Topology can change.

So far: We update if we get a better path (or if we didn't have a path before).
Fix: If our current next hop sends us an announcement, accept it,

even if the path is worse.

This lets the next-hop notify us if the topology changed.

I'm R1, and
A is 8 away
R1 \\\\\\jfnnne
2 1+8=9 is worse than 4. ,
R3's Table

Reject!
R3

A R2 4

R2

To: Via: Cost:

37

Updates From the Current Next-Hop

Recall our routing challenges: Topology can change.

So far: We update if we get a better path (or if we didn't have a path before).
Fix: If our current next hop sends us an announcement, accept it,

even if the path is worse.

This lets the next-hop notify us if the topology changed.

R1

R2 is the next-hop. ,
R3's Table
Accept! _
To: Via: Cost:

A R2 1+8=9

R3

R? 4;2’ - What R2 is really saying:

Ais 8 away || Hi,it's R2 again. | know | said A is 3 away from
from me. me earlier, but that's changed. Now A is 8 away.

38

Convergence

If the network never changes:

e After running this protocol for some time, it will converge.
e Everyone's forwarding table has the least-cost next hop.
e All future announcements will be rejected.

If a change happens (e.g. a link goes down):

e Some new announcements are sent.
e Some forwarding tables are updated.
e Eventually, we converge again to the new routing state.

The network topology is constantly changing, so routers run the protocol indefinitely.

e Steady-state occurs when the network has converged.
e In steady-state, everything stays the same until the next topology change.

39

The Distance-Vector Algorithm So Far

For each destination:

e If you hear an advertisement, update table if:
o The destination isn't in the table.
o Advertised cost + link cost to neighbor < best-known cost. (#1)
o The advertisement is from current next-hop. (#2)

e Then, advertise to all your neighbors.

40

Rule 3: Resending

Lecture 5.2, Spring 2026

Distance-Vector Correctness

Rule 3: Resending

41

Ensuring Reliability

Recall our routing challenges: Packets can get dropped.
Solution: Resend advertisements every X seconds.

e X s the "advertisement interval.”
e This should work eventually, assuming the link is functional (>0% delivery rate).

8.
QQ@ Huh? Did someone
0@ say something?
O, R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:

A | Direct 1

The Distance-Vector Algorithm So Far

For each destination:

e If you hear an advertisement, update table if:
o The destination isn't in the table.
o Advertised cost + link cost to neighbor < best-known cost. (#1)
o The advertisement is from current next-hop. (#2)
e Advertise to all your neighbors when the table updates, and periodically. (#3)

43

Rule 4: Expiring

Lecture 5.2, Spring 2026

Distance-Vector Correctness

Rule 4: Expiring

44

Handling Failures

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite
time to live (TTL).

e Periodic advertisements help us confirm that a route still exists.

o When we get an advertisement, reset ("recharge") the TTL.

e If alink goes down, the router attached to that link stops advertising a route to that
destination, so neighboring routers stop receiving TTL refreshes for that route.

o e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer
receives refreshes for the TTL of its route to A. (R3 still hears from R2, but no
longer hears about a route to A through R2)

o If the TTL expires, delete the entry from the table.§

t=0
2 Didn't haAvCecg pt?th to A. R3's Table
@ R2 R3 Pt To: | Via: Cost: TTL:
> A R2 6 11

Need another confirmation of this

route in the next 11 seconds.

I'mR2,and A is
5 away from me.

45

Handling Failures

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite
time to live (TTL).

e Periodic advertisements help us confirm that a route still exists.

o When we get an advertisement, reset ("recharge") the TTL.
e If alink goes down, the router attached to that link stops advertising a route to that

destination, so neighboring routers stop receiving TTL refreshes for that route.
o e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer
receives refreshes for the TTL of its route to A.
o If the TTL expires, delete the entry from the table.§
t=4

R3's Table

@ R2 R3 To: | Via: Cost: TTL:
A | R2 6 7

46

Handling Failures

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite
time to live (TTL).

e Periodic advertisements help us confirm that a route still exists.
o When we get an advertisement, reset ("recharge") the TTL.
e If alink goes down, the router attached to that link stops advertising a route to that
destination, so neighboring routers stop receiving TTL refreshes for that route.
o e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer
receives refreshes for the TTL of its route to A.
o If the TTL expires, delete the entry from the table.§

t=5
R3's Table
@ R2 R3 To: | Via: Cost: TTL:
> A R2 6 11

We got a confirmation!

