
Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 5
Network Layer:
Control Plane

Acknowledgement: Based on the textbook’s website:
https://gaia.cs.umass.edu/kurose_ross/index.php

https://gaia.cs.umass.edu/kurose_ross/index.php

Network layer control plane: our goals

understand principles
behind network control
plane:
• traditional routing algorithms
• SDN controllers
• network management,

configuration

 instantiation, implementation
in the Internet:
• OSPF, BGP
• OpenFlow, ODL and ONOS

controllers
• Internet Control Message

Protocol: ICMP
• SNMP, YANG/NETCONF

Network Layer: 5-2

Network layer: “control plane” roadmap

 network management,
configuration
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message

Protocol

Network Layer: 5-3

Two approaches to structuring network control plane:
 per-router control (traditional)
 logically centralized control (software defined networking)

Network-layer functions

Network Layer: 5-4

 forwarding: move packets from router’s
input to appropriate router output data plane

control plane routing: determine route taken by
packets from source to destination

IMPORTANT

Per-router control plane
Individual routing algorithm components in each and every
router interact in the control plane

Routing
Algorithm

data
plane

control
plane

1

2

0111

values in arriving
packet header

3

Network Layer: 5-5

IMPORTANT

Software-Defined Networking (SDN) control plane
Remote controller computes, installs forwarding tables in routers

data
plane

control
plane

Remote Controller

CA

CA CA CA CA

1

2

0111

3

values in arriving
packet header

Network Layer: 5-6

IMPORTANT

Per-router
control plane SDN control plane

IMPORTANT

Network layer: “control plane” roadmap

 network management,
configuration
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message

Protocol

Network Layer: 5-8

Routing protocol goal: determine
“good” paths (equivalently, routes),
from sending hosts to receiving host,
through network of routers
 path: sequence of routers packets

traverse from given initial source host
to final destination host
 “good”: least “cost”, “fastest”, “least

congested”
 routing: a “top-10” networking

challenge!

Routing protocols
mobile network

enterprise
 network

national or global ISP

datacenter
network

application
transport
network

link
physical

application
transport
network

link
physical

network
link

physical

network
link

physical

network
link

physical

network
link

physical network
link

physical

Network Layer: 5-9

IMPORTANT

Graph abstraction: link costs

Network Layer: 5-10

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

graph: G = (N,E)

ca,b: cost of direct link connecting a and b
 e.g., cw,z = 5, cu,z = ∞

cost defined by network operator:
could always be 1, or inversely related
to bandwidth, or inversely related to
congestion

N: set of routers = { u, v, w, x, y, z }

E: set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

IMPORTANT

Routing algorithm classification

Network Layer: 5-11
global or decentralized information?

global: all routers have complete
topology, link cost info
• “link state” algorithms

decentralized: iterative process of
computation, exchange of info with neighbors
• routers initially only know link costs to

attached neighbors
• “distance vector” algorithms

How fast
do routes
change?

dynamic: routes change
more quickly
• periodic updates or in

response to link cost
changes

static: routes change
slowly over time

IMPORTANT

Network layer: “control plane” roadmap

 network management,
configuration
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message

Protocol

Network Layer: 5-12

Dijkstra’s link-state routing algorithm

Network Layer: 5-13

 centralized: network topology, link
costs known to all nodes
• accomplished via “link state

broadcast”
• all nodes have same info

 computes least cost paths from one
node (“source”) to all other nodes
• gives forwarding table for that node

 iterative: after k iterations, know
least cost path to k destinations

 cx,y: direct link cost from
node x to y; = ∞ if not direct
neighbors
 D(v): current estimate of cost

of least-cost-path from source
to destination v
 p(v): predecessor node along

path from source to v
 N': set of nodes whose least-

cost-path definitively known

notation

IMPORTANT

Dijkstra’s link-state routing algorithm

Network Layer: 5-14

1 Initialization:
2 N' = {u} /* compute least cost path from u to all other nodes */
3 for all nodes v
4 if v adjacent to u /* u initially knows direct-path-cost only to direct neighbors */
5 then D(v) = cu,v /* but may not be minimum cost! */
6 else D(v) = ∞
7
8 Loop
9
10
11
12
13
14
15 until all nodes in N'

find w not in N' such that D(w) is a minimum
add w to N'
update D(v) for all v adjacent to w and not in N' :
 D(v) = min (D(v), D(w) + cw,v)
/* new least-path-cost to v is either old least-cost-path to v or known
least-cost-path to w plus direct-cost from w to v */

