
Internet Design Principles

• Architecting the Internet

• Narrow Waist, Demultiplexing

• End-to-End Principle

Designing Resource Sharing

• Statistical Multiplexing

• Circuit vs. Packet Switching

• Which is Better?

• A Brief History

Architecting the 
Internet
Lecture 2, Spring 2026

1



The Internet Design Principles

The Internet Design Principles:

1. Decentralized control.

2. Best-effort service model.

3. Route around trouble.

4. Dumb infrastructure (with smart endpoints).

5. End-to-end principle.

6. Layering.

7. Federation via narrow-waist interface.

These are guidelines, not unbreakable rules.

● This is just one of many possible designs.

● We're still debating the big questions!

2



1. Decentralized control.

● Each network device (e.g. router) runs on its own. No central mastermind.

2. Best-effort service model.

● At Layer 3, routers only offer best-effort delivery.

3. Route around trouble.

● Network must be resilient to failures.

● If a router or link goes down, find a different path through the network.

4. Dumb infrastructure (with smart endpoints).

● Routers forward packets. They don't care about what's inside.

5. End-to-end principle.

● Implement features at the end hosts, not at the routers.

The Internet Design Principles

3



6. Layering.

● Each layer relies on the layer below, and supports the layer above.

● Allows us to innovate at one layer, without disturbing other layers.

● Alternative: cross-layer protocols spanning multiple layers let us optimize several 

layers together.

7. Federation via narrow-waist interface.

● Federation works because all operators speak the same Layer 3 protocol.

The Internet Design Principles

4



Internet Design Principles

• Architecting the Internet

• Narrow Waist, Demultiplexing

• End-to-End Principle

Designing Resource Sharing

• Statistical Multiplexing

• Circuit vs. Packet Switching

• Which is Better?

• A Brief History

Narrow Waist, 
Demultiplexing
Lecture 2, Spring 2026

5



Protocols at Different Internet Layers

Physical

Link

Internet

Layer 1:

Layer 2:

Layer 3:

TransportLayer 4:

ApplicationLayer 7:

Multiple protocols exist at each layer.

● End hosts can agree on the L4 and L7 protocols they want to use.

● Routers on each link can agree on the L1 and L2 protocols they want to use.

Optical Copper Wire Radio Waves Telephone Line

Wi-Fi Point-to-PointEthernetFDDI

IP

TCP UDP

SMTP DNSHTTP NTP

6



Protocols at Different Internet Layers

Physical

Link

Internet

Layer 1:

Layer 2:

Layer 3:

TransportLayer 4:

ApplicationLayer 7:

Multiple protocols exist at each layer.

● End hosts can agree on the L4 and L7 protocols they want to use.

● Routers on each link can agree on the L1 and L2 protocols they want to use.

Optical Radio Waves Telephone Line

Wi-Fi Point-to-PointFDDI

UDP

DNSHTTP NTP

Copper Wire

Ethernet

IP

TCP

SMTP

7



Protocols at Different Internet Layers

Physical

Link

Internet

Layer 1:

Layer 2:

Layer 3:

TransportLayer 4:

ApplicationLayer 7:

The narrow waist: IP (Internet Protocol) is the only protocol at Layer 3.

● All hosts and routers understand IP.

● This unifies the Internet and enables federation.

Optical Copper Wire Radio Waves Telephone Line

Wi-Fi Point-to-PointEthernetFDDI

IP

TCP UDP

SMTP DNSHTTP NTP

8



Demultiplexing

Physical

Link

Internet

Layer 1:

Layer 2:

Layer 3:

TransportLayer 4:

ApplicationLayer 7:

When you receive a packet, you pass it up the stack, to higher-layer protocols.

● How did IP know to pass up to TCP, not UDP?

● How did TCP know to pass up to HTTP, not SMTP?

Optical Copper Wire Radio Waves Telephone Line

Wi-Fi Point-to-PointEthernetFDDI

IP

TCP UDP

SMTP DNSHTTP NTP

Which way?

