Chapter 6 The Link Layer and LANs

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking

a day in the life of a web request

MAC addresses

- 32-bit IP address:
 - network-layer address for interface
 - used for layer 3 (network layer) forwarding
 - e.g.: 128.119.40.136
- MAC (or LAN or physical or Ethernet) address:
 - function: used "locally" to get frame from one interface to another physically-connected interface (same subnet, in IP-addressing sense)
 - 48-bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation (each "numeral" represents 4 bits)

MAC addresses

each interface on LAN

- has unique 48-bit MAC address
- has a locally unique 32-bit IP address (as we've seen)

MAC addresses

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address: portability
 - can move interface from one LAN to another
 - recall IP address not portable: depends on IP subnet to which node is attached

ARP: address resolution protocol

Question: how to determine interface's MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

 IP/MAC address mappings for some LAN nodes:

< IP address; MAC address; TTL>

 TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

ARP protocol in action

example: A wants to send datagram to B

• B's MAC address not in A's ARP table, so A uses ARP to find B's MAC address

walkthrough: sending a datagram from A to B via R

- focus on addressing at IP (datagram) and MAC layer (frame) levels
- assume that:
 - A knows B's IP address
 - A knows IP address of first hop router, R (how?)
 - A knows R's MAC address (how?)

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame containing A-to-B IP datagram
 - R's MAC address is frame's destination

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP

- R determines outgoing interface, passes datagram with IP source A, destination B to link layer
- R creates link-layer frame containing A-to-B IP datagram. Frame destination address: B's MAC address

- R determines outgoing interface, passes datagram with IP source A, destination B to link layer
- R creates link-layer frame containing A-to-B IP datagram. Frame destination address: B's MAC address

- B receives frame, extracts IP datagram destination B
- B passes datagram up protocol stack to IP

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking

a day in the life of a web request

Ethernet

"dominant" wired LAN technology:

- first widely used LAN technology
- simpler, cheap
- kept up with speed race: 10 Mbps 400 Gbps
- single chip, multiple speeds (e.g., Broadcom BCM5761)

Metcalfe's Ethernet sketch

Bob Metcalfe: Ethernet co-inventor, 2022 ACM Turing Award recipient

Ethernet: physical topology

- bus: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)
- switched: prevails today
 - active link-layer 2 switch in center
 - each "spoke" runs a (separate) Ethernet protocol (nodes do not collide with each other)

Ethernet frame structure

sending interface encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

preamble:

- used to synchronize receiver, sender clock rates
- 7 bytes of 10101010 followed by one byte of 10101011

Ethernet frame structure (more)

- addresses: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g., ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame
- type: indicates higher layer protocol
 - mostly IP but others possible, e.g., Novell IPX, AppleTalk
 - used to demultiplex up at receiver
- CRC: cyclic redundancy check at receiver
 - error detected: frame is dropped

Ethernet: unreliable, connectionless

- connectionless: no handshaking between sending and receiving NICs
- •unreliable: receiving NIC doesn't send ACKs or NAKs to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost
- Ethernet's MAC protocol: unslotted CSMA/CD with binary backoff

802.3 Ethernet standards: link & physical layers

- many different Ethernet standards
 - common MAC protocol and frame format
 - different speeds: 2 Mbps, ... 100 Mbps, 1Gbps, 10 Gbps, 40 Gbps, 80 Gbps
 - different physical layer media: fiber, cable

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking

a day in the life of a web request

Ethernet switch

- Switch is a link-layer device: takes an active role
 - store, forward Ethernet (or other type of) frames
 - examine incoming frame's MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment
- transparent: hosts unaware of presence of switches
- plug-and-play, self-learning
 - switches do not need to be configured

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, so:
 - no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)

Switch: multiple simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on each incoming link, so:
 - no collisions; full duplex
 - each link is its own collision domain
- switching: A-to-A' and B-to-B' can transmit simultaneously, without collisions
 - but A-to-A' and C to A' can not happen simultaneously

switch with six interfaces (1,2,3,4,5,6)

Switch forwarding table

Q: how does switch know A' reachable via interface 4, B' reachable via interface 5?

