Chapter 6 The Link Layer and LANs

James F. Kurose | Keith W. Ross COMPUTER A TOP-DOWN APPROACH

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking

a day in the life of a web request

Datacenter networks

10's to 100's of thousands of hosts, often closely coupled, in close proximity:

- e-business (e.g. Amazon)
- content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
- search engines, data mining (e.g., Google)

challenges:

- multiple applications, each serving massive numbers of clients
- reliability
- managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center

Datacenter networks: network elements

Border routers

connections outside datacenter

Tier-1 switches

connecting to ~16 T-2s below

Tier-2 switches

connecting to ~16 TORs below

Top of Rack (TOR) switch

- one per rack
- 100G-400G Ethernet to blades

Server racks

20- 40 server blades: hosts

Datacenter networks: network elements

Facebook F16 data center network topology:

https://engineering.fb.com/data-center-engineering/f16-minipack/ (posted 3/2019)

Datacenter networks: multipath

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy

two disjoint paths highlighted between racks 1 and 11

Datacenter networks: application-layer routing

load balancer: application-layer routing

- receives external client requests
- directs workload within data center
- returns results to external client (hiding data center internals from client)

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking

a day in the life of a web request

Synthesis: a day in the life of a web request

- our journey down the protocol stack is now complete!
 - application, transport, network, link
- putting-it-all-together: synthesis!
 - *goal*: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page
 - *scenario:* student attaches laptop to campus network, requests/receives www.google.com

A Day in the Life of a Web Request Retrospective https://www.youtube.com/watch?v=16twhxwycyM

A day in the life: scenario

scenario:

- arriving mobile client attaches to network ...
- requests web page: www.google.com

A day in the life: connecting to the Internet

- connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP
- DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in 802.3 Ethernet
- Ethernet de-muxed to IP de-muxed, UDP de-muxed to DHCP

A day in the life: connecting to the Internet

- DHCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client
- DHCP client receives DHCP ACK reply

Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router

A day in the life... ARP (before DNS, before HTTP)

- before sending HTTP request, need IP address of www.google.com: DNS
- DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP
- ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface
- client now knows MAC address of first hop router, so can now send frame containing DNS query

A day in the life... using DNS

- de-muxed to DNS
- DNS replies to client with IP address of www.google.com

 IP datagram containing DNS query forwarded via LAN switch from client to 1st hop router

 IP datagram forwarded from campus network into Comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server

A day in the life...TCP connection carrying HTTP

- to send HTTP request, client first opens TCP socket to web server
- TCP SYN segment (step 1 in TCP 3-way handshake) interdomain routed to web server
- web server responds with TCP SYNACK (step 2 in TCP 3way handshake)
- TCP connection established!

A day in the life... HTTP request/reply

- HTTP request sent into TCP socket
- IP datagram containing HTTP request routed to www.google.com
- web server responds with HTTP reply (containing web page)
- IP datagram containing HTTP reply routed back to client

Chapter 6: Summary

- principles behind data link layer services:
 - error detection, correction
 - sharing a broadcast channel: multiple access
 - link layer addressing
- instantiation, implementation of various link layer technologies
 - Ethernet
 - switched LANS, VLANs
 - virtualized networks as a link layer: MPLS
- synthesis: a day in the life of a web request

Chapter 6: let's take a breath

- journey down protocol stack complete (except PHY)
- solid understanding of networking principles, practice!
- could stop here but more interesting topics!
 - wireless
 - security