Chapter 3
Transport Layer

Acknowledgement: Based on the textbook’s website:
https://gaia.cs.umass.edu/kurose ross/index.php

Begransad delning

James F. Kurose | Keith W. Ross

n—

: NETWORKING

= o ATOP-DOWN APPROACH

Eighth Ediition

—
— = =

Computer Networking: A
Top-Down Approach

8th edition

Jim Kurose, Keith Ross

Pearson, 2020

Transport Layer: 3-1

https://gaia.cs.umass.edu/kurose_ross/index.php

Begransad delning

Chapter 3: roadmap

" Principles of congestion control

Transport Layer: 3-2

IMPORTANT |

Principles of congestion control

Congestion:

" informally: “too many sources sending too much data too fast for
network to handle”

" manifestations:
* long delays (queueing in router buffers)
 packet loss (buffer overflow at routers)

congestion control:
too many senders,
sending too fast

= different from flow control!

= 3 top-10 problem!

flow control: one sender
too fast for one receiver

Transport Layer: 3-3

Begransad delning

Causes/costs of congestion: scenario 1

. . original data: Kin throughput: N
Simplest scenario: Q Q

. pe Host A
= one router, infinite buffers ;Z
= input, output link capacity: R 4‘” e o H
= two flows i 4 _B./_
=" no retransmissions needed i 37
%Host B
71 I
Q: What happens as 5
- < o
arrival rate 4. g -
< ©
approaches R/2? g , ,
i} Ay RP2 A RP2
maximum per-connection large delays as arrival rate
throughput: R/2 Ave approaches capacity

Transport Layer: 3-4

Begransad delning

Causes/costs of congestion: scenario 2

" one router, finite buffers

= sender retransmits lost, timed-out packet
* application-layer input = application-layer output: A, = A
* transport-layer input includes retransmissions : A'..= A,

Host A @ «I— A, : original data - .
:" V{ o — A'.,: original data, plus out
e retransmitted data

i Zam T
g2/ Y

%Host B finite shared output
link buffers

Transport Layer: 3-5

Begransad delning

Causes/costs of congestion: scenario 2

Idealization: perfect knowledge Rj2 oo

= sender sends only when router buffers available E
<

£

5

Host A F— A, : original data A I
QOPY = o— A'.,: original data, plus 1 Mout " R/2
%\’ retransmitted data

? free buffer space! ﬁ
ALz /T
= /)Y

‘\\WHOS’(B finite shared output
link buffers

Transport Layer: 3-6

Begransad delning

Causes/costs of congestion: scenario 2

Idealization: some perfect knowledge

= packets can be lost (dropped at router) due to
full buffers

= sender knows when packet has been dropped:
only resends if packet known to be lost

Host A L A, : original data
_F A
dopy B @<—)" : original data, plus
s retransmitted data
4

’ no buffer space! / ﬁ
7 S
R LR
1= _/

" " HostB finite shared outpuf;@
link buffers="

Transport Layer: 3-7

Begransad delning

Causes/costs of congestion: scenario 2

|dealization: some perfect knowledge R/2

“wasted” capacity due

)

- packets can be lost (dropped at router) due to *g __________________ to retransmissions
full buffers < '
= i when sending at
= sender knows when packet has been dropped: < ! R/2, some packets
only resends if packet known to be lost 3 are needed
% : retransmissions
Host A 4 — Kin: original data N Xin R/é

retransmitted data

V./ e — A'.,: original data, plus
N

A A

? 7 Waca! / E
R e R
g2 /) J

%Host B finite shared output
link buffers

Transport Layer: 3-8

Begransad delning

Causes/costs of congestion: scenario 2

Realistic scenario: un-needed duplicates

= packets can be lost, dropped at router due to
full buffers — requiring retransmissions

= but sender times can time out prematurely,
sending two copies, both of which are delivered

L A, : original data

[A\,: original data, plus

retransmitted data

free buffer space!

link buffers

“wasted” capacity due
to un-needed

vﬁtra nsmissions

when sending at
R/2, some packets
are retransmissions,
including needed

R/2 — /9
- 4 !
> v
o

O R ,
: i
o 1
< 1
o]0] 1
> 1
o :
< :
% |

in R/2

and un-needed
duplicates, that are
delivered!

