Begrédnsad delning

Lab1 Background:
Socket Programming
with UDP and TCP

Begrédnsad delning

Sockets
e Endpoint for sending or receiving data across a network

e OS abstraction for connections
. Allow L7 applications to operate on data streams (not packets)
o Connect, listen, accept, send, receive
. Open a socket between:
o Source IP address : port
o Destination IP address : port

Application
Transport
Network 0S
Datalink (networking stack)
Physical

VTS

(Network Interface Card)

Connection (the basic abstraction)

Pipes data between two processes (on different hosts)

Data flows both ways

Data is sent as a stream of bits

Reconstruction of bits only at the endpoints

>

€

Process

Process

N

Process

Process

Connection

—

Begrédnsad delning

>

Process

Process

N

Process

Begrédnsad delning

Connections
e Two types of sockets

o Server and Client
o Servers listen for clients to connect to
them
o Wait until a connection is attempted
s Accept and dispatch connection
o Usually serving many clients at once
o Clients initiate new connections to
servers
e Example
o Server: www.hofstra.edu
o Client: Your internet browser

Begrédnsad delning

Connections
e Hosts have addresses 1.2.3.4 5.6.7.8

o Unique identifier (just like a street
address)
o Clients (different users) find servers
with their addresses
o Servers send data back with the
client address

- |P addresses are not enough
o Also need ports

10.20.30.40

9.10.11.12

Ports

Sockets are identified by unique
IP:port pairs
A port is a number associated with
a socket when it is created
o i.e.sending to address
“1.2.3.4:10000" would send
data to the socket owned by

Process 1
Each server listens on a well-known
port
o Which one depends on
application
o HTTP: 80
o SSH: 22

Client also has a port
o Port number can be any
(large) number

Client Machine
(1.2.3.4)

Process 1

(Port 10000)

Process 2

(Port 20000)

Server

Process 1
(Port 80)

Begrédnsad delning

IMPORTANT

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-transport
protocol

application socket application controlled b
y
\ app developer

transport transport

network network controlled
q link Internet link by 98
: ' < > hysical
% physical p g &
= o

Application Layer: 2-7

Socket programming

Two socket types for two transport services:
"= UDP: unreliable datagram
= TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends
data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen

Application Layer: 2-8

Socket programming with UDP

UDP: no “connection” between
client and server:
®* no handshaking before sending data

= sender explicitly attaches IP
destination address and port # to each
packet

" recejver extracts sender |IP address and

port# from received packet _
UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
= UDP provides unreliable transfer of groups of bytes (“datagrams”)
between client and server processes

Application Layer: 2-9

IMPORTANT

Client/server socket interaction: UDP

i ServVer (running on serverlP)

C——)

create socket, port= x:
serverSocket =

socket(AF_INET,SOCK_DGRAM)

read data£ram from /

serverSocket

write reply to
serverSocket
specifying
client address,
port number

—

I
—

client ,g

create socket:
clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with serverlP address
And port=x; send datagram via
clientSocket

read datagram from
clientSocket

}

close
clientSocket

Application Layer: 2-10

Example app: UDP client

Python UDPClient

include Python’s socket library — from socket import *
serverName = 'hostname’

serverPort = 12000

create UDP socket — clientSocket = socket(AF INET,
SOCK DGRAM)

get user keyboard input —> message = input('Input lowercase sentence:')
attach server name, port to message; send into socket —» clientSocket.sendto(message.encode(),
(serverName, serverPort))
read reply data (bytes) from socket — modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)
print out received string and close socket — print(modifiedMessage.decode())
clientSocket.close()

Note: this code update (2023) to Python 3 Application Layer: 2-11

Example app: UDP server
Python UDPServer

from socket import *
serverPort = 12000
create UDP socket —» serverSocket = socket(AF _INET, SOCK DGRAM)
bind socket to local port number 12000 —> serverSocket.bind((", serverPort))
print('The server is ready to receive')

loop forever — While True:
Read from UDP socket into message, getting —> message, clientAddress = serverSocket.recvfrom(2048)
client’s address (client IP and port) modifiedMessage = message.decode().upper()
send upper case string back to this client —> serverSocket.sendto(modifiedMessage.encode(),
clientAddress)

Note: this code update (2023) to Python 3 Application Layer: 2-12

Socket programming with TCP

Client must contact server

= server process must first be
running

= server must have created socket
(door) that welcomes client’s
contact

Client contacts server by:

= Creating TCP socket, specifying IP
address, port number of server
process

= when client creates socket: client
TCP establishes connection to
server TCP

= when contacted by client, server
TCP creates new socket for server
process to communicate with that

particular client

 allows server to talk with multiple
clients

* client source port # and IP address used
to distinguish clients (more in Chap 3)

— Application viewpoint
TCP provides reliable, in-order
byte-stream transfer (“pipe”)

between client and server
processes

Application Layer: 2-13

IMPORTANT

Client/server socket interaction: TCP

Server (running on hostid) client g

create socket,

port=x, for incoming
request:

serverSocket = socket()

wait for incoming TCP create socket,

connection reqUESt €= == == == == == == =P connectto hostid, port=x
connectionSocket = CONNECHION S€tUP jiantsocket = socket()

serverSocket.accept()

—_— l send request using
read requeSt from / CIIentSOCket
connectionSocket

write reply to —_—

connectionSocket

—read reply from

1 clientSocket
close

connectionSocket Clpse 1
clientSocket
Application Layer: 2-14

Example app: TCP client

Python TCPClient

from socket import *
serverName = 'servername’
serverPort = 12000

create TCP socket for server, — clientSocket = SOCket(AF_lNE
remote port 12000 clientSocket.connect((serverName,serverPort))

sentence = input('Input lowercase sentence:')
clientSocket.send(sentence.encode())

No need to attach server name, port —— ModifiedSentence = clientSocket.recv(1024)
print ('From Server:', modifiedSentence.decode())
clientSocket.close()

Note: this code update (2023) to Python 3 Application Layer: 2-15

Example app: TCP server

create TCP welcoming socket ——

server begins listening for
incoming TCP requests

loop forever ——

server waits on accept() for incoming ——
requests, new socket created on return

read bytes from socket (but —
not address as in UDP)

close connection to this client (but not —
welcoming socket)
Note: this code update (2023) to Python 3

Python TCPServer

from socket import *
serverPort = 12000
serverSocket = socket(AF _INET,SOCK_STREAM)
serverSocket.bind((",serverPort))
serverSocket.listen(1)
print("The server is ready to receive')
while True:
connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.
encode())
connectionSocket.close()

Application Layer: 2-16

	Slide 1: Lab1 Background: Socket Programming with UDP and TCP
	Slide 2: Sockets
	Slide 3: Connection (the basic abstraction)
	Slide 4: Connections
	Slide 5: Connections
	Slide 6: Ports
	Slide 7: Socket programming
	Slide 8: Socket programming
	Slide 9: Socket programming with UDP
	Slide 10: Client/server socket interaction: UDP
	Slide 11: Example app: UDP client
	Slide 12: Example app: UDP server
	Slide 13: Socket programming with TCP
	Slide 14: Client/server socket interaction: TCP
	Slide 15: Example app: TCP client
	Slide 16: Example app: TCP server

