
Begränsad delning

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

Chapter 3
Transport Layer

Transport Layer: 3-1

Acknowledgement: Based on the textbook’s website:
https://gaia.cs.umass.edu/kurose_ross/index.php

https://gaia.cs.umass.edu/kurose_ross/index.php

Begränsad delning

Chapter 3: roadmap
 Transport-layer services
Multiplexing and demultiplexing
 Connectionless transport: UDP
 Connection-oriented transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

 Principles of congestion control
 TCP congestion control

Transport Layer: 3-2

Begränsad delning

TCP: overview RFCs: 793,1122, 2018, 5681, 7323

 cumulative ACKs
 pipelining:

• TCP congestion and flow control
set window size

 connection-oriented:
• handshaking (exchange of control

messages) initializes sender,
receiver state before data exchange

 flow controlled:
• sender will not overwhelm receiver

 point-to-point:
• one sender, one receiver

 reliable, in-order byte
steam:
• no “message boundaries"

 full duplex data:
• bi-directional data flow in

same connection
• MSS: maximum segment size

Transport Layer: 3-3

IMPORTANT

Begränsad delning

TCP segment structure

source port # dest port #

32 bits

not
used receive window flow control: # bytes

receiver willing to accept

sequence number
segment seq #: counting
bytes of data into bytestream
(not segments!)

application
data

(variable length)

data sent by
application into
TCP socket

A

acknowledgement number

ACK: seq # of next expected
byte; A bit: this is an ACK

options (variable length)

TCP options

head
lenlength (of TCP header)

checksumInternet checksum

RST, SYN, FIN: connection
management

FSR

Urg data pointer
PUC E

C, E: congestion notification

Transport Layer: 3-4

Begränsad delning

TCP sequence numbers, ACKs
Sequence numbers:

• byte stream “number” of
first byte in segment’s data

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from receiver

A

sent
ACKed

sent, not-
yet ACKed
(“in-flight”)

usable
but not
yet sent

not
usable

window size
 N

sender sequence number space

source port # dest port #

sequence number
acknowledgement number

checksum

rwnd
urg pointer

outgoing segment from sender

Acknowledgements:
• seq # of next byte expected

from other side
• cumulative ACK

Q: how receiver handles out-of-
order segments
• A: TCP spec doesn’t say, - up

to implementor
Transport Layer: 3-5

IMPORTANT

Begränsad delning

TCP round trip time, timeout
Q: how to set TCP timeout

value?
 longer than RTT, but RTT varies!
 too short: premature timeout,

unnecessary retransmissions
 too long: slow reaction to

segment loss

Q: how to estimate RTT?
SampleRTT:measured time

from segment transmission until
ACK receipt
• ignore retransmissions

SampleRTT will vary, want
estimated RTT “smoother”
• average several recent

measurements, not just current
SampleRTT

Transport Layer: 3-6

Begränsad delning

TCP round trip time, timeout
EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

 exponential weighted moving average (EWMA)
 influence of past sample decreases exponentially fast
 typical value: α = 0.125

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

RT
T

(m
illi

se
co

nd
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT
EstimatedRTT

time (seconds)
Transport Layer: 3-7

Begränsad delning

TCP round trip time, timeout

 timeout interval: EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT: want a larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

DevRTT = (1-β)*DevRTT + β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

DevRTT: EWMA of SampleRTT deviation from EstimatedRTT:

Transport Layer: 3-8

Begränsad delning

TCP Sender (simplified)

event: data received from
application
 create segment with seq #
 seq # is byte-stream number

of first data byte in segment
 start timer if not already

running
• think of timer as for oldest

unACKed segment
• expiration interval:
TimeOutInterval

event: timeout
 retransmit segment that

caused timeout
 restart timer

event: ACK received
 if ACK acknowledges

previously unACKed segments
• update what is known to be

ACKed
• start timer if there are still

unACKed segments

Transport Layer: 3-9

Begränsad delning

TCP Receiver: ACK generation [RFC 5681]

