Chapter 3
Transport Layer

Acknowledgement: Based on the textbook’s website:
https://gaia.cs.umass.edu/kurose ross/index.php

Begransad delning

James F. Kurose | Keith W. Ross

n—

: NETWORKING

= o ATOP-DOWN APPROACH

Eighth Ediition

—
— = =

Computer Networking: A
Top-Down Approach

8th edition

Jim Kurose, Keith Ross

Pearson, 2020

Transport Layer: 3-1

https://gaia.cs.umass.edu/kurose_ross/index.php

Begransad delning

Transport layer: overview

Our goal:
= understand principles " |earn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport
* multiplexing, e TCP: connection-oriented reliable
demultiplexing transport
* reliable data transfer e TCP congestion control

* flow control
e congestion control

Transport Layer: 3-2

Begransad delning

Transport layer: roadmap

" Transport-layer services

" Multiplexing and demultiplexing
" Connectionless transport: UDP

" Principles of reliable data transfer

" Connection-oriented transport: TCP
" Principles of congestion control
" TCP congestion control

= Evolution of transport-layer
functionality

Transport Layer: 3-3

Transport services and protocols

= provide logical communication
between application processes
running on different hosts

" transport protocols actions in end
systems:

* sender: breaks application messages
into segments, passes to network layer

* receiver: reassembles segments into
messages, passes to application layer

" two transport protocols available to
Internet applications

 TCP, UDP

PP
transport

networ
data linig

Transport Layer: 3-4

Transport vs. network layer services and protocols

— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

= hosts = houses
= processes = kids

" app messages = letters in
envelopes

() 1ege. wa. EvANS,

HERE wvas an old woman who lived in a shce,
She had so many children, she didn't know what to do.

* She gave them some milk and nice butter bread,
She kissed them all round and put them fo bed. |

gl B

-

Transport Layer: 3-5

Transport vs. network layer services and proto\cﬁls

— household analogy:

. [}
transport layer. 12 kids in Ann’s house sending

communication between letters to 12 kids in Bill’s
processes house:
* relies on, enhances, network " hosts = houses
layer services " processes = kids
= app messages = letters in

envelopes
" network layer: P

communication between
hosts

Transport Layer: 3-6

Transport Layer Actions

Sender:
= js passed an application-
layer message

= determines segment
header fields values

= creates segment
= passes segment to IP

IMPORTANT

app. msg

app. msg

Transport Layer: 3-7

IMPORTANT

Transport Layer Actions

Receiver:
" receives segment from IP
= checks header values
C)!pp- msg = extracts application-layer
message

= demultiplexes message up
to application via socket

T, |app. msg

Transport Layer: 3-8

Two principal Internet transport protoévrs

networ
data linig

=" TCP: Transmission Control Protocol
* reliable, in-order delivery
e congestion control
* flow control
* connection setup
= UDP: User Datagram Protocol

* unreliable, unordered delivery
* no-frills extension of “best-effort” IP

= services not available:

* delay guarantees
* bandwidth guarantees

Transport Layer: 3-9

Begransad delning

Chapter 3: roadmap

=" Multiplexing and demultiplexing

Transport Layer: 3-10

Multiplexing/demultiplexing

— multiplexing as sender: ——

— demultiplexing as receiver: —
handle data from multiple use header info to deliver
sockets, add transport header received segments to correct
(later used for demultiplexing) socket

application

|

application

application [| socket
 process

Al

netwaork trandport
I netiyork
- physi¢al
"’ ‘ 4| | n-k ' \\
’ 5 physical

Transport Layer: 3-11

HTTP server

client

APACHE

HTTP SERVER
HTTP msg

application

H, HTTP msg

NETFLIX

H,H, HTTP msg

transport

H,H, HTTP ms
link
physical

«— |H H, HTTP msg

application

Q,

IMPORTANT

transport

network

link

physical

;

Transport Layer: 3-12

Q: how did transport layer know to deliver message IMPORTANT
to Firefox browser process rather then Netflix

process or Skype process?
client

' APACHE'

HTTP SERVER

application application

Q,

transport

NETFLIX

network
link
physical

;