Transport Layer: 3-9

Begransad delning

Causes/costs of congestion: scenario 2

Realistic scenario: un-needed duplicates R/2 —
= packets can be lost, dropped at router due to = //: “wasted” capacity due
full buffers — requiring retransmissions Sl p I [0 un-needed
~ rw_retransmissions
= but sender times can time out prematurely, 5 \ |
sending two copies, both of which are delivered) 1 when sending at
3 R/2, some packets
b= are retransmissions,
= including needed

i and un-needed
in R/2 duplicates, that are
delivered!

“costs” of congestion:

= more work (retransmission) for given receiver throughput

= unneeded retransmissions: link carries multiple copies of a packet
e decreasing maximum achievable throughput

Transport Layer: 3-10

Begransad delning

Causes/costs of congestion: scenario 3

= four senders
= multi-hop paths
= timeout/retransmit

Q: what happens as 1., and 2.~ increase ?

A: asred kin’ increases, all arriving blue pkts at upper

Host A 7‘*in

. original data

R Sl | I . .
—":7/ A in- original data, plus

retransmitted data

finite shared

7 output link buffers

=

gueue are dropped, blue throughput = 0

Host B

A
out Host ¢

Transport Layer: 3-11

Begransad delning

Causes/costs of congestion: scenario 3

R/2

i -

kout

-
|

another “cost” of congestion:

= when packet dropped, any upstream transmission capacity and
buffering used for that packet was wasted!

Transport Layer: 3-12

Begransad delning

Causes/costs of congestion: insights

i xout

" throughput can never exceed capacity

throughput

= delay increases as capacity approached - gJ

Ri2 S

" |oss/retransmission decreases effective
throughput

throughput: Kgm

" un-needed duplicates further decreases
effective throughput

throughput: lrguf 'Ig

Ri2 _

= upstream transmission capacity / buffering
wasted for packets lost downstream

)’out

Transport Layer: 3-13

Approaches towards congestion control

End-end congestion control:

" no explicit feedback from ; ”
network

" congestion inferred from
observed loss, delay

" approach taken by TCP

ACKs

Transport Layer: 3-14

Approaches towards congestion control

Network-assisted congestion
control:

= routers provide direct feedback
to sending/receiving hosts with g
flows passing through congested
router

il &= explicit congestion info

ACKs

" may indicate congestion level or
explicitly set sending rate

= TCP ECN, ATM, DECbit protocols

Transport Layer: 3-15

Begransad delning

Chapter 3: roadmap

" TCP congestion control

Transport Layer: 3-16

TCP congestion control: AIMD

" gpproach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

- Additive Increase — Multiplicative Decrease —]
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event
RTT until loss detected

AIMD sawtooth

behavior: probing
for bandwidth

TCP sender Sending rate

time Transport Layer: 3-17

TCP AIMD: more ‘

Multiplicative decrease detail: sending rate is

= Cutin half on loss detected by triple duplicate ACK (TCP Reno)

= Cutto 1l MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

= AIMD - a distributed, asynchronous algorithm — has been
shown to:

e optimize congested flow rates network wide!
* have desirable stability properties

Transport Layer: 3-18

TCP congestion control: details

sender sequence number space

— cwnd — TCP sending behavior:

" roughly: send cwnd bytes,
II"" wait RTT for ACKS, then

send more bytes

last byte /I . cwnd

ACKed sent, but not- available but TCP rate »~ bytes/sec
yet ACKed not used RTT
(“in-flight”) — last byte sent

= TCP sender limits transmission: LastByteSent- LastByteAcked < cwnd

= cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

Transport Layer: 3-19

TCP slow start

" when connection begins,
increase rate exponentially
until first loss event:

* initially cwnd = 1 MSS
* double cwnd every RTT

* done by incrementing cwnd
for every ACK received

" summary: initial rate is
slow, but ramps up
exponentially fast

Host A
N
lI W
—
e
|

Transport Layer: 3-20

TCP: from slow start to congestion avo\rua'nte—\

Q: when should the exponential
increase switch to linear?

14—
A: when cwnd gets to 1/2 of its . -
value before timeout. ggi:_ssgflre;b ____________
Implementation: § -
= variable ssthresh 2_ ——Tr—T—T—T-T—TTTT7—
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

= on loss event, ssthresh is set to
1/2 of cwnd just before loss event

Transmission round

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Transport Layer: 3-21

TCP CUBIC

" |s there a better way than AIMD to “probe” for usable bandwidth?

