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Network layer control plane: our goals

understand principles 
behind network control 
plane:
• traditional routing algorithms
• SDN controllers
• network management, 

configuration

 instantiation, implementation 
in the Internet:
• OSPF, BGP
• OpenFlow, ODL and ONOS 

controllers
• Internet Control Message 

Protocol: ICMP
• SNMP, YANG/NETCONF
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Network layer: “control plane” roadmap

 network management, 
configuration 
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message 

Protocol 
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Two approaches to structuring network control plane:
 per-router control (traditional)
 logically centralized control (software defined networking)

Network-layer functions
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 forwarding: move packets from router’s 
input to appropriate router output data plane

control plane routing: determine route taken by 
packets from source to destination

IMPORTANT



Per-router control plane
Individual routing algorithm components in each and every 
router interact in the control plane

Routing
Algorithm

data
plane

control
plane
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packet header
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Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA
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3

values in arriving 
packet header
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Per-router 
control plane SDN control plane
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Network layer: “control plane” roadmap

 network management, 
configuration 
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message 

Protocol 
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Routing protocol goal: determine 
“good” paths (equivalently, routes), 
from sending hosts to receiving host, 
through network of routers
 path: sequence of routers packets 

traverse from given initial source host 
to final destination host
 “good”: least “cost”, “fastest”, “least 

congested”
 routing: a “top-10” networking 

challenge!

Routing protocols
mobile network

enterprise
          network

national or global ISP

datacenter 
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical
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Graph abstraction: link costs
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graph: G = (N,E)

ca,b: cost of direct link connecting a and b
             e.g., cw,z = 5, cu,z = ∞

cost defined by network operator: 
could always be 1, or inversely related 
to bandwidth, or inversely related to 
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }
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Routing algorithm classification
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global or decentralized information?

global: all routers have complete 
topology, link cost info
• “link state” algorithms

decentralized: iterative process of 
computation, exchange of info with neighbors
• routers initially only know link costs to 

attached neighbors
• “distance vector” algorithms

How fast 
do routes 
change?

dynamic: routes change 
more quickly
• periodic updates or in 

response to link cost 
changes

static: routes change 
slowly over time
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Network layer: “control plane” roadmap

 network management, 
configuration 
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message 

Protocol 
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Dijkstra’s link-state routing algorithm

Network Layer: 5-13

 centralized: network topology, link 
costs known to all nodes
• accomplished via “link state 

broadcast” 
• all nodes have same info

 computes least cost paths from one 
node (“source”) to all other nodes
• gives forwarding table for that node

 iterative: after k iterations, know 
least cost path to k destinations

 cx,y: direct link cost from 
node x to y;  = ∞ if not direct 
neighbors
 D(v): current estimate of cost 

of least-cost-path from source 
to destination v
 p(v): predecessor node along 

path from source to v
 N': set of nodes whose least-

cost-path definitively known

notation

IMPORTANT



Dijkstra’s link-state routing algorithm
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1  Initialization: 
2   N' = {u}                               /* compute least cost path from u to all other nodes */
3    for all nodes v 
4      if v adjacent to u            /* u initially knows direct-path-cost only to  direct neighbors    */
5          then D(v) = cu,v      /* but may not be minimum cost!                                                    */
6      else D(v) = ∞ 
7 
8   Loop 
9     
10    
11
12
13
14
15  until all nodes in N' 

find w not in N' such that D(w) is a minimum 
add w to N' 
update D(v) for all v adjacent to w and not in N' : 
     D(v) = min ( D(v),  D(w) + cw,v  ) 
/* new least-path-cost to v is either old least-cost-path to v or known 
least-cost-path to w plus direct-cost from w to v */ 
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z
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5
3

5

D(w),p(w)
5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0): 
      For all a: if a adjacent to u then D(a) = cu,a 
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

∞2,x4,x2,u

D(v) = min ( D(v), D(x) + cx,v ) = min(2, 1+2) = 2 
D(w) = min ( D(w), D(x) + cx,w ) = min (5, 1+3) = 4 
D(y) = min ( D(y), D(x) + cx,y ) = min(inf,1+1) = 2  
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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v w x y z
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∞2,x4,x2,u
uxy
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

4,y3,y2,u

D(w) = min ( D(w), D(y) + cy,w ) = min (4, 2+1) = 3 
D(z) = min ( D(z), D(y) + cy,z ) = min(inf,2+2) = 4  