Reset TTL back to 11.

I'm still R2, and A is
still 5 away from me.

47

Handling Failures

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite
time to live (TTL).

e Periodic advertisements help us confirm that a route still exists.
o When we get an advertisement, reset ("recharge") the TTL.
e If alink goes down, the router attached to that link stops advertising a route to that
destination, so neighboring routers stop receiving TTL refreshes for that route.
o e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer
receives refreshes for the TTL of its route to A.
o If the TTL expires, delete the entry from the table.§

t=15
R3's Table
@. --1R2 R3 To: | Via: Cost: TTL:
Link A R2 6 1
goes

[
down! 48

Handling Failures

Recall our routing challenges: Links and routers can fail. Solution: Each route has a finite
time to live (TTL).

e Periodic advertisements help us confirm that a route still exists.
o When we get an advertisement, reset ("recharge") the TTL.
e If alink goes down, the router attached to that link stops advertising a route to that
destination, so neighboring routers stop receiving TTL refreshes for that route.
o e.g., if the A-R2 link fails, R2 stops advertising a route to A, so R3 no longer
receives refreshes for the TTL of its route to A.
o If the TTL expires, delete the entry from the table.§

t=16
R3's Table
@. --|Rr2 R3 To: | Via: Cost: TTL:
A—R2 6 0
Link
goes Timeout! Delete expired entry.

down!

49

Timers

Routers maintain multiple timers:

e Advertisement interval: How long before we advertise routes to neighbors.
o Usually one timer for all entries in the table.

e TTL: How long before we expire a route.
o Each table entry has its own TTL.

Summary: Distance-Vector Rules

1. Bellman-Ford Updates: Accept if advertised cost + link cost to neighbor < best-known cost.

2. Updates From Next-Hop: Accept if advertisement is from next hop.
3. Resending: Advertise periodically.

4. Expiring: Expire an entry if TTL runs out.

The Distance-Vector Algorithm:

For each destination:

e If you hear an advertisement, update table and reset TTL if:

o The destination isn't in the table.

o Advertised cost + link cost to neighbor < best-known cost. (#1)

o The advertisement is from current next-hop. (#2)
e Advertise to all your neighbors when the table updates, and periodically. (#3)
e |f atable entry expires, delete it. (#4)

51

Distance-Vector Enhancements

Rule 5: Poison
Expired Routes

Lecture 5.2, Spring 2026

Rule 5: Poison Expired Routes

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

e R1 is offering a new path to A, but R3 has to wait for the old broken route to
expire before accepting the new path.

Assume that by t=3, R3 knows a route to A.

R1
t=5
R3's Table
A R2 R3 To: | Via: Cost: TTL:
A R2 2 11

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

e R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R1

R2

{ I'mR1,and A is

Way from me.

Link
goes
down!

R3

Pause right here.
e At this point, we know the path via R2 is broken.
e But R3 won't know until the timeout 10s later.
e If R3 knew now, it could accept the new path.
Instead, R3 rejects the new path, thinking the

broken path is still valid.

No thanks, | already
have a cost 2 path.

t=6
R3's Table
To: | Via: Cost: TTL:
R2 | A 2 10

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

e R1 is offering a new path to A, but R3 has to wait for the old broken route to
expire before accepting the new path.

R1
t=10
R3's Table
--|RrR2 R3 To: | Via: Cost: TTL:
R2 | A 2 6

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

e R1 is offering a new path to A, but R3 has to wait for the old broken route to

expire before accepting the new path.

R1

Again, R3 is forced to reject this new path, because it's

still waiting for the broken path to time out.

{ I'mR1,and A is 1

have a cost 2 path.

Way from me.
2 No thanks, | already

R3

t=11
R3's Table
To: | Via: Cost: TTL:
R2 A 2 5

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

e R1 is offering a new path to A, but R3 has to wait for the old broken route to
expire before accepting the new path.