Which way?

9



Demultiplexing at Layer 3

Demultiplexing:

● Add a new header field that tells us what the next (higher) layer protocol is.

● Allows the IP code to pass the rest of the packet to the appropriate L4 code.

IP

TCP UDPWhich way?

From: Alice's computer
To: Bob's computer
Next layer is TCP.

Layer 4 headers

"Potato."

From: Alice's computer
To: Bob's computer
Next layer is UDP.

Layer 4 headers

"Potato."

10



Firefox

Demultiplexing at Layer 4

Demultiplexing also works at Layer 4.

● Each running application on your computer is associated with a port number.

● When L4 receives a packet, it uses the port number to pass the packet to the 

corresponding application.

TCP

Email

Which way?

From: Port 587
To: Port 50000

Stop watching YouTube 
and answer your email.

From: Port 194
To: Port 60000

you're fired!!!

From: Port 80
To: Port 40000

Here's that YouTube 
video you asked for.

Slack

More specifically, each open 
connection on the computer.

(40000) (50000) (60000)

11



Ports at Layer 4

Port numbers help us distinguish between applications on the same computer.

● IP address (Layer 3) for all the applications is the same.

● But each connection is associated with a different port number.

Analogy: Room numbers.

● You and your housemate both have the same street address.

● If someone sends a letter to your house, who is it for?

● Distinguish by assigning room numbers to each housemate.

From: YouTube server
To: Bob's computer
Next layer is TCP.

From: Port 80
To: Port 40000

[cat video]

Demultiplex: Which L4 protocol?

Demultiplex: Which L7 application?

12



Ports at Layer 4

Both end hosts in a connection have a port number.

● A private client (e.g. your computer) can use a randomly-generated port number.

● A public server (e.g. YouTube) must use a fixed, well-known port number.

Analogy: Room numbers.

● Pick any number for your bedroom. No one cares.

● Public room numbers must be fixed and well-known.

From: Bob's computer
To: YouTube server
Next layer is TCP.

From: Port 40000
To: Port 80

give me cat video

From: YouTube server
To: Bob's computer
Next layer is TCP.

From: Port 80
To: Port 40000

[cat video]

Outgoing packet: 
Bob picks a random 
port number, but 
sends to YouTube's 
fixed port, 80.

Incoming reply: YouTube 
replies to Bob's chosen 
port. Bob's computer 
passes the packet to the 
correct application (e.g., 
Firefox).

13



Caution – Terminology Conflict

In networking, there are two different things, both called "ports."

● If it's unclear, we will specify "logical port" or "physical port."

From: Port 80
To: Port 40000

[cat video]

Logical port: A number identifying 
an application. Exists in software.

Physical port: The hole you plug a 
cable into. Exists in hardware.

14



Software

Operating
System

Implementing Layers in the End Host

Layers 1 and 2 are implemented in hardware, on the network interface card (NIC).

Layers 3 and 4 are implemented in software, in the operating system.

Layer 7 is the applications running in software.

Network Interface Card (Hardware)

IP

TCP UDP

Firefox ZoomEmailSlack Game

Layers 1–2

Layer 3

Layer 4

Layer 7

Thinks about packets.

Bridges the 
packet and 
connection 
abstractions.

Thinks about 
connections.

15



Software

Operating
System

Implementing Layers in the End Host

Demultiplexing helps the operating system pass packets to the correct application.

Logical ports identify the attachment point between the application and the OS.

Network Interface Card (Hardware)

IP

TCP UDP

Firefox ZoomEmailSlack Game

Layers 1–2

Layer 3

Layer 4

Layer 7

16



Internet Design Principles

• Architecting the Internet

• Narrow Waist, Demultiplexing

• End-to-End Principle

Designing Resource Sharing

• Statistical Multiplexing

• Circuit vs. Packet Switching

• Which is Better?