IMPORTANT



Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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v w x y z

u

yx

wv

z
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5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

D(w) = min ( D(w), D(v) + cv,w ) = min (3, 2+3) = 3 

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw
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update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 

D(z) = min ( D(z), D(w) + cw,z ) = min (4, 3+5) = 4 

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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uxyv 4,y3,y
uxyvw 4,y

uxyvwz
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Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8   Loop 
9     
10
11
    

 find a not in N' such that D(a) is a minimum 
 add a to N' 
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∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

uxyvwz

update D(b) for all b adjacent to a and not in N' : 
     D(b) = min ( D(b), D(a) + ca,b ) 
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Dijkstra’s algorithm: an example

Network Layer: 5-27
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wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all 
other destinations 
via x 
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Dijkstra’s algorithm: another example

Network Layer: 5-28

w3
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y
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z
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9Step N'
D(v),
p(v)

0

1

2
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5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v 

uwxvy 12,y 

notes:
 construct least-cost-path tree by tracing predecessor nodes
 ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z
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Dijkstra’s algorithm: discussion

Network Layer: 5-29

algorithm complexity: n nodes
 each of n iteration: need to check all nodes, w, not in N
 n(n+1)/2 comparisons: O(n2) complexity
 more efficient implementations possible: O(nlogn)

message complexity: 
 each router must broadcast its link state information to other n routers 
 efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a 

broadcast message from one source
 each router’s message crosses O(n) links: overall message complexity: O(n2)

IMPORTANT



Dijkstra’s algorithm: oscillations possible

Network Layer: 5-30

 when  link costs depend on traffic volume, route oscillations possible

a

d

c

b
1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1
0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

 sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e
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Network layer: “control plane” roadmap

 network management, 
configuration 
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message 

Protocol 
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Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm 

Network Layer: 5-32

Let Dx(y): cost of least-cost path from x to y.
Then:
   Dx(y) = minv { cx,v + Dv(y) }
   

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

IMPORTANT



Recall edge relaxation for the one edge connecting v and y:
• Dx(y) = min { Dx(y), cx,v + Dv(y) }

Perform edge relaxation for all vertices v connected to x, we 
have the B-F equation
• Dx(y) = minv { cx,v + Dv(y) }

 In L. 5.0 we centralized global synchronous version of BF 
algorithm, where all edges are relaxed in each iteration. 
Here we consider decentralized asynchronous version of BF 
algorithm.

Bellman-Ford (BF) equation

Network Layer: 5-33
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 Each router maintains a Distance Vector table containing the distance 
between itself and All possible destination nodes. Distances, based on a 
chosen metric, are computed using information from the neighbors’ 
distance vectors.
 Information kept by DV router:

• Each router has an ID
• Associated with each link connected to a router, there is a link cost (static or 

dynamic).
• Intermediate hops

 Distance Vector Table Initialization:
• Distance to itself = 0
• Distance to ALL other routers = ∞

Bellman-Ford Algorithm

Network Layer: 5-34
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Bellman-Ford Example

Network Layer: 5-35
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Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),
                    cu,x + Dx(z),
                    cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,
           1 + 3,
           5 + 3}  = 4

node achieving minimum (x) is 
next hop on estimated least-
cost path to destination (z)

IMPORTANT



Distance vector algorithm 

Network Layer: 5-36

key idea: 
 Decentralized gossip algorithm based on local information: “I tell my 

neighbors, you tell yours.”
 from time-to-time, each node sends its own distance vector estimate to 

neighbors

 under minor conditions, the estimate Dx(y) converge to the actual 
least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)}  for each node y ∊ N

 when x receives new DV estimate from any neighbor v, it updates its 
own DV using B-F equation:

IMPORTANT



Distance vector algorithm:  

Network Layer: 5-37

iterative, asynchronous: each local 
iteration caused by: 
 local link cost change 
 DV update message from neighbor

wait for (change in local link 
cost or msg from neighbor)

each node:

distributed, self-stopping: each 
node notifies neighbors only when 
its DV changes
 neighbors then notify their 

neighbors – only if necessary
 no notification received, no 

actions taken!