R1
t=15
R3's Table
--|RrR2 R3 To: | Via: Cost: TTL:
R2 | A 2 1

Route Expiry is Slow

Waiting for routes to expire is slow. Let's watch the demo again.

e R1 is offering a new path to A, but R3 has to wait for the old broken route to
expire before accepting the new path.

Can we alert R3 of the failure sooner, so
it can delete the old broken path earlier
(and start accepting new paths)?

I'mR1,and A is

R1
[1 away from me.}
t=16
2 Sure, I'll accept, my old

path just expired. __RS's Table
To: | Via: Cost: TTL:

no A o) n
N\Z ™ z U

Timeout! Delete expired entry.

Poison for Fast Route Expiry

Waiting for routes to expire is slow.

e You keep a broken path in the forwarding table for a long time.
o Packets might get lost during this time.
o You might advertise that broken route to other people.

e You might reject new paths, thinking the broken path is still valid.
o Could have converged on a better path earlier.

e Key problem: When something fails, nobody's reporting it.

Solution: Poison.

e Explicitly advertise that a path is broken.
e A path with cost infinity represents a broken path.
e This path propagates just like any other path.
o Routers accept the poison path to invalidate the route.
e Can be much faster than waiting for timeouts!

Poison for Fast Route Expiry

Poison lets us detect broken routes faster. Let's watch the demo again.

Assume that by t=3, R3 knows a route to A.

R1
t=5
R3's Table
A R2 R3 To: | Via: Cost: TTL:
A R2 2 11

Poison for Fast Route Expiry

Poison lets us detect broken routes faster. Let's watch the demo again.

R1
t=6
Looks like the path '
2 via R2 is broken. . R3's Table
- |R2 R3 To: | Via: Cost: TTL:

4 . N
goes I'mR2,and Ais
down! |00 away from me.

R3 updates the table to indicate the path is broken.
TTL recharges, just like any other update.

Poison for Fast Route Expiry

Poison lets us detect broken routes faster. Let's watch the demo again.

R3 was able to accept the new route way earlier!
t=6 with poison, t=16 without poison.

[I'mR1,and A is J

R1
1 away from me.
t=6
2 Sure, I'll accept, that's

better than infinity. . R3's Table
~~|R2 R3 To: | Via: Cost: TTL:
Link A | R1 2 o

goes
down!

Accepting and Advertising Poison

Where does poison come from?

e One of your routes times out.
e You notice a local failure, e.g. one of your links goes down.

When one of those occurs:

e Poison the entry: Set cost to infinity, reset TTL.
e Advertise the poison to your neighbors.

Accepting and Advertising Poison

When you get a poison advertisement from the current next-hop:

e Accept it, even if you have a better path.
o Because the next-hop is telling you that the route no longer exists.
o Similar to Rule #2: accept worse paths from current next-hop.

When you update the table with a poison route:

e Resetthe TTL, just like any other table update.
e Advertise the poison to your neighbors, so they also know about the broken route.

Don't forward packets along a poisoned route.

To: Via: Cost:

A R - Don't forward to R1.

A

The Distance-Vector Algorithm So Far

For each destination:

e If you hear an advertisement, update table and reset TTL if:
o The destination isn't in the table.
o Advertised cost + link cost to neighbor < best-known cost. (#1)
o The advertisement is from current next-hop. (#2)
Includes poison advertisements. (#5)
e Advertise to all your neighbors when the table updates, and periodically. (#3)
e If atable entry expires, make the entry poison and advertise it. (#4, #5)

Distance-Vector Enhancements

Rule 6A:
Split Horizon » Rule 6A: Split Horizon

Lecture 5.2, Spring 2026

Split Horizon — The Problem

We ran the algorithm for some time, and we converged to this steady-state.

All subsequent advertisements will be rejected.

®

R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2 A R2 3

Split Horizon — The Problem

Rejected. | have cost 2, and I'm R3, and
you're offering cost 1+3=4. Ais 3 away
—\ | fromme.
R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2 A R2 3

Split Horizon — The Problem

A link goes down, and R2's entry expires (no more updates from R1).
What happens now?