Event at receiver

arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

arrival of in-order segment with
expected seq #. One other
segment has ACK pending

arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

TCP receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single cumulative
ACK, ACKing both in-order segments

immediately send duplicate ACK,
indicating seq. # of next expected byte

Transport Layer: 3-10

Begränsad delning

TCP sequence numbers, ACKs
IMPORTANT

Host BHost A

Seq=N, K bytes of data

Seq=N+K, L bytes of data

ACK=N+K

ACK=N+K+L

tim
eo

ut

2. HostB receives
Seq# N to Seq# N+K-
1 (K Bytes), and
expects the next
received Seq# to be
N+K

4. HostB receives
Seq# N+K to Seq#
N+K+L-1 (L Bytes),
and expects the
next received Seq#
to be N+K+L

3. HostA receives
ACK and sends the
next Seq# N+K to
Seq# N+K+L-1 (L
Bytes).

1. HostA sends
Seq# N to Seq#
N+K-1 (K Bytes)

Receiver ACK=N means that “I have received all Bytes up to sequence#N-
1, and I am expecting the next Byte I receive to have Seq # N”.

Begränsad delning

TCP sequence numbers, ACKs
IMPORTANT

Host BHost A

Seq=92, 8 bytes of data

Seq=100, 8 bytes of data

ACK=100

ACK=108

tim
eo

ut

2. HostB receives
Seq# 92 to Seq# 99
(8 Bytes), and
expects the next
received Seq# to be
100

4. HostB receives
Seq# 100 to Seq#
107 (8 Bytes), and
expects the next
received Seq# to be
108

3. HostA receives
ACK and sends the
next Seq# 100 to
Seq# 107 (8 Bytes).

1. HostA sends
Seq# 92 to Seq#
99 (8 Bytes)

Begränsad delning

TCP: retransmission scenarios

lost ACK scenario

Host BHost A

Seq=92, 8 bytes of data

Seq=92, 8 bytes of data

ACK=100
X

ACK=100

tim
eo

ut

premature timeout

Host BHost A

Seq=92, 8
bytes of data

ACK=120

tim
eo

ut

ACK=100
ACK=120

SendBase=100

SendBase=120

SendBase=120

Seq=92, 8 bytes of data

Seq=100, 20 bytes of data

SendBase=92

Transport Layer: 3-13

1. HostB receives
Seq# 92-99 (8
Bytes), and expects
the next received
Seq# to be 100

3. HostB receives
Seq# 92-99 (8
Bytes), and expects
the next received
Seq# to be 100

1. HostB receives
Seq# 92-99 (8
Bytes), and expects
the next received
Seq# to be 100
2. HostB receives
Seq# 100-119 (20
Bytes), and expects
the next received
Seq# to be 120
4. HostB receives
Seq# 92-99 (8
Bytes). But it has
already received up
to Seq# 119, so it
sends cumulative
ACK for Seq# 120

IMPORTANT

2. HostA
times out and
resends Seq#
92-99 (8
Bytes).

3. HostA
times out and
resends Seq#
92-99 (8
Bytes).

Begränsad delning

TCP: retransmission scenarios
Host BHost A

Seq=92, 8 bytes of data

Seq=120, 15 bytes of data

Seq=100, 20 bytes of data

X
ACK=100

ACK=120

Transport Layer: 3-14

 Q: what happens if the
segment with Seq=92, 8
bytes of data from Host
A to Host B gets lost?
 A: Host B will NOT send

ACK=120, since a
cumulative ACK=120
implies that all previous
segments with Seq <
120 have been received

1. HostB receives
Seq# 92-99 (8
Bytes), and expects
the next received
Seq# to be 100, but
the ACK is lost.
2. HostB receives
Seq# 100-119 (20
Bytes), and expects
the next received
Seq# to be 120

3. HostA receives
ACK for Seq# 120.
This cumulative ACK
of Seq# 120 covers
for earlier lost ACK
of Seq#100, so
HostA knows that
HostB has received
all bytes up to
Seq#119, so it can
send the next 15
Bytes (Seq#120-134).

Begränsad delning

TCP sequence numbers, ACKs

2. HostB receives Seq#
42 (1 Byte), ACKs
receipt of‘C’, and
expects the next
received Seq# to be 43.
It echoes back‘C’, with
Seq# 79 (1 Byte)

simple telnet scenario

Host BHost A

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

Transport Layer: 3-15

IMPORTANT

3. HostA receives Seq#
79 (1 Byte), and expects
the next received Seq#
to be 80. It sends
another Byte, with Seq#
43 (1 Byte)

1. User types‘C’.
HostA sends Seq# 42
(1 Byte), and expects
the next received
Seq# to be 79

Begränsad delning

Chapter 3: roadmap
 Transport-layer services
Multiplexing and demultiplexing
 Connectionless transport: UDP
 Principles of reliable data transfer
 Connection-oriented transport: TCP

