
Lecture 5.0
Shortest Paths

Department of Computer Science
Hofstra University



Lecture Goals
 In this lecture we study shortest-paths problems. We begin by 

analyzing some basic properties of shortest paths and a generic 
algorithm for the problem. 

 We introduce and analyze Dijkstra's algorithm for shortest-
paths problems with nonnegative weights. 

 We conclude with the Bellman–Ford algorithm for edge-
weighted digraphs with no negative cycles. 

IMPORTANT



Lecture Goals
 In this lecture we study shortest-paths problems. We begin by 

analyzing some basic properties of shortest paths and a generic 
algorithm for the problem. 

 For single-source shortest path, we consider:
 Dijkstra's algorithm 
 Bellman–Ford algorithm 
 Topological Sort for DAG

 For all-pairs shortest path, we conclude:
 Floyd Warshall Algorithm 
 Johnson’s Algorithm



Shortest Paths in an Edge-weighted Digraph
Given an edge-weighted digraph, find the shortest path from source vertex
s to t.

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph shortest path from 0 to 6
0->2 0.26

 Which vertices? 
 Single source: from source vertex s to every other vertex. 
 Source-sink: from source vertex s to another t. 
 All pairs: between all pairs of vertices. 
 Nonnegative weights? 
 Cycles? 
 Negative cycles.

Variants

Simplifying assumption: Each vertex is reachable from s. 



Edge Relaxation
Relax edge e = u→v with weight w(u,v). (We also write uv to denote u→v)
 distTo[u] is length of shortest known path from s to u. 
 distTo[v] is length of shortest known path from s to v. 
 prevNode[v] is the previous vertex on shortest known path from s to v. 
 If e = u→v gives shorter path to v through u, update distTo[v] and 

prevNode[v].
 distTo[v] = min(distTo[v], distTo[u] + w(u,v)); prevNode[v]=u 

Previous shortest path from s to v 
goes through vertex x, with cost of 7.2

s

3.1

After relaxing edge uv, the shortest 
path from s to v is updated to go 
through vertex u, with cost of 4.4

1.3

u

v

private void relax(DirectedEdge e)
{

Int u = e.from(), v = e.to();
if (distTo[v] > distTo[u] + w(u,v))
{

distTo[v] = distTo[u] + w(u,v);  
prevNode[v] = u;

}
}

7.2 

prevNode[v]=u

OLD distTo[v] = 7.2 > distTo[u] + w(u,v)
= 3.1+1.3 = 4.4 
NEW distTo[v]  distTo[u] + w(u,v) = 4.4, 
prevNode[v] = u

x



Generic Shortest-paths Algorithm
Generic algorithm (to compute SPT from s)

For each vertex v: distTo[v] = ∞. 
For each vertex v: prevNode[v] = null. 
distTo[s] = 0. 
Repeat until done:
 - Relax any edge. 

Proposition. Generic algorithm computes SPT (if it exists) from s. 
Pf. 

 Throughout algorithm, distTo[v] is the length of a simple path from s to v (and 
prevNode[v] is its previous vertex on the path). 

 Each successful relaxation decreases distTo[v] for some v. 
 The entry distTo[v] can decrease at most a finite number of times.
Efficient implementations. How to choose which edge to relax?

 Ex 1. Dijkstra’s algorithm. (no negative weights). 
 Ex 2. Bellman–Ford algorithm. (negative weights, can detect negative cycles). 

 Ex 3. Topological sort. (DAG with no directed cycles)



Dijkstra's Algorithm
 Initialization:

 Set the distance to the source vertex as 0 and to all other vertices as infinity.
 Mark all vertices as unvisited and store them in a priority queue.

 Main Loop:
 Visit the unvisited vertex u with the shortest known distance from the 

queue.
 For each unvisited neighbor vertex v of vertex u, calculate its tentative 

distance through the current vertex. If this distance is smaller than the 
previously recorded distance, update it with edge relaxation for edge uv.

 Mark the current vertex as visited once all its neighbors are processed.
 Termination:

 The algorithm continues until all reachable vertices are visited.
 Time complexity: O(V log V + V) for Binary Heap implementation
 Notes:

 Dijkstra’s Algorithm is greedy and optimal: any vertex that has been visited 
should have its shortest distance to the source. 

 It works for both undirected and directed graphs. The only difference is the 
function for getting the neighbors of vertex v, as each undirected edge is 
treated as two directed edges in opposite directions.)



Dijkstra’s Algorithm: Correctness Proof

Proposition.  Dijkstra's algorithm computes a SPT in any edge-weighted 

digraph with nonnegative weights.