O, R1 R2 R3

R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:

A | Direct 1 A R2 3

Split Horizon — The Problem

My table's empty, so that I'm R3, and
sounds good to me. Ais 3 away
—\ | fromme.
R R2|— R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R3 4 A R2 3

Split Horizon — The Problem

We made a routing loop!

A this waz A this way
R1 R2 : R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A |[Direct 1 A R3 4 A R2 3

Split Horizon — The Problem

Problem ("me" = R2):
| gave R3 a path via me, and R3 accepted.

Then, R3 turned around and gave me that same path.
I'm being offered a path that goes through myself!

Normally, | would never accept, because a path with a loop is longer.
But if | lost my earlier route, | might accept and create a loop.

®

My table's empty, so that I'm R3, and
sounds good to me. Ais 3 away
—\ | fromme.
R R2|— R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R3 4 A R2 3

Split Horizon — The Problem

The split horizon problem: When | give someone a path, they advertise it back to me.

e Path goes from me — them — me.

e Path with extra loop is always longer, so I'd never accept.

e Butif | lost my earlier routes, | might accept, since | might not realize the path is
going through me.

Solution: Don't advertise a path back to the router that gave it to you.

e R2 advertises a path-to-A to R3.
e R3 can advertise that path-to-A to everybody except R2, its next-hop on the path-
to-A.

The Distance-Vector Algorithm So Far

For each destination:

e If you hear an advertisement, update table and reset TTL if:
o The destination isn't in the table.
o Advertised cost + link cost to neighbor < best-known cost. (#1)
o The advertisement is from current next-hop. (#2)
Includes poison advertisements. (#5)
e Advertise to all your neighbors when the table updates, and periodically. (#3)
o But don't advertise it back to the next-hop. (#6A)
e If atable entry expires, make the entry poison and advertise it. (#4, #5)

Distance-Vector Enhancements

Rule 6B:
Poison Reverse

Lecture 5.2, Spring 2026

Rule 6B: Poison Reverse

Poison Reverse

Split horizon: If R1 gave me a route, don't advertise it to R1.

e Don't tell RT anything.

e Never advertise a route back to the next-hop neighbor that you learned it from.
Poison reverse: If RT gave me a route, advertise poison back to R1.

e Explicitly tell R1: "Do not forward packets to me.”

e Advertise the route back to the next-hop neighbor, but with infinite cost.

Poison reverse is an alternative way to avoid routing loops.

Poison Reverse vs. Split Horizon

R1

Split Horizon:

| can
reach A.

n
>

R1

R2

R2

N\

/ | can
/__—» |reachA.
\

Don't advertise anything back to R1.

Poison Reverse:

| can
reach A.

\ 4

R1 R2

| cannot
reach A.

| can
reach A.

A

R1 R2

ZANY

Explicitly advertise poison back to R1.

Technique

What R2 tells R1 about

A

Philosophy

Split Horizon

Says nothing

Silence avoids confusion

Poison Reverse

Says « (unreac

hable)

Explicit warning

Poison Reverse

Let's watch the demo again, but with poison reverse this time.
As before, we first reach steady state.

R1 R2 R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R1 2 A R2 3

Poison Reverse

A link goes down, and R2's entry expires (no more updates from R1).
What happens now?

O, R1 R2 R3

R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:

A | Direct 1 A R2 3

Poison Reverse

R2's table now explicitly says: Do not send packets to R3.

e Because R3 would just send the packet back to R2.

My table's empty, so that I'm R3, and
sounds good to me. Ais 00 away
—\ | fromme.
O, R1 R2— R3
R1's Table R2's Table R3's Table
To: Via: Cost: To: Via: Cost: To: Via: Cost:
A | Direct 1 A R3 00 A R2 3

Poison Reverse vs. Split Horizon

Suppose we end up with a routing loop somehow.
Split horizon: No poison is sent.

e Loop stays until the routes expire.

| got this route from R3, | got this route from R2,
so don't send it to R3. /] so don't send it to R2.
R2 R3
R2's Table R3's Table
To: Via: Cost: To: Via: Cost:

A R3 4 A R2 3

Poison Reverse vs. Split Horizon

Suppose we end up with a routing loop somehow.

Poison reverse: R3 explicitly sends poison back to R2.

e Loop is immediately eliminated!

e Faster than split horizon.