Transport Layer: 3-13

IMPORTANT

N/
@

|

de-multiplexing

IMPORTANT

de-multiplexing

* . . . " '
™ - 1_ e - ‘-:_.' 'ul 1'.1 * l1 I
- v Qine: + RIOWH .’r L Uil |I

Begransad delning

1..'i-J'I.i-| t--.--ji | 1 |

NeCKpPOIr

IMPORTANT

NS
O

|

multiplexing

IMPORTANT

multiplexing

Multiplexing

How demultiplexing works

" host receives IP datagrams

e each datagram has source IP
address, destination IP address

e each datagram carries one
transport-layer segment

* each segment has source,
destination port number

" host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits —>

source port dest port #

—

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer: 3-22

Connectionless demultiplexing

Recall: when receiving host receives
= when creating socket, must U?Pseimfn? " fa
specify host-local port #: gegﬁn S naHon POrt I

DatagramSocket mySogketl

e di D
= new DatagramSocKet (12534) ; directs UDP segment to

socket with that port #

!

specify IP/UDP datagra.ms with same dest.
o port #, but different source IP
destination IP address addresses and/or source port

* destination port # numbers will be directed to same
socket at receiving host

= when creating datagram to
send into UDP socket, must

Transport Layer: 3-23

Connectionless demultiplexing: an example

mySocket =

socket (AF_INET, SOCK DGRAM)
mySocket.bind (myaddr, 6428) ;

mySocket =
socket (AF_INET, SOCK STREAM)

mySocket.bind (myaddr, 9157) ;

mySocket =
socket (AF_INET, SOCK STREAM)

Socket.bi 775) ;
application mySocket.bind (myaddr,5775)

application application
-

s tramsport ol sl
tramgport netwobk trangport
nefwork link netwprk

link m,/ cal link

[‘f physdical

source port: 6428
dest port: 9157

-
<

phyeical \
 + \5»

source port: ?
dest port: ?

) 2

source port: 9157
dest port: 6428

\ 4

<
<

source port: ?
dest port: ?

Connection-oriented demultiplexing

" TCP socket identified by " server may support many
4-tuple: simultaneous TCP sockets:
e source IP address * each socket identified by its
e source port number own 4-tuple
e dest IP address e each socket associated with
« dest port number a different connecting client

= demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Transport Layer: 3-25

Connection-oriented demultiplexing: exam\ﬁle
-/

APACHE

HTTP SERVER

application application
4 anébort T [,
tranIsport etwlork transpﬁtf_
netyvork . lik network
= .
link = bhydical link -
L” ‘! phypical I server: IP physical 5 é
N address B e
host: IP source IP,port: B,80 e (ljw(cj:st: IPC
es “por : B,
source [P pers- 9157

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

dest I, port: B,80

Transport Layer: 3-26

Summary

" Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

= TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers

Transport Layer: 3-27

IMPORTANT

Quiz

= https://gaia.cs.umass.edu/kurose ross/interactive/UDP Mux Demu
X.php
= https://gaia.cs.umass.edu/kurose ross/interactive/TCP Mux Demux
.php

Transport Layer: 3-28

https://gaia.cs.umass.edu/kurose_ross/interactive/UDP_Mux_Demux.php
https://gaia.cs.umass.edu/kurose_ross/interactive/UDP_Mux_Demux.php
https://gaia.cs.umass.edu/kurose_ross/interactive/TCP_Mux_Demux.php
https://gaia.cs.umass.edu/kurose_ross/interactive/TCP_Mux_Demux.php

	Slide Number 1
	Transport layer: overview
	Transport layer: roadmap
	Transport services and protocols
	Transport vs. network layer services and protocols
	Transport vs. network layer services and protocols
	Transport Layer Actions
	Transport Layer Actions
	Two principal Internet transport protocols
	Chapter 3: roadmap
	Multiplexing/demultiplexing
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	How demultiplexing works
	Connectionless demultiplexing
	Connectionless demultiplexing: an example
	Connection-oriented demultiplexing
	Connection-oriented demultiplexing: example
	Summary
	Quiz