• A Brief History

End-to-End 
Principle
Lecture 2, Spring 2026

17



The End-to-End Question

Recall: Layer 3 (Internet) is best-effort.

● Routers implement Layers 1–3 only.

● Only end hosts implement Layer 4 (reliability).

Why did we choose this design?

Should we implement reliability in the network?

The end-to-end principle will help us answer these questions.

● Guides the debate about what functionality the network does or doesn't 

implement.

18



Running Example – Simple Reliability Protocol

We haven't discussed Layer 4 protocols yet, so let's use a super-simple protocol.

● Alice wants to send 10 packets to Bob (in any order).

● Alice numbers the packets 1 through 10 and sends them.

● Bob can either:

○ Receive all 10 packets and declare success, or

○ Detect that some packets were lost, and declare failure.

○ Bob cannot declare success when packets are lost.

R1A R2 R3 B

Sender RecipientRouter Router Router
19



Solution 1 – Reliability in the Network

Solution 1 – Reliability in the network:

● Each router checks if it got all 10 packets.

● If success, send the 10 packets to the next hop.

● If failure, report the failure to the next hop.

Bob trusts whatever the last packet says. He doesn't count the packets himself.

R1A R2 R3 B

Sender RecipientRouter Router Router

Got all 10 
packets!

Missed a 
packet. Fail. Fail. Fail.

20



Solution 1 – Reliability in the Network

Surprising fact: Solution 1 cannot guarantee correctness.

● Suppose R3 is buggy and always reports success.

● Bob doesn't check, so he trusts R3's report...even if it's wrong.

R1A R2 R3 B

Sender RecipientRouter Router Router

Got all 10 
packets!

Got all 10 
packets!

Got all 10 
packets!

R3 is buggy! It actually 
only got 9 packets.

Success!

21



Solution 2 – Reliability at End Hosts

Solution 2 – Reliability at end hosts:

● Routers are best-effort. They might drop packets (and not report it).

● Bob checks if he got all 10 packets.

R1A R2 R3 B

Sender RecipientRouter Router Router

Got all 10 
packets!

22



Which Solution is Better?

Problem with Solution 1 (only routers check) : The end host (Bob) had to trust the 

network for correctness.

● If the reliability code in the network is buggy, there's nothing Bob can do.

Solution 2 (only end hosts check) can be correct by itself, where Bob only had to rely 

on himself for correctness.

● If the reliability code is buggy, Bob has the power to fix it.

Solution 2 is strictly better!

● End hosts checking alone is already sufficient.

● Router checks in solution 1 are unnecessary: Extra complexity for the network.

End-to-end principle: Certain application features (e.g. reliability) must be 

implemented at the end host for correctness.

23



Breaking the End-to-End Principle for Performance

The end-to-end principle can be relaxed.

● Could implement reliability in the network as a performance optimization.

● Must be done in addition to end-to-end checks, for correctness.

Example: Links can send duplicate packets to improve/optimize network

performance. Crrectness is guaranteed by the end-to-end principle regardless of the 

network performance (by retransmission of lost packets) 

10 links, 10% failure rate per link = ~65% end-to-end failure probablity. (Success rate per link = 1−0.1 
= 0.9, so end-to-end success probability (when all 10 links must succeed): 0.910 ≈ 0.35 , hence End-
to-end failure rate is 1-0.35 = 0.65.)
If each link sends 2 extra copies of every packet (3 total): 0.1% failure rate per link, ~1% end-to-end 
failure rate. (A link only fails if all 3 copies fail. Single-copy failure probability: 𝑞 = 0.1. Failure rate per 
link when all 3 copies fail is: 𝑞3 = 0.001. Success rate per link = 1− 0.001 = 0.999, so end-to-end 
success rate is: 0.99910= 0.990, hence end-to-end failure rate is 1 - 0.99 = 0.01.)