. I'm R3, and :
R3 is my next-hop, so A is 00 away | got this route from R2,
| accept. from me. /] so send poison to R2.
R2 - R3
R2's Table R3's Table
To: Via: Cost: To: Via: Cost:
A R3 (0] A R2 3

Rule 5: Poison Expired Routes vs. Rule 6B: Poison Reverse

e Rule 5: Poison Expired Routes vs. Rule 6B: Poison Reverse

e They sound similar, but we can think of one of them as being “honest” while the
other one is “lying.”

e Poisoned reverse encourages routers to tell a white lie. With poisoned reverse, we
tell a neighbor that we have no path to a certain destination if our path goes
through that neighbor. Since we actually do have a path, our message is not
strictly true.

e On the other hand, poisoning an expired route happens when a link goes down,
and we actually lose our path to some destination. Thus, we're telling the truth
when we advertise a distance of infinity to this destination (given that an infinitely
long path is equivalent to no path).

83

The Distance-Vector Algorithm So Far

For each destination:

e If you hear an advertisement, update table and reset TTL if:
o The destination isn't in the table.
o Advertised cost + link cost to neighbor < best-known cost. (#1)
o The advertisement is from current next-hop. (#2)
Includes poison advertisements. (#5)
e Advertise to all your neighbors when the table updates, and periodically. (#3)
o But don't advertise back to the next-hop. (#6A)
o ...Or, advertise poison back to the next-hop. (#6B)
e If atable entry expires, make the entry poison and advertise it. (#4, #5)

Distance-Vector Enhancements

Rule 7: Count to
Infinity

Lecture 5.2, Spring 2026 * Rule 7: Count To Infinity

Count to Infinity — The Problem

Split horizon (or poison reverse) helps us avoid length-2 loops.

e R1 forwards to R2.
e R2 forwardsto R1.

But we can still get routing loops with 3 or more routers.

Count to Infinity — The Problem

Suppose the tables reach steady-state.

R1

R3's Table
To: Via: Cost:
A | Direct 1

R3

R2

R1's Table
To: Via: Cost:
A R3 2
R2's Table
To: Via: Cost:
A R3 2

Count to Infinity — The Problem

Link goes down! A now unreachable.

R3 updates table and sends poison.

Poison reaches R2, but not R1!

R3's Table
To: Via: Cost:
A |Direct 00

mopped"

R3

|

I'm R3, and Ak‘

oo away from me.

R1

R2

R1's Table
To: Via: Cost:
A R3 2
R2's Table
To: Via: Cost:
A R3 00

Count to Infinity — The Problem

At this point, R3 and R2 know A is unreachable.

But R1 still thinks there's a path to Al

R1

R3's Table
To: Via: Cost:
A |[Direct 00

R3

R2

R1's Table
To: Via: Cost:
A R3 2
R2's Table
To: Via: Cost:
A R3 00

Count to Infinity — The Problem

R1 announces it can reach A.

Split horizon: R1's path came from R3, so don't tell R3.

R1

R3's Table
To: Via: Cost:
A |[Direct 00

R3

R1's Table
To: Via: Cost:
A R3 2

|

2 away from me.

I'mR1,and A is }

R2

R2's Table
To: Via: Cost:
A R1 3

Count to Infinity — The Problem

R2 announces it can reach A.

Split horizon: R2's path came from R1, so don't tell R1.

R3's Table
To: Via: Cost:
A R2 4

R3

|

'm R2, and A»

3 away from me.

R1

R2

R1's Table
To: Via: Cost:
A R3 2
R2's Table
To: Via: Cost:
A R1 3

Count to Infinity — The Problem

R3 announces it can reach A.

Split horizon: R3's path came from R2, so don't tell R2.