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

D(w),p(w)
5,u ∞∞1,u2,uu

v w x y z

Initialization (step 0):
 For all a: if a adjacent to u then D(a) = cu,a

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

∞2,x4,x2,u

D(v) = min (D(v), D(x) + cx,v) = min(2, 1+2) = 2
D(w) = min (D(w), D(x) + cx,w) = min (5, 1+3) = 4
D(y) = min (D(y), D(x) + cx,y) = min(inf,1+1) = 2

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

4,y3,y2,u

D(w) = min (D(w), D(y) + cy,w) = min (4, 2+1) = 3
D(z) = min (D(z), D(y) + cy,z) = min(inf,2+2) = 4

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv

IMPORTANT

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(w) = min (D(w), D(v) + cv,w) = min (3, 2+3) = 3

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw

IMPORTANT

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

D(z) = min (D(z), D(w) + cw,z) = min (4, 3+5) = 4

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

uxyvwz

IMPORTANT

Dijkstra’s algorithm: an example

Step
0
1
2
3
4
5

N' D(v),p(v) D(x),p(x) D(y),p(y) D(z),p(z)D(w),p(w)
5,u ∞∞1,u2,uu

8 Loop
9
10
11

 find a not in N' such that D(a) is a minimum
 add a to N'

ux

v w x y z

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

∞2,x4,x2,u
uxy 4,y3,y2,u

uxyv 4,y3,y
uxyvw 4,y

uxyvwz

update D(b) for all b adjacent to a and not in N' :
 D(b) = min (D(b), D(a) + ca,b)

IMPORTANT

Dijkstra’s algorithm: an example

Network Layer: 5-27

u

yx

wv

z
2

2
1

3

1

1

2

5
3

5

u

yx

wv

z

resulting least-cost-path tree from u: resulting forwarding table in u:

v
x
y
w
x

(u,v)
(u,x)
(u,x)
(u,x)
(u,x)

destination outgoing link

route from u to v directly

route from u to all
other destinations
via x

IMPORTANT

Dijkstra’s algorithm: another example

Network Layer: 5-28

w3

4

v

x

u

5

3
7 4

y

8

z
2

7

9Step N'
D(v),
p(v)

0

1

2
3

4

5

D(w),
p(w)

D(x),
p(x)

D(y),
p(y)

D(z),
p(z)

u ∞ ∞ 7,u 3,u 5,u

uw ∞ 11,w 6,w 5,u

14,x 11,w 6,wuwx

uwxv 14,x 10,v

uwxvy 12,y

notes:
 construct least-cost-path tree by tracing predecessor nodes
 ties can exist (can be broken arbitrarily)

uwxvyz

v w x y z

IMPORTANT

Dijkstra’s algorithm: discussion

Network Layer: 5-29

algorithm complexity: n nodes
 each of n iteration: need to check all nodes, w, not in N
 n(n+1)/2 comparisons: O(n2) complexity
 more efficient implementations possible: O(nlogn)

message complexity:
 each router must broadcast its link state information to other n routers
 efficient (and interesting!) broadcast algorithms: O(n) link crossings to disseminate a

broadcast message from one source
 each router’s message crosses O(n) links: overall message complexity: O(n2)

IMPORTANT

Dijkstra’s algorithm: oscillations possible

Network Layer: 5-30

 when link costs depend on traffic volume, route oscillations possible

a

d

c

b
1 1+e

e0

e

1
1

0 0

initially

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

a

d

c

b

given these costs,
find new routing….

resulting in new costs

0 2+e

1+e1
0 0

a

d

c

b

given these costs,
find new routing….

resulting in new costs

2+e 0

00
1+e 1

 sample scenario:
• routing to destination a, traffic entering at d, c, e with rates 1, e (<1), 1
• link costs are directional, and volume-dependent

e

1 1

e

1 1

e

1 1

Network layer: “control plane” roadmap

 network management,
configuration
• SNMP
• NETCONF/YANG

 introduction
 routing protocols
 link state
 distance vector

 intra-ISP routing: OSPF
 routing among ISPs: BGP
 SDN control plane
 Internet Control Message

