Lab 1: Web Server and Client Programming

In this lab, you will learn the basics of socket programming for TCP connections in Python: how to create
a socket, bind it to a specific address and port, as well as send and receive an HTTP packet. You will also
learn some basics of HTTP header format.

Task 1. Web Server
You will develop a web server that handles one HTTP request at a time. Your web server should accept

and parse the HTTP request, get the requested file from the server’s file system, create an HTTP response
message consisting of the requested file preceded by header lines, and then send the response directly to
the client. If the requested file is not present on the server, the server should send an HTTP “404 Not
Found” message back to the client.

Running the Server
Put an HTML file (e.g., HelloWorld.html) in the same directory that the server is in. Run the server

program. Determine the IP address of the host that is running the server (e.g., 128.238.251.26). From
another host, open a browser and provide the corresponding URL. For example:

http://128.238.251.26:6789/HelloWorld.html

‘HelloWorld.html’ is the name of the file you placed in the server directory. Note also the use of the port number
after the colon. You need to replace this port number with whatever port you have used in the server
code. In the above example, we have used port number 6789. The browser should then display the contents
of HelloWorld.html. If you omit ":6789", the browser will assume port 80, and you will get the web page
from the server only if your server is listening at port 80. Then try to get a file that is not present on the
server. You should get a “404 Not Found” message.

Skeleton Python Code for the Web Server

Below you will find the skeleton code for the Web server. You are to complete the skeleton code. The
places where you need to fill in code are marked with #Fill in start and #Fill in end. Each
place may require one or more lines of code.

Import socket module
from socket import *
import sys # To terminate the program

Create a TCP server socket

(AF_INET is used for IPv4 protocols)

(SOCK_STREAM is used for TCP)

serverSocket = socket (AF INET, SOCK STREAM)
#Prepare a sever socket

#Fill in start

Assign a port number

Bind the socket to server address and server port

Listen to at most 1 connection at a time

#Server should be up and running and listening to the incoming connections
#Fill in end

while True:
print ('The server is ready to receive')

http://128.238.251.26:6789/HelloWorld.html

Set up a new connection from the client by calling accept () method on
the socket

connectionSocket, addr = #Fill in start #Fill in end

If an exception occurs during the execution of try clause
the rest of the clause is skipped

If the exception type matches the word after except

the except clause is executed

try:

Receives the request message from the client and decode it

message = #Fill in start #Fill in end

Extract the path of the requested object from the message

The path is the second part of HTTP header, identified by [1]

filename = message.split()[1]

Because the extracted path of the HTTP request includes

a character '\', we read the path from the second character

f = open(filename[1l:])

Read and store the entire content of the requested file in a
temporary buffer

outputdata = #Fill in start #Fill in end

Send the HTTP response header line to the connection socket

connectionSocket.send ("HTTP/1.1 200 OK\r\n\r\n".encode())

Send the content of the requested file to the connection socket
for i in range (0, len (outputdata)):

connectionSocket.send (outputdatal[i].encode())
connectionSocket.send ("\r\n".encode ())

Close the client connection socket
#Fill in start
#Fill in end

except IOError:

Send HTTP response message for file not found

connectionSocket.send ("HTTP/1.1 404 Not
Found\r\n\r\n".encode ())

connectionSocket.send ("<html><head></head><body><h1>404 Not
Found</hl></body></html>\r\n".encode ())

Close the client connection socket

#Fill in start

#Fill in end

serverSocket.close ()
sys.exit () #Terminate the program after sending the corresponding data

Task 2. Web Client

Instead of using a web browser as the client, for Task 2 you will develop a web client that connects to the web
server in Task1, download the index.html file and display it. If you run both on the same computer, use different
terminals or environments for the client and server, e.g., running the server in Visual Studio Code, and the client
on the command prompt. (You can also connect to some other web server online by modifying the
serverName and serverPort inthe code.)If the requested file is not present in the server, the client
should get an HTTP “404 Not Found” message.

Running the Client

Put an HTML file (e.g., index.html) in the same directory that the server is in. Run the server program.
Determine the IP address of the host that is running the server (e.g., 128.238.251.26), oruse localhost
if both client and server are on the same machine. Your server is already working by testing it with a web

browser. Now you need to make the client work.

From another host or another terminal on the same host, run your client. In the client code, provide the server
name and port. ‘index.html’ is the name of the file you placed in the server directory. The client should then
display the contents of index.html. If you omit ":6789", the browser will assume port 80 and you will get
the web page from the server only if your server is listening at port 80. Then try to get a file that is not
present at the server, and the client should get a “404 Not Found” message.

Skeleton Python Code for the Web Client

Below you will find the skeleton code for the web client. You are to complete the skeleton code. The
places where you need to fill in code are marked with #Fill in start and #Fill in end. Each place
may require one or more lines of code.

from socket import *

Server details

serverName = 'localhost' # or the server IP address if the server is on a
different machine
serverPort = 6789 # Make sure this matches the server's port

Create a TCP client socket
#Fill in start
#Fill in end

Connect to the server
#Fill in start
#Fill in end

Prepare the HTTP GET request. The .format (serverName) method call at # the
end of the string is used to insert the value of the serverName # # variable
into the placeholder {} in the Host header.

request = "GET /index.html HTTP/1.1\r\nHost: {}\r\n\r\n".format (serverName)

try:
Send the request to the server
#Fill in start
#Fill in end

Receive and print the server's response
response = clientSocket.recv (1024) .decode ()
print ("Server response:")

print (response)

Receive and print the content (if any)
while True:
data = #Fill in start#Fill in end
if not data:
break
print (data)

except Exception as e:
print ("An error occurred:", str(e))

finally:
Close the client socket
#Fill in start
#Fill in end

What to Hand in

For Task 1, you will hand in the complete server code, along with the screenshots of the web browser, verifying
that you actually retrieved the contents of the HTML file from the server. For Task 2, you will hand in the
complete client code, along with the screenshots of your client, verifying that you actually retrieved the contents
of the HTML file from the server.