recompute DV estimates using 
DV received from neighbor

if DV to any destination has 
changed, notify neighbors 

IMPORTANT



DV in a: 
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

Network Layer: 5-38

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0
 All nodes have 

distance estimates 
to nearest 
neighbors (only)

A few asymmetries:
 missing link
 larger cost

d e f

a b c

 All nodes send 
their local 
distance vector to 
their neighbors



Distance vector example: iteration

Network Layer: 5-39

All nodes:
 receive distance 

vectors from 
neighbors
 compute their new 

local  distance 
vector
 send their new 

local distance 
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c



Distance vector example: iteration

Network Layer: 5-40

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance 

vectors from 
neighbors
 compute their new 

local  distance 
vector
 send their new 

local distance 
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration
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g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance 

vectors from 
neighbors
 compute their new 

local  distance 
vector
 send their new 

local distance 
vector to neighbors

t=1



Distance vector example: iteration

Network Layer: 5-42

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance 

vectors from 
neighbors
 compute their new 

local  distance 
vector
 send their new 

local distance 
vector to neighbors

t=2



Distance vector example: iteration

Network Layer: 5-43

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
 receive distance 

vectors from 
neighbors
 compute their new 

local  distance 
vector
 send their new 

local distance 
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute



Distance vector example: iteration

Network Layer: 5-44

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance 

vectors from 
neighbors
 compute their new 

local  distance 
vector
 send their new 

local distance 
vector to neighbors

t=2



Distance vector example: iteration

Network Layer: 5-45

…. and so on

Let’s next take a look at the iterative computations at nodes



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-46

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 b receives DVs 
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Network Layer: 5-47

g h i

1 1

1 1

1 1

1 1

8 1

t=1
 b receives DVs 

from a, c, e, 
computes:

a b c

d e f

DV in b:
Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)}  = min{8,∞,∞} = 8 

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)}  = min{∞,1,∞} = 1 

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)}  = min{9,∞,2} = 2 

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)}  = min{∞,∞,2} = 2 

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)}  = min{∞, ∞, ∞} = ∞ 
Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)}  = min{∞, ∞, 2} = 2 

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)}  = min{∞,∞,1} = 1 

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)}  = min{∞, ∞, ∞} = ∞ 



DV in a: 
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation
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g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 c receives DVs 
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞



Distance vector example: computation
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g h i

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 c receives DVs 
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9 

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞ 
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞ 
Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞ 

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞ 
Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞ 

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive 
exercises for more examples: 
http://gaia.cs.umass.edu/kurose_ross/interactive/



Distance vector example: computation
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1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 e receives DVs 
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞ 
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at 
t=1?

compute



Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c
c’s state at t=0 has propagated to b, and 
may influence distance vector computations 
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance 
vector computations up to 2 hops away, i.e., 
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector 
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector 
computations up to 4 hops away, i.e., at g, it=4

Iterative communication, computation steps diffuses information through network: 

t=1 
t=2 

t=3 

t=4 



Distance vector: another example
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x   y   z
x
y
z

0  2   7
∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to
fro

m
fro

m
x   y   z

x
y
z

0

x   y   z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

x   y   z
x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2   0   1

∞ ∞  ∞

2   0   1
7   1   0

time

x z
12

7

y

Dx()

Dx(y) = min{cx,y + Dy(y), cx,z+ Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{cx,y+ Dy(z), cx,z+ Dz(z)} 
= min{2+1 , 7+0} = 3

32 

Dy()

Dz()

cost to

fro
m



Distance vector: another example
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x   y   z
x
y
z

0  2   7
∞ ∞ ∞
∞ ∞ ∞

cost to
fro

m
fro

m

x   y   z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

x   y   z
x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2   0   1

∞ ∞  ∞

x z
12

7

y

Dx()

Dy()

Dz()

fro
m

x   y   z
x
y
z

0  2   3

fro
m

cost to

x   y   z
x
y
z

0  2   7
fro

m

cost to
x   y   z

x
y
z

0  2   3

fro
m

cost to

x   y   z
x
y
z

0  2   3

fro
m

cost to
x   y   z

x
y
z

0  2   7

fro
m

cost to

2  0   1
7   1   0

2  0   1
3  1   0

2   0   1
3  1   0

2  0   1

3  1   0
2  0   1

3  1   0

fro
m

x   y   z
x
y
z

0
2   0   1
7   1   0

32 

cost to

time

y’s DV did not change after 1st iteration, 
so do not propagate its DV to neighbors