<u>A:</u> each switch has a switch table, each entry:

- (MAC address of host, interface to reach host, time stamp)
- looks like a routing table!

Q: how are entries created, maintained in switch table?

something like a routing protocol?

Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

MAC addr	interface	TTL
A	1	60

Switch table (initially empty)

Switch: frame filtering/forwarding

when frame received at switch:

```
1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination
  then {
  if destination on segment from which frame arrived
     then drop frame
      else forward frame on interface indicated by entry
   else flood /* forward on all interfaces except arriving interface */
```

Self-learning, forwarding: example

- frame destination, A', location unknown: flood
- destination A location known: selectively send

on just one link

MAC addr	interface	TTL
A	1	60
A ´	4	60

switch table (initially empty)

Interconnecting switches

self-learning switches can be connected together:

Q: sending from A to G - how does S_1 know to forward frame destined to G via S_4 and S_3 ?

• A: self learning! (works exactly the same as in single-switch case!)

Self-learning multi-switch example

Suppose C sends frame to I, I responds to C

 $\underline{\mathbf{Q}}$: show switch tables and packet forwarding in S_1 , S_2 , S_3 , S_4

UMass Campus Network - Detail

UMass network:

- 4 firewalls
- 10 routers
- 2000+ network switches
- 6000 wireless access points
- 30000 active wired network jacks
- 55000 active end-user wireless devices

... all built, operated, maintained by ~15 people

UMass Campus Network - Detail

Switches vs. routers

both are store-and-forward:

- routers: network-layer devices (examine network-layer headers)
- switches: link-layer devices (examine link-layer headers)

both have forwarding tables:

- routers: compute tables using routing algorithms, IP addresses
- switches: learn forwarding table using flooding, learning, MAC addresses

Link layer, LANs: roadmap

- introduction
- error detection, correction
- multiple access protocols
- LANs
 - addressing, ARP
 - Ethernet
 - switches
 - VLANs
- link virtualization: MPLS
- data center networking

a day in the life of a web request

Virtual LANs (VLANs): motivation

Q: what happens as LAN sizes scale, users change point of attachment?

single broadcast domain:

- scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire LAN
- efficiency, security, privacy issues

Virtual LANs (VLANs): motivation

Q: what happens as LAN sizes scale, users change point of attachment?

single broadcast domain:

- scaling: all layer-2 broadcast traffic (ARP, DHCP, unknown MAC) must cross entire LAN
- efficiency, security, privacy, efficiency issues

administrative issues:

 CS user moves office to EE - physically attached to EE switch, but wants to remain logically attached to CS switch

Port-based VLANs

Virtual Local Area Network (VLAN)

switch(es) supporting VLAN capabilities can be configured to define multiple *virtual* LANS over single physical LAN infrastructure.

port-based VLAN: switch ports grouped (by switch management software) so that single physical switch

... operates as multiple virtual switches

Port-based VLANs

- traffic isolation: frames to/from ports
 1-8 can only reach ports
 - can also define VLAN based on MAC addresses of endpoints, rather than switch port
- dynamic membership: ports can be dynamically assigned among VLANs
- forwarding between VLANS: done via routing (just as with separate switches)
 - in practice vendors sell combined switches plus routers

VLANS spanning multiple switches

trunk port: carries frames between VLANS defined over multiple physical switches

- frames forwarded within VLAN between switches can't be vanilla 802.1 frames (must carry VLAN ID info)
- 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports

802.1Q VLAN frame format

EVPN: Ethernet VPNs (aka VXLANs)

Layer-2 Ethernet switches *logically* connected to each other (e.g., using IP as an underlay)

- Ethernet frames carried within IP datagrams between sites
- "tunneling scheme to overlay Layer 2 networks on top of Layer 3 networks ... runs over the existing networking infrastructure and provides a means to "stretch" a Layer 2 network." [RFC 7348]