Protocol

Network Layer: 5-31

Based on Bellman-Ford (BF) equation (dynamic programming):

Distance vector algorithm

Network Layer: 5-32

Let Dx(y): cost of least-cost path from x to y.
Then:
 Dx(y) = minv { cx,v + Dv(y) }

Bellman-Ford equation

min taken over all neighbors v of x

v’s estimated least-cost-path cost to y

direct cost of link from x to v

IMPORTANT

Recall edge relaxation for the one edge connecting v and y:
• Dx(y) = min { Dx(y), cx,v + Dv(y) }

Perform edge relaxation for all vertices v connected to x, we
have the B-F equation
• Dx(y) = minv { cx,v + Dv(y) }

 In L. 5.0 we centralized global synchronous version of BF
algorithm, where all edges are relaxed in each iteration.
Here we consider decentralized asynchronous version of BF
algorithm.

Bellman-Ford (BF) equation

Network Layer: 5-33

IMPORTANT

 Each router maintains a Distance Vector table containing the distance
between itself and All possible destination nodes. Distances, based on a
chosen metric, are computed using information from the neighbors’
distance vectors.
 Information kept by DV router:

• Each router has an ID
• Associated with each link connected to a router, there is a link cost (static or

dynamic).
• Intermediate hops

 Distance Vector Table Initialization:
• Distance to itself = 0
• Distance to ALL other routers = ∞

Bellman-Ford Algorithm

Network Layer: 5-34

IMPORTANT

Bellman-Ford Example

Network Layer: 5-35

u

y

z
2

2
1

3

1

1

2

5
3

5

Suppose that u’s neighboring nodes, x,v,w, know that for destination z:

Du(z) = min { cu,v + Dv(z),
 cu,x + Dx(z),
 cu,w + Dw(z) }

Bellman-Ford equation says:Dv(z) = 5

v

Dw(z) = 3

w

Dx(z) = 3

x
= min {2 + 5,
 1 + 3,
 5 + 3} = 4

node achieving minimum (x) is
next hop on estimated least-
cost path to destination (z)

IMPORTANT

Distance vector algorithm

Network Layer: 5-36

key idea:
 Decentralized gossip algorithm based on local information: “I tell my

neighbors, you tell yours.”
 from time-to-time, each node sends its own distance vector estimate to

neighbors

 under minor conditions, the estimate Dx(y) converge to the actual
least cost dx(y)

Dx(y) ← minv{cx,v + Dv(y)} for each node y ∊ N

 when x receives new DV estimate from any neighbor v, it updates its
own DV using B-F equation:

IMPORTANT

Distance vector algorithm:

Network Layer: 5-37

iterative, asynchronous: each local
iteration caused by:
 local link cost change
 DV update message from neighbor

wait for (change in local link
cost or msg from neighbor)

each node:

distributed, self-stopping: each
node notifies neighbors only when
its DV changes
 neighbors then notify their

neighbors – only if necessary
 no notification received, no

actions taken!

recompute DV estimates using
DV received from neighbor

if DV to any destination has
changed, notify neighbors

IMPORTANT

DV in a:
Da(a)=0

Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector: example

Network Layer: 5-38

g h i

1 1

1 1 1

1 1

1 1

8 1

t=0
 All nodes have

distance estimates
to nearest
neighbors (only)

A few asymmetries:
 missing link
 larger cost

d e f

a b c

 All nodes send
their local
distance vector to
their neighbors

Distance vector example: iteration

Network Layer: 5-39

All nodes:
 receive distance

vectors from
neighbors
 compute their new

local distance
vector
 send their new

local distance
vector to neighbors

t=1

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

Distance vector example: iteration

Network Layer: 5-40

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance

vectors from
neighbors
 compute their new

local distance
vector
 send their new

local distance
vector to neighbors

t=1

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-41

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance

vectors from
neighbors
 compute their new

local distance
vector
 send their new

local distance
vector to neighbors

t=1

Distance vector example: iteration

Network Layer: 5-42

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance

vectors from
neighbors
 compute their new

local distance
vector
 send their new

local distance
vector to neighbors

t=2

Distance vector example: iteration

Network Layer: 5-43

g h i

1 1

1 1 1

1 1

8 1

2 1

d e f

a b c

All nodes:
 receive distance

vectors from
neighbors
 compute their new

local distance
vector
 send their new

local distance
vector to neighbors

t=2

compute compute compute

compute compute compute

compute compute compute

Distance vector example: iteration

Network Layer: 5-44

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c

All nodes:
 receive distance

vectors from
neighbors
 compute their new

local distance
vector
 send their new

local distance
vector to neighbors

t=2

Distance vector example: iteration

Network Layer: 5-45

…. and so on

Let’s next take a look at the iterative computations at nodes

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-46

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 b receives DVs
from a, c, e

