
Lab 2 Traceroute

OS Installation
This project has been tested to work on Linux and Mac. If you’re on Windows, you need to

install Windows Subsystem for Linux (WSL). Please refer to the document Running Linux on Your

Laptop.

Note on File Location (Windows Users)

After downloading the starter code (see below), do not run Linux commands on files located in

the Windows filesystem (those under /mnt/c). This can be slow because you are running Linux

commands on the Windows disc. Instead,

1. Create a project directory in your WSL home using mkdir -p ~/projects .

2. Copy the extracted starter code into ~/projects using cp -r

/mnt/c/Users/<username>/Downloads/cs168-sp26-proj1-traceroute ~/projects/ . You can

also drag the folder into the Explorer sidebar tab if you are using VSCode.

3. Navigate to the folder in your terminal using cd ~/projects/cs168-sp26-proj1-

traceroute and work from there.

Python Installation
This project has been tested to work on Python 3.11 or later. You can run python3 --

version or python --version in your terminal to check your Python version.

Starter Code
Download the starter code here.

In your terminal, use cd to navigate to the Lab2-traceroute directory. All of the Python

commands should be run from this directory. To check that your setup works, in your terminal,

run:

sudo python3 traceroute.py cmu.edu

If you see something like this, everything should be set up correctly:

traceroute to cmu.edu (128.2.42.10)
 1: *
 2: *
 3: *
(some lines omitted...)

Labs/Running%20Linux.pdf
Labs/Running%20Linux.pdf
Labs/Lab2/Lab2-traceroute.zip

26: *
27: *
28: *
29: *
30: *

You should only edit traceroute.py . There are comments marked “TODO” clearly indicating the

places where you should fill in code.

Guidelines:

• Don’t modify any other files.

• Don’t add any new files.

• Don’t add any imports.

• Don’t edit any code outside the sections indicated by the comments.

• Don’t add any hard-coded global variables.

• Adding helper methods is fine (and encouraged).

Assignment Overview
You will be implementing the traceroute function in traceroute.py . Some useful helper

functions for sending and receiving packets are implemented in util.py (don’t modify it).

Your Task: Traceroute

Your goal is to implement the traceroute function so that it reveals all the routers between your

computer and the specified destination. Traceroute uses the Time-to-Live (TTL) field in an IP

packet (a probe) to trigger ICMP "Time Exceeded" messages from routers.

Traceroute takes in three arguments:

• ip (string) is the specified destination.

• sendsock is an object you can use to send packets (more details below).

• recvsock is an object you can use to receive packets (more details below).

Traceroute returns a list of lists, with the following properties:

• The i th sublist contains the IP addresses of all the routers you found that are

distance i+1 away.

• For example, the 0th sublist contains all the routers that are 1 hop away.

• The routers inside each sublist can be in any order.

• If no routers were found for a certain distance, the i th sublist can be empty.

• If ip is discovered, the final sublist should just be [ip] .

Traceroute should also call util.print_result (more details below) on each sublist to display the

routers at each distance. We won’t grade the printed output, but it’s useful for debugging (also,

it looks cool).

Example of Calling Traceroute

Example: Suppose the network topology looks like this.

Assuming no errors occur, and our probes hit every router, then

calling traceroute with ip=7.7.7.7 should return something like this:

[["1.1.1.1"],
 ["2.2.2.2", "4.4.4.4"],
 ["3.3.3.3", "5.5.5.5"],
 ["6.6.6.6"],
 ["7.7.7.7"]]

Also, traceroute should print output that looks something like this:

traceroute to 7.7.7.7
 1: 1.1.1.1
 2: 2.2.2.2
 4.4.4.4
 3: 3.3.3.3
 5.5.5.5
 4: 6.6.6.6
 5: 7.7.7.7

Sending Packets

sendsock is an object you can use to send outgoing packets. It has the following useful

methods:

• sendsock.set_ttl(ttl) sets the TTL to that number for all subsequent outgoing packets.

o ttl (integer) is the TTL to set.

• sendsock.sendto(msg.encode(), (ip, port)) sends an outgoing packet.

o msg (string) is the UDP payload of the packet. We call encode to convert the

string to raw bytes.

o ip (string) is the destination IP address.

o port (integer) is the destination port.

Example usage:

Send a packet "Hello" to 4.4.4.4, port 33434, with TTL 12.
sendsock.set_ttl(12)
sendsock.sendto("Hello".encode(), ("4.4.4.4", 33434))

Send a packet "Potato" to 5.5.5.5, port 33464, with TTL 20.
sendsock.set_ttl(20)
sendsock.sendto("Potato".encode(), ("5.5.5.5", 33464))

Receiving Packets

recvsock is an object you can use to receive incoming packets. It has the following useful

methods:

• recvsock.recv_select() checks if there are any incoming packets available to be

received.

o If there is at least one packet to be received, it returns True.

o Otherwise, the function waits until a packet is available, or a timeout expires.

o If the timeout expires, it returns False.

• buf, address = recvsock.recvfrom() receives a single incoming packet.

o It returns buf , the raw bytes of the packet (e.g. IPv4 header, followed by a UDP

or ICMP header, followed by payload). To print out the bytes, you can

call .hex() on the raw bytes.

o It also returns address , a tuple containing the IP address and port that sent the

packet.

o If there is no packet to be received, the function throws an exception. Therefore,

you should always call recvsock.recv_select() before

calling recvsock.recvfrom() .