Sender Recipient

24



Internet Design Principles

• Architecting the Internet

• Narrow Waist, Demultiplexing

• End-to-End Principle

Designing Resource Sharing

• Statistical Multiplexing

• Circuit vs. Packet Switching

• Which is Better?

• A Brief History

Designing 
Resource Sharing: 
Statistical 
Multiplexing
Lecture 2, Spring 2026

25



Sharing Network Resources

The network must support many simultaneous flows.

● Recall: A flow is a stream of packets sent between two end hosts.

● This means network resources are shared between end hosts.

R1

A

R2

B

C D

A and B want to exchange data.
C and D also want to exchange data.

They all have to share routers and links.

26



Sharing Network Resources

Two ways to allocate resources to users:

● Static allocation: Give a fixed amount to each user.

● Statistical multiplexing: Dynamically allocate to users based on their demand.

○ Example: Your computer allocates CPU to apps based on demand.

Network resources are statistically multiplexed.

Time Time

R
e

s
o

u
rc

e
s

R
e

s
o

u
rc

e
s

Static Allocation Statistical Multiplexing

27



Statistical Multiplexing is More Efficient

Statistical multiplexing (dynamic) is more efficient than static allocation (fixed).

● Fixed: You have to give everyone enough for their peak demand.

● Dynamic: Give a user more when their demand peaks.

Example:

● Alice needs 10 in the morning, and 2 all other times.

● Bob needs 10 at night, and 2 all other times.

● Fixed: Alice and Bob each get 10 at all times.

○ We need 20 to satisfy demand.

○ Alice's 10 is wasted most of the time. Same for Bob.

● Dynamic: Give each user 10 at their peak time, and 2 at other times.

○ We only need 12 to satisfy demand!

28



Statistical Multiplexing is More Efficient

In summary: peak of aggregate demand < aggregate of peak demands. max(Σ fi) < Σ

max(fi)

Time

D
e

m
a

n
d

Alice's demand Bob's demand Combined demand

Time

D
e

m
a

n
d

A's peak B's peak

+ =

Peak of 
aggregate

Time

D
e

m
a

n
d

Aggregate 
of peak

Time

D
e

m
a

n
d

29



Internet Design Principles

• Architecting the Internet

• Narrow Waist, Demultiplexing

• End-to-End Principle

Designing Resource Sharing

• Statistical Multiplexing

• Circuit vs. Packet Switching

• Which is Better?

• A Brief History

Circuit Switching 
vs.
Packet Switching
Lecture 2, Spring 2026

30



Circuit Switching vs. Packet Switching

There are 2 canonical designs for implementing statistical multiplexing:

● Reservations via circuit switching:

○ At start of connection, end-hosts explicitly request and reserve resources.

○ During connection, use the reserved resources to send packets.

○ At end of connection, release resources.

● Best-effort via packet switching:

○ Just use the resources (send packets) and hope for the best.

Analogy: In a restaurant, reservations vs. first-come, first-serve.

31



Circuit Switching

Reservations via circuit 
switching: Reserve capacity 
for the connection.

● A sends a reservation 
to B. Along the way, 
routers hear the 
reservation and allocate 
resources. Routers 
establish a circuit, and 
A can start sending 
data.

● When connection is 
done, A sends a 
teardown message to 
B. Along the way, 
routers see the 
message and free up 
resources.

R5 R6

B

I need
5 Mbps

I need
5 Mbps

I need
5 Mbps

I need
5 Mbps

A R1

R3
I need

5 Mbps

R2 R4

32R5 R6

Done! Done! Done!

Done!

R1A R2 R4

R3

B

Done!



Packet Switching

Best-effort via packet switching: Allocate resources to each packet independently.

● Each router considers the packet independently.

● Each packet in the flow is considered independently.

R1A R2

R5 R6

R4

R3

B

Potato Potato Potato

Potato

Potato Potato

33

No circuit!