R3's Table
To: Via: Cost:
A R2 4

|

'm R3, and A is]

4 away from V

R3

R1

R2

R1's Table
To: Via: Cost:
A R3 5
R2's Table
To: Via: Cost:
A R1 3

Count to Infinity — The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

R1's Table
R1 To: Via: Cost:
A R3 5
R3's Table : .
To: | Via: Cost: R3 I'mR1, and A is
5 away from me.
A R2 4
’ R2's Table
R2 To: Via: Cost:

A R1 6

Count to Infinity — The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

R1's Table
R1 To: Via: Cost:
A R3 5
R3's Table
To: Via: Cost: R3

A R2 7
\ R2's Table
[I'mR2,and A is] R2 To: Via: Cost:

6 away from me. A R 6

Count to Infinity — The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

I'm R3, and A is R1 '; Table
7 away from me. R1 To: Via: Cost:
A R3 8
R3's Table
To: Via: Cost: R3
A R2 7
R2's Table
R2 To: Via: Cost:

A R1 6

Count to Infinity — The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

R1's Table
R1 To: Via: Cost:
A R3 8
R3's Table : .
To: | Via: Cost: R3 I'mR1, and A is
8 away from me.
A R2 7
’ R2's Table
R2 To: Via: Cost:

A R1 9

Count to Infinity — The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

R1's Table
R1 To: Via: Cost:
A R3 8
R3's Table
To: Via: Cost: R3

A R2 10
\ R2's Table
[I'mR2,and A is] R2 To: Via: Cost:

9 away from me. A R 9

Count to Infinity — The Problem

We keep advertising in a cycle, and costs keep increasing!

Split horizon can't save us.

I'm R3, and A is R1 '; Table
10 away from me. R1 To: | Via: Cost:
A R3 11
R3's Table
To: Via: Cost: R3
A R2 10
R2's Table
R2 To: Via: Cost:

A R1 9

Count to Infinity — The Problem

The problem, restated:

e Poison wasn't propagated properly. A router had a broken path.
e broken path is advertised in a loop.

Split horizon won't save us.

e We're never advertising a path back to the next-hop.

(=) (=] ()

Count to Infinity — Solution

Solution: Enforce a maximum cost.

e 15is a common choice.
e All numbers = 16 are considered infinity.

Result;

e Loop will stop when all costs reach 16.
e broken path will expire, or get replaced by another non-infinite-cost path.

Count to Infinity — Solution

All numbers = 16 are considered infinity.

R1

R3's Table
To: Via: Cost:
A R2 10

R3

R1's Table
To: Via: Cost:
A R3 11

|

I'mR1,and Ais
11 away from me.

R2

R2's Table
To: Via: Cost:
A R1 12

Count to Infinity — Solution

All numbers = 16 are considered infinity.

R3's Table
To: Via: Cost:
A R2 13

R3

|

'm R2, and A»

12 away from me.

R1

R2

R1's Table
To: Via: Cost:
A R3 11
R2's Table
To: Via: Cost:
A R1 12

Count to Infinity — Solution

All numbers = 16 are considered infinity.

R3's Table
To: Via: Cost:
A R2 13

|

'm R3, and A is }

13 away from V

R3

R1

R2

R1's Table
To: Via: Cost:
A R3 14
R2's Table
To: Via: Cost:
A R1 12

Count to Infinity — Solution

All numbers = 16 are considered infinity.

R1

R3's Table
To: Via: Cost:
A R2 13

R3

R1's Table
To: Via: Cost:
A R3 14

|

I'mR1,and Ais
14 away from me.

R2

R2's Table
To: Via: Cost:
A R1 15

Count to Infinity — Solution

All numbers = 16 are considered infinity.

R3's Table
To: Via: Cost:
A R2 16 o0

R3

|

'm R2, and A»

15 away from me.

R1

R2

R1's Table
To: Via: Cost:
A R3 14
R2's Table
To: Via: Cost:
A R1 15

Count to Infinity — Solution

All numbers = 16 are considered infinity.

R3's Table
To: Via: Cost:
A R2 00

|

'm R3, and A is }

oo away from V

R3

R1

R2

R1's Table
To: Via: Cost:
A R3 00
R2's Table
To: Via: Cost:
A R1 15

Count to Infinity — Solution

All numbers = 16 are considered infinity.

R1

R3's Table
To: Via: Cost:
A R2 00

R3

R1's Table
To: Via: Cost:
A R3 00

|

I'mR1,and Ais
oo away from me.

R2

R2's Table
To: Via: Cost:
A R1 00

Count to Infinity — Solution

We've reached steady state!

e Future advertisements won't change the tables.

e Routes for A will soon expire.

o Or, if another route to A appears, it'll replace the infinite-cost entry.