• segment structure
• reliable data transfer
• flow control
• connection management

 Principles of congestion control
 TCP congestion control

Transport Layer: 3-16

Begränsad delning

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-17

Begränsad delning

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

Network layer
delivering IP datagram

payload into TCP
socket buffers

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-18

Begränsad delning

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

from sender

Application removing
data from TCP socket

buffers

receive window flow control: # bytes
receiver willing to accept

Transport Layer: 3-19

Begränsad delning

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

receiver protocol stack

Q: What happens if network
layer delivers data faster than
application layer removes
data from socket buffers?

receiver controls sender, so
sender won’t overflow
receiver’s buffer by
transmitting too much, too fast

flow control

from sender

Application removing
data from TCP socket

buffers

Transport Layer: 3-20

Begränsad delning

TCP flow control

 TCP receiver “advertises” free buffer
space in rwnd field in TCP header
• RcvBuffer size set via socket

options (typical default is 4096 bytes)
• many operating systems auto-adjust
RcvBuffer

 sender limits amount of unACKed
(“in-flight”) data to received rwnd

 guarantees receive buffer will not
overflow

buffered data

free buffer spacerwnd

RcvBuffer

TCP segment payloads

to application process

TCP receiver-side buffering

Transport Layer: 3-21

Begränsad delning

TCP flow control

 TCP receiver “advertises” free buffer
space in rwnd field in TCP header
• RcvBuffer size set via socket

options (typical default is 4096 bytes)
• many operating systems auto-adjust
RcvBuffer

 sender limits amount of unACKed
(“in-flight”) data to received rwnd

 guarantees receive buffer will not
overflow

flow control: # bytes receiver willing to accept

receive window

TCP segment format

Transport Layer: 3-22

Begränsad delning

TCP connection management
before exchanging data, sender/receiver “handshake”:
 agree to establish connection (each knowing the other willing to establish connection)
 agree on connection parameters (e.g., starting seq #s)

connection state: ESTAB
connection variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

connection state: ESTAB
connection Variables:

seq # client-to-server
 server-to-client
rcvBuffer size
 at server,client

application

network

Socket clientSocket =
 newSocket("hostname","port number");

Socket connectionSocket =
welcomeSocket.accept();

Transport Layer: 3-23

Begränsad delning

Agreeing to establish a connection

Q: will 2-way handshake always
work in network?
 variable delays
 retransmitted messages (e.g.

req_conn(x)) due to message loss
 message reordering
 can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x req_conn(x)
ESTAB

ESTAB
acc_conn(x)

Transport Layer: 3-24

Begränsad delning

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data received ACK(y)

indicates client is live

SYNSENT

ESTAB

SYN RCVD

Client state

LISTEN

Server state

LISTEN

clientSocket = socket(AF_INET, SOCK_STREAM)

serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
connectionSocket, addr = serverSocket.accept()

clientSocket.connect((serverName,serverPort))

Transport Layer: 3-25

1. It allows both parties to synchronize their sequence numbers
2. Confirm that both sides are ready for data transfer
3. Agree on initial parameters for the connection

IMPORTANT

Begränsad delning

A human 3-way handshake protocol

1. On belay?

2. Belay on.
3. Climbing.

Transport Layer: 3-26

Begränsad delning

Closing a TCP connection
 client, server each close their side of connection

• send TCP segment with FIN bit = 1

 respond to received FIN with ACK
• on receiving FIN, ACK can be combined with own FIN

 simultaneous FIN exchanges can be handled

Transport Layer: 3-27

	Slide Number 1
	Chapter 3: roadmap
	TCP: overview RFCs: 793,1122, 2018, 5681, 7323
	TCP segment structure
	TCP sequence numbers, ACKs
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP round trip time, timeout
	TCP Sender (simplified)
	TCP Receiver: ACK generation [RFC 5681]
	TCP sequence numbers, ACKs
	TCP sequence numbers, ACKs
	TCP: retransmission scenarios
	TCP: retransmission scenarios
	TCP sequence numbers, ACKs
	Chapter 3: roadmap
	TCP flow control
	TCP flow control
	TCP flow control
	TCP flow control
	TCP flow control
	TCP flow control
	TCP connection management
	Agreeing to establish a connection
	TCP 3-way handshake
	A human 3-way handshake protocol
	Closing a TCP connection

