
Begränsad delning

Lab1 Background:
Socket Programming
with UDP and TCP

1

Begränsad delning

Sockets
● Endpoint for sending or receiving data across a network

● OS abstraction for connections

 Allow L7 applications to operate on data streams (not packets)

○ Connect, listen, accept, send, receive

 Open a socket between:

○ Source IP address : port

○ Destination IP address : port

2

Application

Transport

Network

Datalink

Physical

app

OS
(networking stack)

app app

NIC

Port

(Network Interface Card)

Begränsad delning

● Pipes data between two processes (on different hosts)

● Data flows both ways

● Data is sent as a stream of bits

● Reconstruction of bits only at the endpoints

The Internet

ConnectionProcess Process

Process Process

Process

Process Process

Process

Connection (the basic abstraction)

Begränsad delning

● Two types of sockets

○ Server and Client

● Servers listen for clients to connect to

them

○ Wait until a connection is attempted

■ Accept and dispatch connection

○ Usually serving many clients at once

● Clients initiate new connections to

servers

● Example

○ Server: www.hofstra.edu

○ Client: Your internet browser

Clie
nt

Clie
nt

Clie
nt

Clie
nt

Server

Connections

Begränsad delning

● Hosts have addresses

○ Unique identifier (just like a street

address)

● Clients (different users) find servers

with their addresses

○ Servers send data back with the

client address

○ IP addresses are not enough
○ Also need ports

Clie
nt

Clie
nt

Clie
nt

Clie
nt

Server

Connections
1.2.3.4 5.6.7.8

10.20.30.40

9.10.11.12 13.14.15.16

Begränsad delning

Server
Machine

Client Machine
(1.2.3.4)

Process 1
(Port 10000)

Process 2
(Port 20000)

● Sockets are identified by unique
IP:port pairs

● A port is a number associated with
a socket when it is created
○ i.e. sending to address

“1.2.3.4:10000” would send
data to the socket owned by
Process 1

● Each server listens on a well-known
port
○ Which one depends on

application
○ HTTP: 80
○ SSH: 22

● Client also has a port
○ Port number can be any

(large) number

Process 1
(Port 80)

Ports

Begränsad delning

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-end-transport
protocol

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer: 2-7

IMPORTANT

Begränsad delning

Socket programming

Two socket types for two transport services:
▪ UDP: unreliable datagram
▪ TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends

data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen

Application Layer: 2-8

IMPORTANT

Begränsad delning

Socket programming with UDP

UDP: no “connection” between
client and server:

▪ no handshaking before sending data
▪ sender explicitly attaches IP

destination address and port # to each
packet

▪ receiver extracts sender IP address and
port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
▪ UDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server processes
Application Layer: 2-9

IMPORTANT

Begränsad delning

Client/server socket interaction: UDP

close

clientSocket

read datagram from

clientSocket

create socket:

clientSocket =

socket(AF_INET,SOCK_DGRAM)

Create datagram with serverIP address

And port=x; send datagram via

clientSocket

create socket, port= x:

serverSocket =

socket(AF_INET,SOCK_DGRAM)

read datagram from

serverSocket

write reply to

serverSocket

specifying

client address,

port number

server (running on serverIP) client

Application Layer: 2-10

IMPORTANT

Begränsad delning

Example app: UDP client

from socket import *

serverName = 'hostname'

serverPort = 12000

clientSocket = socket(AF_INET,

 SOCK_DGRAM)

message = input('Input lowercase sentence:')

clientSocket.sendto(message.encode(),

 (serverName, serverPort))

modifiedMessage, serverAddress =

 clientSocket.recvfrom(2048)

print(modifiedMessage.decode())

clientSocket.close()

Python UDPClient

include Python’s socket library

create UDP socket

get user keyboard input

attach server name, port to message; send into socket

print out received string and close socket

read reply data (bytes) from socket

Application Layer: 2-11Note: this code update (2023) to Python 3

IMPORTANT

Begränsad delning

Example app: UDP server
Python UDPServer

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET, SOCK_DGRAM)

serverSocket.bind(('', serverPort))

print('The server is ready to receive')

while True:

 message, clientAddress = serverSocket.recvfrom(2048)

 modifiedMessage = message.decode().upper()

 serverSocket.sendto(modifiedMessage.encode(),

 clientAddress)

create UDP socket

bind socket to local port number 12000

loop forever

Read from UDP socket into message, getting
client’s address (client IP and port)

send upper case string back to this client

Application Layer: 2-12Note: this code update (2023) to Python 3

IMPORTANT

Begränsad delning

Socket programming with TCP
Client must contact server
▪ server process must first be

running

▪ server must have created socket
(door) that welcomes client’s
contact

Client contacts server by:
▪ Creating TCP socket, specifying IP

address, port number of server
process

▪ when client creates socket: client
TCP establishes connection to
server TCP

▪when contacted by client, server
TCP creates new socket for server
process to communicate with that
particular client
• allows server to talk with multiple

clients
• client source port # and IP address used

to distinguish clients (more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server
processes

Application viewpoint

Application Layer: 2-13

IMPORTANT

Begränsad delning

Client/server socket interaction: TCP

server (running on hostid) client

wait for incoming

connection request
connectionSocket =

serverSocket.accept()

create socket,
port=x, for incoming

request:
serverSocket = socket()

create socket,
connect to hostid, port=x

clientSocket = socket()

send request using

clientSocketread request from

connectionSocket

write reply to

connectionSocket

TCP
connection setup

close

connectionSocket

read reply from

clientSocket

close

clientSocket
Application Layer: 2-14

IMPORTANT

Begränsad delning

Example app: TCP client

from socket import *

serverName = 'servername'

serverPort = 12000

clientSocket = socket(AF_INET, SOCK_STREAM)

clientSocket.connect((serverName,serverPort))

sentence = input('Input lowercase sentence:')

clientSocket.send(sentence.encode())

modifiedSentence = clientSocket.recv(1024)

print ('From Server:', modifiedSentence.decode())

clientSocket.close()

Python TCPClient

create TCP socket for server,

remote port 12000

No need to attach server name, port

Application Layer: 2-15Note: this code update (2023) to Python 3

IMPORTANT

Begränsad delning

Example app: TCP server

from socket import *

serverPort = 12000

serverSocket = socket(AF_INET,SOCK_STREAM)

serverSocket.bind(('',serverPort))

serverSocket.listen(1)

print('The server is ready to receive')

while True:

 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024).decode()

 capitalizedSentence = sentence.upper()

 connectionSocket.send(capitalizedSentence.

 encode())

 connectionSocket.close()

Python TCPServer

create TCP welcoming socket

server begins listening for

incoming TCP requests

loop forever

server waits on accept() for incoming
requests, new socket created on return

read bytes from socket (but

not address as in UDP)

close connection to this client (but not

welcoming socket)

Application Layer: 2-16Note: this code update (2023) to Python 3

IMPORTANT

	Slide 1: Lab1 Background: Socket Programming with UDP and TCP
	Slide 2: Sockets
	Slide 3: Connection (the basic abstraction)
	Slide 4: Connections
	Slide 5: Connections
	Slide 6: Ports
	Slide 7: Socket programming
	Slide 8: Socket programming
	Slide 9: Socket programming with UDP
	Slide 10: Client/server socket interaction: UDP
	Slide 11: Example app: UDP client
	Slide 12: Example app: UDP server
	Slide 13: Socket programming with TCP
	Slide 14: Client/server socket interaction: TCP
	Slide 15: Example app: TCP client
	Slide 16: Example app: TCP server