Proof.  

 Each edge e = u→v is relaxed exactly once (when vertex u is visited), 

afterwards:  

- distTo[v]  ≤  distTo[u] + w(u,v).

 Inequality holds until algorithm terminates because:

- distTo[v] cannot increase

- distTo[u] will not change

 Thus, upon termination, shortest-paths optimality conditions hold. 

we choose lowest distTo[ ] value at each 
step (and edge weights are nonnegative)

distTo[ ] values are monotone decreasing



Toy Example: find shortest path starting from 
source vertex S for undirected graph

SD: Shortest Distance. PN: Previous Node

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A
N1 SD PN

S 0

A 2 S

B 3 A

Visit B
N1 SD PN

S 0

A 2 S

B 3 A

S
A

B
4

3

2

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A Visit B
N1 SD PN

S 0

A 2 S

B 4 S

S
A

B
4

1

2

N1 SD PN

S 0

A 2 S

B 4 S



Toy Example: find shortest path starting 
from source vertex S for directed graph

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A 2 S

B 4 S

Visit A
N1 SD PN

S 0

A 2 S

B 4 S

Visit B
N1 SD PN

S 0

A 2 S

B 4 S

N1 SD PN

S 0

A ∞
B ∞

Visit S
N1 SD PN

S 0

A ∞
B 4 S

Visit B Visit A
N1 SD PN

S 0

A 5 B

B 4 S

S
A

B
4

1

2

N1 SD PN

S 0

A 5 B

B 4 S

S
A

B
4

1

2



Example Graph



Initialize



Visit vertex A

OLD distTo[B] = ∞ > distTo[A] + w(A,B) = 0+2 = 2
NEW distTo[B]  distTo[A] + w(A,B) = 2, prevNode[B] = A
OLD distTo[D] = ∞ > distTo[A] + w(A,D) = 0+8 = 8
NEW distTo[D]  distTo[A] + w(A,D) = 8, prevNode[D] = A



Visit vertex B

OLD distTo[D] = 8 > distTo[B] + w(B,D) = 2+5 = 7
NEW distTo[D]  distTo[B] + w(B,D) = 7, prevNode[D] = B
OLD distTo[E] = ∞ > distTo[B] + w(B,E) = 2+6 = 8
NEW distTo[E]  distTo[B] + w(B,E) = 8, prevNode[E] = B



Visit vertex D

OLD distTo[E] = 8 < distTo[D] + w(D,E) = 7+3 = 10
No update, distTo[E] stays 8, prevNode[E] stays B
OLD distTo[F] = ∞ > distTo[D] + w(D,F) = 7+2 = 9
NEW distTo[F]  distTo[D] + w(D,F) = 9, prevNode[F] = D



Visit vertex E

OLD distTo[C] = ∞ > distTo[E] + w(E.C) = 8+9 = 17
NEW distTo[C]  distTo[E] + w(E.C) = 17, prevNode[C] = E
OLD distTo[F] = 9 = distTo[E] + w(E.F) = 8+1 = 9
No update, distTo[F] stays 9, prevNode[F] = D (You can also update 
prevNode[F] = E.)



Visit vertex F

OLD distTo[C] = 17 > distTo[F] + w(F,C) = 9+3 = 12
NEW distTo[C]  distTo[F] + w(F,C) = 12, prevNode[C] = F 



Visit vertex C

Nothing changes, since C has no unvisited neighbor vertices



End of Algorithm

 Table contains the shortest distance to each vertex N from the 
source vertex A, and its previous vertex in the shortest path



Getting the Shortest Path from A to C

 C’s previous vertex is F; F’s previous vertex is D; D’s previous 
vertex is B; B’s previous vertex is A

 Shortest Path from A to C is ABDFC



Dijkstra’s Algorithm Example 2

A

B

C E

D

1

1

3

3

21

4



Initialize

A

B

C E

D

1

1

3

3

21

4

∞ ∞

∞
∞

0

N SD PN

A 0

B ∞
C ∞
D ∞
E ∞



Visit vertex A 

B

C E

D

1

1

3

3

21

4

3 ∞

∞
1

0

N SD PN

A 0

B 3 A

C 1 A

D ∞
E ∞

A



Visit vertex C 

N SD PN

A 0

B 2 C

C 1 A

D ∞
E 5 C

3

A

B

E

D

1

1

3

21

4

2 ∞

5
1

0

C



Visit vertex B 

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0



Visit vertex E 

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0

Nothing changes



Visit vertex D 

N SD PN

A 0

B 2 C

C 1 A

D 5 B

E 3 B

Nothing changes

3

A

B

C E

D

1

1

3

21

4

2 5

3
1

0



Dijkstra’s Algorithm Example 3
 Consider vertices in increasing order of distance from s 

- (non-tree vertex with the lowest distTo[ ] value). 
 Add vertex to tree and relax all edges pointing from that vertex.