Example usage:

if recvsock.recv_select(): # Check if there's a packet to process.
 buf, address = recvsock.recvfrom() # Receive the packet.

 # Print out the packet for debugging.
 print(f"Packet bytes: {buf.hex()}")
 print(f"Packet is from IP: {address[0]}")
 print(f"Packet is from port: {address[1]}")

Print Result

print_result(routers: list[str], ttl: int) can be used to print nicely-formatted output.

It takes in a TTL and a list of IP addresses (all the routers found by probing with that TTL).

Your implementation should call this function once for every TTL you probe.

Example usage:

util.print_result(["128.2.255.210", "128.2.42.10"], 7)

This will cause the TTL, the IP addresses of both machines, and their corresponding names, to be

printed out nicely, like this:

 7: POD-D-DCNS-CORE2.GW.CMU.NET (128.2.255.210)
 CMU-VIP.ANDREW.CMU.EDU (128.2.42.10)

Stage 1: Run Traceroute Manually
Now that we know how to send and receive packets, let’s try running traceroute manually. For

this stage, you can temporarily comment out these lines of starter code:

for ttl in range(1, TRACEROUTE_MAX_TTL+1):
util.print_result([], ttl)
return []

1. In traceroute , write code that sends a packet to ip with a TTL of 1 and prints out the

reply packet (as raw hex bytes). The payload can be any short message you want, e.g.

“Potato.” The starter code has destination port numbers you can use.

2. Then, try running that code:

3. sudo python3 traceroute.py cmu.edu

4. Copy-paste the bytes of the reply packet into an online packet decoder like this one. You

might have to ask the decoder to parse the packet as an IPv4 packet (since we’ve already

stripped away the Layer 2 header).

5. Use the packet decoder and your knowledge of headers to read this packet. Some things

to investigate:

o Who sent the reply packet? Was it cmu.edu, or some intermediate router?

o Did you discover an intermediate router? If so, what is its IP address? How did

you learn that IP address from the headers?

o What is the intermediate router trying to tell you? Is it trying to report an error? If

so, how do you know what it’s trying to say?

o What are all the different headers in this packet, and why are they here?

6. Back in traceroute , try changing the TTL to 2, 3, 4, or 5, and re-running the code to send

out the packet with your new TTL:

7. sudo python3 traceroute.py cmu.edu

You might have to try a few different TTLs here, since some routers along your path to

cmu.edu might not reply to you.

8. Copy-paste the bytes of the new reply packet into the packet decoder, and investigate

the packet.

o Did you discover a new intermediate router?

https://hpd.gasmi.net/

o What is the packet trying to tell you?

9. Back in traceroute , try changing the TTL to 30. This should be enough hops to reach

cmu.edu. Re-run the code to send out the packet with your new TTL:

10. sudo python3 traceroute.py cmu.edu

11. Copy-paste the bytes of the new reply packet into the packet decoder, and investigate

the packet.

o Who sent the reply packet? Was it cmu.edu, or some intermediate router?

o What is the packet trying to tell you? How do you know?

Stage 2: Parsing Packets
When you ran traceroute manually, each time you received a packet, you probably had to

interpret the bytes of the various headers. Your traceroute implementation will need to do this

parsing in code.

Your Task

To help you parse headers in code, we’ve provided three helper classes, corresponding to the

three relevant protocols in the packets you’ll receive: IPv4 , ICMP , and UDP .

These classes are missing constructors. Your job is to fill in the constructors

(the __init__ functions).

The constructors take in buffer , which are the raw bytes of the packet header. For example, the

constructor in ICMP takes in the bytes of the ICMP packet header.

Your constructor code should initialize all of the instance variables by parsing the bytes of the

given packet.

Hints

buffer is a raw byte array, but you’ll need to extract individual bits. This line of code

converts buffer to a bitstring, b , that you can perform string operations on:

b = ''.join(format(byte, '08b') for byte in [*buffer])

This line of code converts a bitstring into an integer:

bitstring = '10010' # A string of 1s and 0s.
number = int(bitstring, 2) # 2, because it's a base-2 number.
print(number) # Prints 18.

Testing and Debugging

From Stage 1, you have code that sends a packet and receives a reply packet.

To check your parsing code, you can call the constructor on the raw bytes you receive (slicing if

needed to extract specific headers), and print the output. The classes already

have __str__ methods implemented for you to help the output look nice.

Then, you can compare the printed output with the online packet decoder to see if you’re

parsing packets correctly.

Stage 3: Basic Traceroute

Your Task

Fill in traceroute to discover all routers between you and the destination ip .

Some reminders:

• The payload can be any short message you want, e.g., “Potato.”

• For each TTL, you should send PROBE_ATTEMPT_COUNT packets with that TTL.

• An IP should only be listed once per sublist (no duplicates in a sublist).

• When you see a response from the destination (ip), you should stop and return the

routers you discovered along the way.

• The constructors you just wrote will be helpful for parsing packets.

Testing and Debugging

You can run your implementation to see if your output looks similar to the output of a real-

world traceroute:

traceroute cmu.edu # A real traceroute.
sudo python3 traceroute.py cmu.edu # Your traceroute.

Your output probably won’t be exactly the same, because packets could travel along different

paths each time you run traceroute.

Submission and Grading
Submit the traceroute.py file on Canvas, and a report that documents and explains your code

in detail, and any problems that you encountered during the project. Please use this Lab Report

Template to write your report.

Labs/Lab%20Report%20Template.docx
Labs/Lab%20Report%20Template.docx