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation
DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Network Layer: 5-47

g h i

1 1

1 1

1 1

1 1

8 1

t=1
 b receives DVs

from a, c, e,
computes:

a b c

d e f

DV in b:
Db(f) =2
Db(g) = ∞
Db(h) = 2
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = 2
Db(e) = 1

e

computeb

Db(a) = min{cb,a+Da(a), cb,c +Dc(a), cb,e+De(a)} = min{8,∞,∞} = 8

Db(c) = min{cb,a+Da(c), cb,c +Dc(c), c b,e +De(c)} = min{∞,1,∞} = 1

Db(d) = min{cb,a+Da(d), cb,c +Dc(d), c b,e +De(d)} = min{9,∞,2} = 2

Db(f) = min{cb,a+Da(f), cb,c +Dc(f), c b,e +De(f)} = min{∞,∞,2} = 2

Db(i) = min{cb,a+Da(i), cb,c +Dc(i), c b,e+De(i)} = min{∞, ∞, ∞} = ∞
Db(h) = min{cb,a+Da(h), cb,c +Dc(h), c b,e+De(h)} = min{∞, ∞, 2} = 2

Db(e) = min{cb,a+Da(e), cb,c +Dc(e), c b,e +De(e)} = min{∞,∞,1} = 1

Db(g) = min{cb,a+Da(g), cb,c +Dc(g), c b,e+De(g)} = min{∞, ∞, ∞} = ∞

DV in a:
Da(a)=0
Da(b) = 8
Da(c) = ∞
Da(d) = 1
Da(e) = ∞
Da(f) = ∞
Da(g) = ∞
Da(h) = ∞
Da(i) = ∞

Distance vector example: computation

Network Layer: 5-48

g h i

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 c receives DVs
from b

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

Distance vector example: computation

Network Layer: 5-49

g h i

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 c receives DVs
from b computes:

a b c

d e f

DV in c:
Dc(a) = ∞
Dc(b) = 1
Dc(c) = 0
Dc(d) = ∞
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

Dc(a) = min{cc,b+Db(a}} = 1 + 8 = 9

Dc(b) = min{cc,b+Db(b)} = 1 + 0 = 1

Dc(d) = min{cc,b+Db(d)} = 1+ ∞ = ∞
Dc(e) = min{cc,b+Db(e)} = 1 + 1 = 2

Dc(f) = min{cc,b+Db(f)} = 1+ ∞ = ∞
Dc(g) = min{cc,b+Db(g)} = 1+ ∞ = ∞

Dc(i) = min{cc,b+Db(i)} = 1+ ∞ = ∞
Dc(h) = min{cbc,b+Db(h)} = 1+ ∞ = ∞

DV in c:
Dc(a) = 9
Dc(b) = 1
Dc(c) = 0
Dc(d) = 2
Dc(e) = ∞
Dc(f) = ∞
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = ∞

compute

* Check out the online interactive
exercises for more examples:
http://gaia.cs.umass.edu/kurose_ross/interactive/

Distance vector example: computation

Network Layer: 5-50

1 1

1 1 1

1 1

1 1

8 1

t=1

DV in b:
Db(f) = ∞
Db(g) = ∞
Db(h) = ∞
Db(i) = ∞

Db(a) = 8
Db(c) = 1
Db(d) = ∞
Db(e) = 1

 e receives DVs
from b, d, f, h

a b c

DV in f:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = 0
Dc(g) = ∞
Dc(h) = ∞
Dc(i) = 1

DV in e:
De(a) = ∞
De(b) = 1
De(c) = ∞
De(d) = 1
De(e) = 0
De(f) = 1
De(g) = ∞
De(h) = 1
De(i) = ∞