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

choose source vertex 0
relax all edges adjacent from 0
choose vertex 1  
relax all edges adjacent from 1

v  distTo[]

0
1
2
3
4
5
6
7

∞ 
∞ 
∞ 
∞
∞
∞
∞
∞

v  edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
14
29
8

0
1
1
0
7
4
0

choose vertex 7
relax all edges adjacent from 7
choose vertex 4
relax all edges adjacent from 4

15
17

13
26

7
2

4
5

choose vertex 5
relax all edges adjacent from 5
choose vertex 2
relax all edges adjacent from 2
choose vertex 3
relax all edges adjacent from 3
choose vertex 6
relax all edges adjacent from 6

14

25

5

2



Dijkstra’s Algorithm Example 4

 Suppose we run Dijkstra’s single source shortest-path 
algorithm on the following edge weighted directed graph with 
vertex P as the source. In what order do the vertices get 
included into the set of vertices for which the shortest path 
distances are finalized? 

 ANS: P, Q, R, U, S, T



N SD PN

P 0

Q ∞
R ∞
S ∞
T ∞
U ∞

N SD PN

P 0

Q 1 P

R ∞
S 6 P

T 7 P

U ∞

Visit P

N SD PN

P 0

Q 1 P

R 2 Q

S 5 Q

T 7 P

U ∞

Visit Q

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit R

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit S

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Visit T

N SD PN

P 0

Q 1 P

R 2 Q

S 4 R

T 7 P

U 3 R

Finished

Visit U (nothing changes)

(nothing
changes)

(nothing
changes)

SD: Shortest Distance
PN: Previous vertex



Bellman-Ford Algorithm
• Initialize distance array distTo[] 

for each vertex v as distTo[v] = ∞, 
and distTo[s] = 0 to source vertex 
s.

• Relax all edges V-1 times.
• Can terminate early when all 

distTo[] values have converged
• The order of edge relaxations affects 

algorithm efficiency but not 
correctness.

Bellman–Ford algorithm 
For each vertex v: distTo[v] = ∞. 
For each vertex v: edgeTo[v] = null. 
distTo[s] = 0. 
Repeat V-1 times:
 - Relax each edge. 

Generic algorithm (to compute SPT from s)

For each vertex v: distTo[v] = ∞. 
For each vertex v: edgeTo[v] = null. 
distTo[s] = 0. 
Repeat until done:
 - Relax any edge. 

Recall:

private void relax(DirectedEdge e)
{

Int u = e.from(), v = e.to();
if (distTo[v] > distTo[u] + w(u,v))
{

distTo[v] = distTo[u] + w(u,v);  
prevNode[v] = u;

}
}



Bellman-Ford Algorithm Proof of 
Correctness

 Relaxing edges V-1 times in the Bellman-Ford algorithm 
guarantees that the algorithm has explored all possible paths 
with up to V-1 edges,  which is the maximum possible number 
of edges of a shortest path in a graph with V vertices. 

 This allows the algorithm to correctly calculate the shortest 
paths from the source vertex to all other vertices, given that 
there are no negative-weight cycles.



Bellman-Ford Algorithm with Negative Cycle 
Detection

• Initialize distance array distTo[] for each vertex v as distTo[v] 
= ∞, and distTo[s] = 0 to source vertex s.

• Relax all edges V-1 times.
• Can terminate early when all distTo[] values have converged
• The order of edge relaxations affects algorithm efficiency but not 

correctness. A good heuristic is to follow the Breadth First Search (BFS) 
order.

• Relax all the edges one more time i.e. the V-th time:
• Case 1 (Negative cycle exists): if any edge can be further relaxed, i.e., 

for any edge u→v, if distTo[u] > distTo[u] + w(u,v)
• Case 2 (No Negative cycle) : case 1 fails for all the edges.

• Notes:
• It can find any negative cycle that is reachable from source vertex s 

(but not negative cycles that are unreachable from s).
• If there is a negative cycle that is reachable from source vertex s, then 

any paths that go through the cycle has distance −∞, since the cost can 
be reduced by traversing the cycle infinite number of times. 