R1

R3's Table
To: Via: Cost:
A R2 00

R3

R2

R1's Table
To: Via: Cost:
A R3 00
R2's Table
To: Via: Cost:
A R1 00

The Distance-Vector Algorithm So Far

For each destination:

e If you hear an advertisement, update table and reset TTL if:
o The destination isn't in the table.
o Advertised cost + link cost to neighbor < best-known cost. (#1)
o The advertisement is from current next-hop. (#2)
Includes poison advertisements. (#5)
e Advertise to all your neighbors when the table updates, and periodically. (#3)
o But don't advertise back to the next-hop. (#6A)
o ...0r, advertise poison back to the next-hop. (#6B)
o Any cost = 16 is advertised as 00. (#7)
e If atable entry expires, make the entry poison and advertise it. (#4, #5)

Distance-Vector Enhancements

Eventful Updates

Lecture 5.2, Spring 2026

Eventful Updates

Eventful Updates

When do we send advertisements?
e Periodically (once every "advertisement interval").
e When atable entry expires.

e When the table changes (triggered updates).
o When we accept a new advertisement.
o When a new link is added. (Add static routes and advertise them.)
o When a link goes down. (Poison routes and advertise poison.)

Triggered updates are an optimization for faster convergence.

e Instead of advertising when the table changes, we could just wait for the interval.
Protocol is still correct.

Our Completed Distance-Vector Algorithm

For each destination:

e If you hear an advertisement, update table and reset TTL if:
o The destination isn't in the table.
o Advertised cost + link cost to neighbor < best-known cost. (#1)
o The advertisement is from current next-hop. (#2)
Includes poison advertisements. (#5)
e Advertise to all your neighbors when the table updates, and periodically. (#3)
o But don't advertise back to the next-hop. (#6A)
o ...0r, advertise poison back to the next-hop. (#6B)
o Any cost = 16 is advertised as 00. (#7)
e If atable entry expires, make the entry poison and advertise it. (#3, #5)

Summary: Distance-Vector Rules

1. Bellman-Ford Updates: Accept if advertised cost + link cost to neighbor < best-known cost.
2. Updates From Next-Hop: Accept if advertisement is from next hop.

3. Resending: Advertise periodically.

4. Expiring: Expire an entry if TTL runs out.

5. Poison Expired Routes: Send poison if an entry expires.

6A. Split Horizon: Don't advertise path back to the person who gave it to you.

6B. Poison Reverse: Send poison back to the person who gave you the path.

7. Count To Infinity: Any cost = 16 is advertised as 0o.

This is now a pretty good routing protocol!