Internet Design Principles

• Architecting the Internet

• Narrow Waist, Demultiplexing

• End-to-End Principle

Designing Resource Sharing

• Statistical Multiplexing

• Circuit vs. Packet Switching

• Which is Better?

• A Brief History

Circuit vs. Packet 
Switching:
Which is Better?
Lecture 2, Spring 2026

34



Circuit Switching vs. Packet Switching: Which is Better?

Which is better? We can compare along several dimensions.

1. Which one offers a better abstraction to applications?

2. Which one is more efficient at scale?

3. Which one is better at handling failures at scale?

4. Which one is easier (less complex) to implement at scale?

35



Which is Better? (1/4) – Application Abstraction

As a programmer, circuit switching is more convenient.

● You get a guarantee of reserved resources.

● More predictable and understandable behavior.

● Leads to an intuitive business model for companies.

○ Charge a user depending on what they reserve.

1. Better abstraction to applications?

2. More efficient at scale?

3. Better at handling failures at scale?

4. Easier (less complex) to implement at scale? 36



Which is Better? (2/4) – Efficiency

Packet switching is typically more efficient.

● Circuit switching takes time for setup/teardown.

○ Very inefficient if you don't have much data to send, e.g. short flows.

● Circuit switching can lead to wasted resources.

○ If I reserve 5 Mbps for an hour, I might not need 5 Mbps the whole hour.

○ Other people could be using the resources I'm not using.

○ How much better depends on the "burstiness" of the traffic sources.

1. Better abstraction to applications?

2. More efficient at scale?

3. Better at handling failures at scale?

4. Easier (less complex) to implement at scale? 37



Which is Better? (2/4) – Efficiency – Packet Burstiness

Circuit switching with bursty traffic leads to inefficient resource allocation.

Capacity = 30

A reserves 13.

B reserves 11.

Not enough for C!

Circuit switching:
Must reject one of the flows!

Packet switching:
All demands satisfied!

B's Demand

11

C's Demand

12

A's Demand

13

Time

D
e

m
a

n
d

Capacity = 30

38



Which is Better? (2/4) – Efficiency – Packet Burstiness

If demand over time is constant, circuit and packet switching both work well.

Capacity = 30

A reserves 10.

B reserves 10.

C reserves 10.

Circuit switching:
All demands satisfied!

Capacity = 30

Packet switching:
All demands satisfied!

B's Demand

10

C's Demand

10

A's Demand

10

Time

D
e

m
a

n
d

39



Which is Better? (2/4) – Efficiency – Packet Burstiness

Flows can be smooth or bursty.

● Characterized by the ratio between the flow's peak demand and average demand.

● Smooth applications have a small peak-to-average ratio.

○ Voice has a ratio of ~3:1.

○ This is why the phone network uses reservations!

● Bursty applications have a large peak-to-average ratio.

○ Data applications tend to be rather bursty.

○ Web browsing can have a ratio of 100:1 or more.

40



Which is Better? (3/4) – Handling Failure

What happens if a link or router fails?

● Network must detect failure and send packets along a different route.

Packet switching is better at handling failure.

● End hosts don't need to do anything extra.

Circuit switching requires extra work from end hosts.

● End host must also detect failure, tear down old reservations, and

send new reservation request.

● All flows using that link must redo reservations.

○ Potentially millions of flows simultaneously re-establishing reservations!

1. Better abstraction to applications?

2. More efficient at scale?

3. Better at handling failures at scale?

4. Easier (less complex) to implement at scale? 41



Which is Better? (3/4) – Handling Failure with Packet Switching

If a failure occurs in 

packet switching:

● Routers send 

packets along a 

different route.

● End hosts don't 

need to do 

anything extra.

R1A R2

R5 R6

R4

R3

B

Potato Potato Potato

Potato

Potato Potato

42

R1A R2

R5 R6

R4

R3

B

Banana Banana

Banana Banana

Banana

Banana

Router R3 
goes down!