DV in h:
Dc(a) = ∞
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = ∞
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = 0
Dc(i) = 1

DV in d:
Dc(a) = 1
Dc(b) = ∞
Dc(c) = ∞
Dc(d) = 0
Dc(e) = 1
Dc(f) = ∞
Dc(g) = 1
Dc(h) = ∞
Dc(i) = ∞

d e f

g h i

Q: what is new DV computed in e at
t=1?

compute

Distance vector: state information diffusion

t=0 c’s state at t=0 is at c only

g h i

1 1

1 1 1

1 1

1 1

8 1

d e f

a b c
c’s state at t=0 has propagated to b, and
may influence distance vector computations
up to 1 hop away, i.e., at b

t=1

c’s state at t=0 may now influence distance
vector computations up to 2 hops away, i.e.,
at b and now at a, e as well

t=2

c’s state at t=0 may influence distance vector
computations up to 3 hops away, i.e., at d, f, h

t=3

c’s state at t=0 may influence distance vector
computations up to 4 hops away, i.e., at g, it=4

Iterative communication, computation steps diffuses information through network:

t=1
t=2

t=3

t=4

Distance vector: another example

Network Layer: 5-52

x y z
x
y
z

0 2 7
∞ ∞ ∞
∞ ∞ ∞

fro
m

cost to
fro

m
fro

m
x y z

x
y
z

0

x y z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z
x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

2 0 1
7 1 0

time

x z
12

7

y

Dx()

Dx(y) = min{cx,y + Dy(y), cx,z+ Dz(y)}
= min{2+0 , 7+1} = 2

Dx(z) = min{cx,y+ Dy(z), cx,z+ Dz(z)}
= min{2+1 , 7+0} = 3

32

Dy()

Dz()

cost to

fro
m

Distance vector: another example

Network Layer: 5-53

x y z
x
y
z

0 2 7
∞ ∞ ∞
∞ ∞ ∞

cost to
fro

m
fro

m

x y z
x
y
z

∞ ∞

∞ ∞ ∞

cost to

x y z
x
y
z

∞ ∞ ∞
7 1 0

cost to

∞
2 0 1

∞ ∞ ∞

x z
12

7

y

Dx()

Dy()

Dz()

fro
m

x y z
x
y
z

0 2 3

fro
m

cost to

x y z
x
y
z

0 2 7
fro

m

cost to
x y z

x
y
z

0 2 3

fro
m

cost to

x y z
x
y
z

0 2 3

fro
m

cost to
x y z

x
y
z

0 2 7

fro
m

cost to

2 0 1
7 1 0

2 0 1
3 1 0

2 0 1
3 1 0

2 0 1

3 1 0
2 0 1

3 1 0

fro
m

x y z
x
y
z

0
2 0 1
7 1 0

32

cost to

time

y’s DV did not change after 1st iteration,
so do not propagate its DV to neighbors

Distance vector: link cost changes

“good news
travels fast”

t0 : y detects link-cost change, updates its DV Dy(x)=1, informs its
neighbors.
t1 : z receives update from y, updates its DV, computes new least cost

to x to be min(50, 1+1)=2, sends its neighbors its DV.
t2 : y receives z’s update, updates its DV. y’s least costs do not

change, so y does not send a message to z.

link cost changes:
 node detects local link cost change
 updates routing info, recalculates local DV
 if DV changes, notify neighbors

x z
14

50

y
1

IMPORTANT

Distance vector: link cost changes
link cost changes:
 node detects local link cost change
 “bad news travels slowly” :

x z
14

50

y
60

• y sees direct link to x has new cost 60, but z has said it has a path at cost of 5. So y
computes Dy(x) = min{cy,x+ Dx(x), cy,z+ Dz(x)}=min{60+0, 1+5}=6 “my new cost to x will be
6 via z); notifies z of new cost of Dy(x)=6 to x.

• z learns that path to x via y has new cost 6, so z computes Dz(x) = min{cz,x+ Dx(x), cz,y+
Dy(x)}=min{50+0, 1+6}=7 “my new cost to x will be Dz(x)=7 via y), notifies y of new cost of
7 to x.

• y learns that path to x via z has new cost 7, so y computes Dy(x) = min{cy,x+ Dx(x), cy,z+
Dz(x)}=min{60+0, 1+7}=8 “my new cost to x will be 8 via z), notifies z of new cost of
Dy(x)=8 to x.