Time Complexity of Bellman-Ford Algorithm

 Time complexity for connected graph: 
 Average Case: O(VE)
 Worst Case: O(VE)

 If the graph is dense or complete, the value of E becomes O(V2). So 
overall time complexity becomes O(V3)



Bellman-Ford Algorithm Example 1
Repeat V − 1 times: relax all E edges.

1

2

3

4

0

6

5

7

1

3

6

4 12

8

15

5

7

9 5

4

11

9

13

20

v  distTo[]

0
1
2
3
4
5
6
7

∞ 
∞ 
∞ 
∞
∞
∞
∞
∞

v  edgeTo[]

0
1
2
3
4
5
6
7

-
-
-
-
-
-
-
-

0
5
17
20
9
13
28
8

0
1
1
0
4
2
0

14
17

26

5
2

5

25

2

0→1 0→4 0→7 1→2 1→3 1→7 2→3 2→6 3→6 4→5 4→6 4→7 5→2 5→6 7→2 7→5 
pass 1 pass 2 pass 3 (converged, no further changes, so stop here)

Order of edge relaxations 

Reverse order of edge 
relaxations will result 
in slower convergence 



Dijkstra's Algorithm vs. Bellman-Ford 
Algorithm

 Dijkstra's Algorithm:
 Uses a priority queue to select the next vertex to process.
 Greedily selects the vertex with the smallest tentative distance to source 

vertex.
 Works only on graphs with non-negative edge weights.

 Bellman-Ford Algorithm:
 Iteratively relaxes all edges V-1 times.
 Does not use a priority queue.
 Can handle graphs with negative edge weights, and can detect negative 

cycles.
 Dijkstra's algorithm is faster and more efficient for graphs with non-

negative weights; Bellman-Ford Algorithm is more versatile as it 
can handle negative weights and detect negative cycles, albeit at the 
cost of lower efficiency.



Quiz

 Given a graph where all edges have positive weights, the 
shortest paths produced by Dijsktra and Bellman Ford 
algorithm may be different but path weight would always be 
same.

 ANS: True
 Dijkstra and Bellman-Ford both work fine for a graph with all 

positive weights, but they are different algorithms and may 
pick different edges for shortest paths.



Quiz

 Let G be a directed graph whose vertex set is the set of numbers from 1 to 
100. There is an edge from a vertex i to a vertex j if either j = i + 1 or j = 3i. 
The minimum number of edges in a path in G from vertex 1 to vertex 100 
is 

 A. 4 B. 7 C. 23 D. 99
 ANS: 7
 The task is to find minimum number of edges in a path in G from vertex 1 

to vertex 100 such that we can move to either i+1 or 3i from a vertex i.
 Since the task is to minimize number of edges, we would prefer to follow 

3*i.  Let us follow multiple of 3. 1 => 3 => 9 => 27 => 81, now we can't 
follow multiple of 3 anymore. So we will have to follow i+1. This solution 
gives a long path.

 What if we begin from end, and we reduce by 1 if the value is not multiple 
of 3, else we divide by 3. 100 => 99 => 33 => 11 => 10 => 9 => 3 => 1

 So we need total 7 edges.


	Lecture 5.0�Shortest Paths
	Lecture Goals
	Lecture Goals
	Shortest Paths in an Edge-weighted Digraph
	Edge Relaxation
	Generic Shortest-paths Algorithm
	Dijkstra's Algorithm
	Dijkstra’s Algorithm:	Correctness Proof
	Toy Example: find shortest path starting from source vertex S for undirected graph�SD: Shortest Distance. PN: Previous Node
	Toy Example: find shortest path starting from source vertex S for directed graph
	Example Graph
	Initialize
	Visit vertex A
	Visit vertex B
	Visit vertex D
	Visit vertex E
	Visit vertex F
	Visit vertex C
	End of Algorithm
	Getting the Shortest Path from A to C
	Dijkstra’s Algorithm Example 2
	Initialize
	Visit vertex A 
	Visit vertex C 
	Visit vertex B 
	Visit vertex E 
	Visit vertex D 
	Dijkstra’s Algorithm Example 3
	Dijkstra’s Algorithm Example 4
	Slide Number 30
	Bellman-Ford Algorithm
	Bellman-Ford Algorithm Proof of Correctness
	Bellman-Ford Algorithm with Negative Cycle Detection
	Time Complexity of Bellman-Ford Algorithm
	Bellman-Ford Algorithm Example 1
	Dijkstra's Algorithm vs. Bellman-Ford Algorithm
	Quiz
	Quiz