= |nsight/intuition:
* W, ... sending rate at which congestion loss was detected
e congestion state of bottleneck link probably (?) hasn’t changed much

* after cutting rate/window in half on loss, initially ramp to to W, faster, but then
approach W__ more slowly

Winax classic TCP
= = = = TCP CUBIC - higher
W, 20/ 2 throughput in this
example

Transport Layer: 3-22

TCP CUBIC

= K: point in time when TCP window size will reach W__,
* Kitself is tunable

= increase W as a function of the cube of the distance between current
time and K

* larger increases when further away from K
* smaller increases (cautious) when nearer K

= TCP CUBIC default !
in Linux, most I iy iy Ay
popular TCP for IEE EEE’C
popular Web ndt

Servers rate

time

»

Transport Layer: 3-23

Begransad delning

TCP and the congested “bottleneck link”

" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source

TCP

destination

I

E
—

=

P &

packet queue almost
never empty, sometimes
overflows packet (loss)

bottleneck link (almost always busy)

Transport Layer: 3-24

Begransad delning

TCP and the congested “bottleneck link”

" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

= understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
source not increase end-end throughout
with congested bottleneck

TCP TCP

destination

T

insight: increasing TCP
sending rate will
increase measured RTT

g “keep the end-end pipe just full, but not fuller”
>

A
)
—
—

Transport Layer: 3-25

Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

& _‘ & # bytes sent in
— g W@f’ measured last RTT interval

¥ «—RTT,

easured throughput RTT
measured

Delay-based approach:
= RTT,,, - minimum observed RTT (uncongested path)

= uncongested throughput with congestion window cwnd is cwnd/RTT ..

if measured throughput “very close” to uncongested throughput
increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout

decrease cwnd linearly /* since path is congested */

Begransad delning

Transport Layer: 3-26

Begransad delning

Delay-based TCP congestion control

= congestion control without inducing/forcing loss

" maximizing throughout (“keeping the just pipe full... ”) while keeping
delay low (“...but not fuller”)
= 3 number of deployed TCPs take a delay-based approach

= BBR deployed on Google’s (internal) backbone network

Transport Layer: 3-27

Begransad delning

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
" two bits in IP header (ToS field) marked by network router to indicate congestion
 policy to determine marking chosen by network operator
= congestion indication carried to destination
= destination sets ECE bit on ACK segment to notify sender of congestion
= involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

TCP ACK segment))
source / 9 destination

TCP TCP ‘
B B

Transport Layer: 3-28

Begransad delning

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

/ ‘
- >
4 bottleneck

v

TCP connection 2 router

capacity R

Transport Layer: 3-29

Begransad delning

Q: is TCP Fair?

Example: two competing TCP sessions:

= additive increase gives slope of 1, as throughout increases

" multiplicative decrease decreases throughput proportionally

Connection 2 throughput o

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

— |s TCP fair?

A: Yes, under idealized

assumptions:
= same RTT
= fixed number of sessions
only in congestion
avoidance

Transport Layer: 3-30

Begransad delning

Fairness: must all network apps be “fair”?

Fairngss ar.1d UDP Fairness, paraIIeI TCP
= multimedia apps often do not use TCP connections

* do not want rate throttled by congestion
control

e instead use UDP- = application can open multiple

* send audio/video at constant rate, tolerate Pad rallel connections between two
packet loss hosts
= there is no “Internet police” policing use
of congestion control = web browsers do this, e.g., link of
" UDPis the “bully”, and TCPis the "nice guy” rate R with 9 existing connections:
= |nteractive applications such as Zoom
use UDP for tr:z\jnsmittri)ng rea(l}l-timeoI * new app asks for 1 TCP, gets rate R/10
interactive media such as audio an .
video; Streaming video applications such ne>|\</v app asks for 11 TCPs, gets R/2
as YouTube or Netflix use TCP for (R*11/20)

delivering high-quality video content
that is more delay-tolerant

Transport Layer: 3-31

	Slide Number 1
	Chapter 3: roadmap
	Principles of congestion control
	Causes/costs of congestion: scenario 1
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 2
	Causes/costs of congestion: scenario 3
	Causes/costs of congestion: scenario 3
	Causes/costs of congestion: insights
	Approaches towards congestion control
	Approaches towards congestion control
	Chapter 3: roadmap
	TCP congestion control: AIMD
	TCP AIMD: more
	TCP congestion control: details
	TCP slow start
	TCP: from slow start to congestion avoidance
	TCP CUBIC
	TCP CUBIC
	TCP and the congested “bottleneck link”
	TCP and the congested “bottleneck link”
	Delay-based TCP congestion control
	Delay-based TCP congestion control
	Explicit congestion notification (ECN)
	TCP fairness
	Q: is TCP Fair?
	Fairness: must all network apps be “fair”?