• z learns that path to x via y has new cost 8, so z computes Dz(x) = min{cz,x+ Dx(x), cz,y+
Dy(x)}=min{50+0, 1+8}=9 “my new cost to x will be Dz(x)=9 via y), notifies y of new cost of
9 to x.

• The iterations will stop when Dz(x) reaches 50 (Dz(x) , Dy(x) going from 5 to 50 in step of
1). And then Dy(x) will reach 51.

• Q: what if link cost between y and z is 3 instead of 1?
• Q: (Dz(x), Dy(x) going from 5 to 8 to 11 to 14… until reaching or exceeding 50 in step of 3)

IMPORTANT

x z
14

50

y
60

3

Network Layer: 5-56
ch52 ep#12 DV Bad News Travel Slow Part II
https://www.youtube.com/watch?v=kLmhxtL2FRI

https://www.youtube.com/watch?v=kLmhxtL2FRI

Solution: Poisoned Reverse

 If z routes through y to get to x:
• In y’s routing table, set z's distance to x Dz(x)=∞ (so y won't route to x via z,

removing the circular dependency)
• y sees direct link to x has new cost 60, so y computes Dy(x) = min{cy,x+

Dx(x), cy,z+ Dz(x)}=min{60+0, 1+∞}=60 “my new cost to x will be 60 via
direct link; notifies z of new cost of Dy(x)=60 to x.

• z learns that path to x via y has new cost 60, so z computes Dz(x) =
min{cz,x+ Dx(x), cz,y+ Dy(x)}=min{50+0, 1+60}=50 “my new cost to x will
be Dz(x)=50 via direct link, notifies y of new cost of 50 to x.

• y learns that path to x via z has new cost 50, so y computes Dy(x) =
min{cy,x+ Dx(x), cy,z+ Dz(x)}=min{60+0, 1+50}=51 “my new cost to x will
be 51 via z, notifies z of new cost of Dy(x)=51 to x.

• Algorithm has converged.
Network Layer: 5-57

x z
14

50

y
60

IMPORTANT

Network Layer: 5-58
ch52 ep#13 DV Poisoned Reverse
https://www.youtube.com/watch?v=UcTgNZwGmRU

https://www.youtube.com/watch?v=UcTgNZwGmRU

Summary

 Link State: Cost of link to neighbors sent to the entire network. Large
of small messages.
• n routers, O(n2) messages sent among all routers
• Dijkstra’s algorithm is used to compute the shortest path using the link state

Distance Vectors: Distance to all nodes in the network sent to
neighbors. Small # of large messages
• Message exchange between neighbors; convergence time varies
• Bellman Ford’s algorithm is used to compute shortest paths using distance

vectors

Network Layer: 5-59

	Slide Number 1
	Network layer control plane: our goals
	Network layer: “control plane” roadmap
	Network-layer functions
	Per-router control plane
	Software-Defined Networking (SDN) control plane
	Per-router control plane
	Network layer: “control plane” roadmap
	Routing protocols
	Graph abstraction: link costs
	Routing algorithm classification
	Network layer: “control plane” roadmap
	Dijkstra’s link-state routing algorithm
	Dijkstra’s link-state routing algorithm
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: an example
	Dijkstra’s algorithm: another example
	Dijkstra’s algorithm: discussion
	Dijkstra’s algorithm: oscillations possible
	Network layer: “control plane” roadmap
	Distance vector algorithm
	Bellman-Ford (BF) equation
	Bellman-Ford Algorithm
	Bellman-Ford Example
	Distance vector algorithm
	Distance vector algorithm:
	Distance vector: example
	Distance vector example: iteration
	Distance vector example: iteration
	Distance vector example: iteration
	Distance vector example: iteration
	Distance vector example: iteration
	Distance vector example: iteration
	Distance vector example: iteration
	Distance vector example: computation
	Distance vector example: computation
	Distance vector example: computation
	Distance vector example: computation
	Distance vector example: computation
	Distance vector: state information diffusion
	Distance vector: another example
	Distance vector: another example
	Distance vector: link cost changes
	Distance vector: link cost changes
	Slide Number 56
	Solution: Poisoned Reverse
	Slide Number 58
	Summary