Which is Better? (3/4) – Handling Failure with Circuit Switching

If a failure occurs in 

circuit switching:

● End host must 

tear down the 

circuit, and 

request a new 

reservation.

● What if the new 

request gets 

declined?

R5 R6

R3

Router 
goes down!

Reserved Reserved

Reserved

Reserved

R1A R2 R4 B

R3

43

R2

R3
Router R3 

goes down!

R1A

R5 R6

R4 B

I need 5 I need 5

I need 5 I need 5

I need 5



Which is Better? (4/4) – Implementation Complexity

1. Better abstraction to applications?

2. More efficient at scale?

3. Better at handling failures at scale?

4. Easier (less complex) to implement at scale?

Packet switching is easier to implement.

● Routers don't have to keep track of reservations.

Circuit switching implementation questions:

● How do all the routers know that the request was approved?

● What if the request packet gets dropped?

● What if the teardown packet gets dropped?

● What should the end host do if the request is declined?

● What if routers say: "I can't give you 5, but I can give you 3"?

44



Which is Better? (4/4) – Implementation Complexity in Circuit Switching

Circuit switching implementation question:

What if the teardown packet gets dropped? Doesn't reach R3 and R4.

● Possible solution: Reservation expires after some time of inactivity.

R5 R6

Done! Done! Done!

Done!

R1A R2 R4

R3

B

Dropped!
R3 and R4 haven't torn 

down the circuit!

45



Circuit Switching vs. Packet Switching: Which is Better?

1. Which one offers a better abstraction to applications? (Circuit switching.)

2. Which one is more efficient at scale? (Packet switching.)

3. Which one is better at handling failures at scale? (Packet switching.)

4. Which one is easier (less complex) to implement at scale? (Packet switching.)

Circuit switching pros:

● Reservations give applications better performance.

● Reservations are more predictable and understandable.

Packet switching pros:

● More efficient.

● Faster startup to first packet delivered.

● Easier recovery from failure.

● Simpler implementation.

46



Internet Design Principles

• Architecting the Internet

• Narrow Waist, Demultiplexing

• End-to-End Principle

Designing Resource Sharing

• Statistical Multiplexing

• Circuit vs. Packet Switching

• Which is Better?

• A Brief History

Circuit vs. Packet 
Switching:
A Brief History
Lecture 2, Spring 2026

47



Circuit vs. Packet Switching in Practice

Packet switching is the default in the modern Internet.

Circuit switching used in limited settings.

● RSVP (Resource Reservation Protocol) inside a local network.

● Users can buy a dedicated link, e.g. MPLS circuits, leased lines.

○ Companies might buy dedicated links between their offices.

○ Very expensive. 10–20 times more than a normal connection.

○ Reservation requires manual set-up, and lasts for years.

○ Reservation is per-company, not per-flow.

● These settings are more constrained than reservations on the whole Internet.

48



Circuit vs. Packet Switching – A Brief History

Early Internet (1970s, 1980s) used packet switching.

● Well-suited for bursty file transfer applications.

Next iteration (late 1980s, 1990s) tried to move toward circuit switching.

● Internet control shifted from the US government to companies.

○ Circuit switching offers a more intuitive business model.

● Envisioned smooth voice/TV applications to dominate traffic.

Spent 10+ years trying to realize the vision of circuit switching, but ultimately failed.

● Because of all the reasons we discussed.

● Bursty email and web browsing applications ended up dominating traffic.

● Users ended up adapting to packet switching realities.

○ Example: Video quality decreases if connection is poor. That’s just life.

49



● End-to-end principle: Reliability must be implemented in end hosts (not routers) 

for correctness.

● Reliability could be added to routers as a performance optimization, though.

Summary: Internet Design Principles

● Narrow-waist for federation: Everyone uses IP at Layer 3.

● Demultiplexing is used to pass a packet up to the correct higher-layer protocol.