Distance vector: link cost changes

“good news 
travels fast”

t0 : y detects link-cost change, updates its DV Dy(x)=1, informs its 
neighbors.
t1 : z receives update from y, updates its DV, computes new least cost 

to x to be min(50, 1+1)=2, sends its neighbors its DV.
t2 : y receives z’s update, updates its DV.  y’s least costs do not 

change, so y does not send a message to z. 

link cost changes:
 node detects local link cost change 
 updates routing info, recalculates local DV
 if DV changes, notify neighbors 

x z
14

50

y
1

IMPORTANT



Distance vector: link cost changes
link cost changes:
 node detects local link cost change 
 “bad news travels slowly” :

x z
14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So y 
computes Dy(x) = min{cy,x+ Dx(x), cy,z+ Dz(x)}=min{60+0, 1+5}=6 “my new cost to x will be 
6 via z); notifies z of new cost of Dy(x)=6 to x.

• z learns that path to x via y has new cost 6, so z computes Dz(x) = min{cz,x+ Dx(x), cz,y+ 
Dy(x)}=min{50+0, 1+6}=7 “my new cost to x will be Dz(x)=7 via y), notifies y of new cost of 
7 to x.

• y learns that path to x via z has new cost 7, so y computes Dy(x) = min{cy,x+ Dx(x), cy,z+ 
Dz(x)}=min{60+0, 1+7}=8 “my new cost to x will be 8 via z), notifies z of new cost of 
Dy(x)=8 to x.

• z learns that path to x via y has new cost 8, so z computes Dz(x) = min{cz,x+ Dx(x), cz,y+ 
Dy(x)}=min{50+0, 1+8}=9 “my new cost to x will be Dz(x)=9 via y), notifies y of new cost of 
9 to x.

• The iterations will stop when Dz(x) reaches 50 (Dz(x) , Dy(x) going from 5 to 50 in step of 
1). And then Dy(x) will reach 51.

• Q: what if link cost between y and z is 3 instead of 1?
• Q:  (Dz(x), Dy(x) going from 5 to 8 to 11 to 14… until reaching or exceeding 50 in step of 3)

IMPORTANT

x z
14

50

y
60

3



Network Layer: 5-56
ch52 ep#12 DV Bad News Travel Slow Part II
https://www.youtube.com/watch?v=kLmhxtL2FRI 

https://www.youtube.com/watch?v=kLmhxtL2FRI


Solution: Poisoned Reverse

 If z routes through y to get to x:
• In y’s routing table, set z's distance to x Dz(x)=∞ (so y won't route to x via z, 

removing the circular dependency)
• y sees direct link to x has new cost 60, so y computes Dy(x) = min{cy,x+ 

Dx(x), cy,z+ Dz(x)}=min{60+0, 1+∞}=60 “my new cost to x will be 60 via 
direct link; notifies z of new cost of Dy(x)=60 to x.

• z learns that path to x via y has new cost 60, so z computes Dz(x) = 
min{cz,x+ Dx(x), cz,y+ Dy(x)}=min{50+0, 1+60}=50 “my new cost to x will 
be Dz(x)=50 via direct link, notifies y of new cost of 50 to x.

• y learns that path to x via z has new cost 50, so y computes Dy(x) = 
min{cy,x+ Dx(x), cy,z+ Dz(x)}=min{60+0, 1+50}=51 “my new cost to x will 
be 51 via z, notifies z of new cost of Dy(x)=51 to x.

• Algorithm has converged.
Network Layer: 5-57

x z
14

50

y
60

IMPORTANT



Network Layer: 5-58
ch52 ep#13 DV Poisoned Reverse
https://www.youtube.com/watch?v=UcTgNZwGmRU 

https://www.youtube.com/watch?v=UcTgNZwGmRU


Summary

 Link State: Cost of link to neighbors sent to the entire network. Large 
# of small messages.
• n routers, O(n2) messages sent among all routers  
• Dijkstra’s algorithm is used to compute the shortest path using the link state

Distance Vectors: Distance to all nodes in the network sent to 
neighbors. Small # of large messages
• Message exchange between neighbors; convergence time varies
• Bellman Ford’s algorithm is used to compute shortest paths using distance 

vectors

Network Layer: 5-59
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