	Slide 1: Distance-Vector Algorithm
	Slide 2: Distance-Vector Algorithm Sketch
	Slide 3: Distance-Vector Algorithm Sketch
	Slide 4: Distance-Vector Algorithm Sketch
	Slide 5: Distance-Vector Algorithm Sketch
	Slide 6: Distance-Vector Algorithm Sketch
	Slide 7: Distance-Vector Algorithm Sketch
	Slide 8: Distance-Vector Algorithm Sketch
	Slide 9: Distance-Vector Algorithm Sketch – Routing vs. Forwarding
	Slide 10: Distance-Vector Algorithm Sketch – Multiple Destinations
	Slide 11: Rule 1: Bellman-Ford Updates
	Slide 12: Multiple Paths Advertised
	Slide 13: Multiple Paths Advertised
	Slide 14: Multiple Paths Advertised
	Slide 15: Multiple Paths Advertised
	Slide 16: The Distance-Vector Algorithm So Far
	Slide 17: Unequal Costs
	Slide 18: Unequal Costs
	Slide 19: The Distance-Vector Algorithm So Far
	Slide 20: Distributed Bellman-Ford Algorithm
	Slide 21: Distributed Bellman-Ford Algorithm
	Slide 22: Bellman-Ford Demo
	Slide 23: The Distance-Vector Algorithm So Far
	Slide 24: Bellman-Ford Demo
	Slide 25: Bellman-Ford Demo
	Slide 26: Bellman-Ford Demo
	Slide 27: Bellman-Ford Demo
	Slide 28: Bellman-Ford Demo
	Slide 29: Bellman-Ford Demo
	Slide 30: Bellman-Ford Demo
	Slide 31: Bellman-Ford Demo
	Slide 32: Bellman-Ford Demo
	Slide 33: Bellman-Ford Demo
	Slide 34: Bellman-Ford Demo
	Slide 35: Rule 2: Updates from Next-Hop
	Slide 36: Updates From the Current Next-Hop
	Slide 37: Updates From the Current Next-Hop
	Slide 38: Updates From the Current Next-Hop
	Slide 39: Convergence
	Slide 40: The Distance-Vector Algorithm So Far
	Slide 41: Rule 3: Resending
	Slide 42: Ensuring Reliability
	Slide 43: The Distance-Vector Algorithm So Far
	Slide 44: Rule 4: Expiring
	Slide 45: Handling Failures
	Slide 46: Handling Failures
	Slide 47: Handling Failures
	Slide 48: Handling Failures
	Slide 49: Handling Failures
	Slide 50: Timers
	Slide 51: Summary: Distance-Vector Rules
	Slide 52: Rule 5: Poison Expired Routes
	Slide 53: Route Expiry is Slow
	Slide 54: Route Expiry is Slow
	Slide 55: Route Expiry is Slow
	Slide 56: Route Expiry is Slow
	Slide 57: Route Expiry is Slow
	Slide 58: Route Expiry is Slow
	Slide 59: Poison for Fast Route Expiry
	Slide 60: Poison for Fast Route Expiry
	Slide 61: Poison for Fast Route Expiry
	Slide 62: Poison for Fast Route Expiry
	Slide 63: Accepting and Advertising Poison
	Slide 64: Accepting and Advertising Poison
	Slide 65: The Distance-Vector Algorithm So Far
	Slide 66: Rule 6A: Split Horizon
	Slide 67: Split Horizon – The Problem
	Slide 68: Split Horizon – The Problem
	Slide 69: Split Horizon – The Problem
	Slide 70: Split Horizon – The Problem
	Slide 71: Split Horizon – The Problem
	Slide 72: Split Horizon – The Problem
	Slide 73: Split Horizon – The Problem
	Slide 74: The Distance-Vector Algorithm So Far
	Slide 75: Rule 6B: Poison Reverse
	Slide 76: Poison Reverse
	Slide 77: Poison Reverse vs. Split Horizon
	Slide 78: Poison Reverse
	Slide 79: Poison Reverse
	Slide 80: Poison Reverse
	Slide 81: Poison Reverse vs. Split Horizon
	Slide 82: Poison Reverse vs. Split Horizon
	Slide 83: Rule 5: Poison Expired Routes vs. Rule 6B: Poison Reverse
	Slide 84: The Distance-Vector Algorithm So Far
	Slide 85: Rule 7: Count to Infinity
	Slide 86: Count to Infinity – The Problem
	Slide 87: Count to Infinity – The Problem
	Slide 88: Count to Infinity – The Problem
	Slide 89: Count to Infinity – The Problem
	Slide 90: Count to Infinity – The Problem
	Slide 91: Count to Infinity – The Problem
	Slide 92: Count to Infinity – The Problem
	Slide 93: Count to Infinity – The Problem
	Slide 94: Count to Infinity – The Problem
	Slide 95: Count to Infinity – The Problem
	Slide 96: Count to Infinity – The Problem
	Slide 97: Count to Infinity – The Problem
	Slide 98: Count to Infinity – The Problem
	Slide 99: Count to Infinity – The Problem
	Slide 100: Count to Infinity – Solution
	Slide 101: Count to Infinity – Solution
	Slide 102: Count to Infinity – Solution
	Slide 103: Count to Infinity – Solution
	Slide 104: Count to Infinity – Solution
	Slide 105: Count to Infinity – Solution
	Slide 106: Count to Infinity – Solution
	Slide 107: Count to Infinity – Solution
	Slide 108: Count to Infinity – Solution
	Slide 109: The Distance-Vector Algorithm So Far
	Slide 110: Eventful Updates
	Slide 111: Eventful Updates
	Slide 112: Our Completed Distance-Vector Algorithm
	Slide 113: Summary: Distance-Vector Rules