● Ports are used to uniquely identify applications on an end host.

Software

Operating
System

Network Interface Card (Hardware)

IP

TCP UDP

Firefox ZoomEmailSlack Game

Layers 1–2

Layer 3

Layer 4

Layer 7 From: YouTube server
To: Bob's computer
Next layer is TCP.

From: Port 80
To: Port 40000

[cat video]

Demultiplex: Which 
L4 protocol?

Demultiplex: Which 
L7 application?

50



● Statistical multiplexing is more efficient than static allocation.

● Circuit switching offers better abstraction. Packet switching is more efficient, 

better at handling failures, and easier to implement.

● Flows can be smooth or bursty. Packet switching is more efficient on bursty 

flows.

Summary: Designing Resource Sharing

Peak of 
aggregate

Aggregate 
of peak

Time

D
e

m
a

n
d

Time

D
e

m
a

n
d

Statistical Multiplexing Static Allocation
51


	Slide 1: Architecting the Internet
	Slide 2: The Internet Design Principles
	Slide 3: The Internet Design Principles 
	Slide 4: The Internet Design Principles 
	Slide 5: Narrow Waist, Demultiplexing
	Slide 6: Protocols at Different Internet Layers
	Slide 7: Protocols at Different Internet Layers
	Slide 8: Protocols at Different Internet Layers
	Slide 9: Demultiplexing
	Slide 10: Demultiplexing at Layer 3
	Slide 11: Demultiplexing at Layer 4
	Slide 12: Ports at Layer 4
	Slide 13: Ports at Layer 4
	Slide 14: Caution – Terminology Conflict
	Slide 15: Implementing Layers in the End Host
	Slide 16: Implementing Layers in the End Host
	Slide 17: End-to-End Principle
	Slide 18: The End-to-End Question
	Slide 19: Running Example – Simple Reliability Protocol
	Slide 20: Solution 1 – Reliability in the Network
	Slide 21: Solution 1 – Reliability in the Network
	Slide 22: Solution 2 – Reliability at End Hosts
	Slide 23: Which Solution is Better?
	Slide 24: Breaking the End-to-End Principle for Performance
	Slide 25: Designing Resource Sharing: Statistical Multiplexing
	Slide 26: Sharing Network Resources
	Slide 27: Sharing Network Resources
	Slide 28: Statistical Multiplexing is More Efficient
	Slide 29: Statistical Multiplexing is More Efficient
	Slide 30: Circuit Switching vs. Packet Switching
	Slide 31: Circuit Switching vs. Packet Switching
	Slide 32: Circuit Switching
	Slide 33: Packet Switching
	Slide 34: Circuit vs. Packet Switching: Which is Better?
	Slide 35: Circuit Switching vs. Packet Switching: Which is Better?
	Slide 36: Which is Better? (1/4) – Application Abstraction
	Slide 37: Which is Better? (2/4) – Efficiency
	Slide 38: Which is Better? (2/4) – Efficiency – Packet Burstiness
	Slide 39: Which is Better? (2/4) – Efficiency – Packet Burstiness
	Slide 40: Which is Better? (2/4) – Efficiency – Packet Burstiness
	Slide 41: Which is Better? (3/4) – Handling Failure
	Slide 42: Which is Better? (3/4) – Handling Failure with Packet Switching
	Slide 43: Which is Better? (3/4) – Handling Failure with Circuit Switching
	Slide 44: Which is Better? (4/4) – Implementation Complexity
	Slide 45: Which is Better? (4/4) – Implementation Complexity in Circuit Switching
	Slide 46: Circuit Switching vs. Packet Switching: Which is Better?
	Slide 47: Circuit vs. Packet Switching: A Brief History
	Slide 48: Circuit vs. Packet Switching in Practice
	Slide 49: Circuit vs. Packet Switching – A Brief History
	Slide 50: Summary: Internet Design Principles
	Slide 51: Summary: Designing Resource Sharing

