Chapter 3
Transport Layer
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Transport layer: overview

Our goal:
= understand principles " |earn about Internet transport
behind transport layer layer protocols:
services: * UDP: connectionless transport
* multiplexing, e TCP: connection-oriented reliable
demultiplexing transport
* reliable data transfer e TCP congestion control

* flow control
e congestion control
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Transport layer: roadmap

" Transport-layer services

" Multiplexing and demultiplexing
" Connectionless transport: UDP

" Principles of reliable data transfer

" Connection-oriented transport: TCP
" Principles of congestion control
" TCP congestion control

= Evolution of transport-layer
functionality
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Transport services and protocols

= provide logical communication
between application processes
running on different hosts

" transport protocols actions in end
systems:

* sender: breaks application messages
into segments, passes to network layer

* receiver: reassembles segments into
messages, passes to application layer

" two transport protocols available to
Internet applications

 TCP, UDP

PP
transport

networ
data linig
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Transport vs. network layer services and protocols

— household analogy:

12 kids in Ann’s house sending
letters to 12 kids in Bill’s
house:

= hosts = houses
= processes = kids

" app messages = letters in
envelopes

() 1ege. wa. EvANS,

HERE wvas an old woman who lived in a shce,
She had so many children, she didn't know what to do.

*  She gave them some milk and nice butter bread,
She kissed them all round and put them fo bed. |

gl B

-
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Transport vs. network layer services and proto\cﬁls

— household analogy:

. [}
transport layer. 12 kids in Ann’s house sending

communication between letters to 12 kids in Bill’s
processes house:
* relies on, enhances, network " hosts = houses
layer services " processes = kids
= app messages = letters in

envelopes
" network layer: P

communication between
hosts
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Transport Layer Actions

Sender:
= js passed an application-
layer message

= determines segment
header fields values

= creates segment
= passes segment to IP

IMPORTANT

app. msg

app. msg
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IMPORTANT

Transport Layer Actions

Receiver:
" receives segment from IP
= checks header values
C)!pp- msg = extracts application-layer
message

= demultiplexes message up
to application via socket

T, |app. msg
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Two principal Internet transport protoévrs

networ
data linig

=" TCP: Transmission Control Protocol
* reliable, in-order delivery
e congestion control
* flow control
* connection setup
= UDP: User Datagram Protocol

* unreliable, unordered delivery
* no-frills extension of “best-effort” IP

= services not available:

* delay guarantees
* bandwidth guarantees
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Chapter 3: roadmap

=" Multiplexing and demultiplexing
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Multiplexing/demultiplexing

— multiplexing as sender: ——

— demultiplexing as receiver: —
handle data from multiple use header info to deliver
sockets, add transport header received segments to correct
(later used for demultiplexing) socket

application

|

application

application [ | socket
 process

Al

netwaork trandport
I netiyork
- physi¢al
"’ ‘ 4| | n-k ' \\
’ 5 physical
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HTTP server

client

APACHE

HTTP SERVER
HTTP msg

application

H, HTTP msg

NETFLIX

H,H, HTTP msg

transport

H,H, HTTP ms
link
physical

«— |H H, HTTP msg

application

Q,

IMPORTANT

transport

network

link

physical

;
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Q: how did transport layer know to deliver message IMPORTANT
to Firefox browser process rather then Netflix

process or Skype process?
client

' APACHE'

HTTP SERVER

application application

Q,

transport

NETFLIX

network
link
physical

;
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How demultiplexing works

" host receives IP datagrams

e each datagram has source IP
address, destination IP address

e each datagram carries one
transport-layer segment

* each segment has source,
destination port number

" host uses IP addresses & port
numbers to direct segment to
appropriate socket

32 bits —>

source port dest port #

—

other header fields

application
data

(payload)

TCP/UDP segment format
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Connectionless demultiplexing

Recall: when receiving host receives
= when creating socket, must U?Pseimfn? " fa
specify host-local port #: gegﬁn S naHon POrt I

DatagramSocket mySogketl

e di D
= new DatagramSocKet (12534) ; directs UDP segment to

socket with that port #

!

specify IP/UDP datagra.ms with same dest.
o port #, but different source IP
destination IP address addresses and/or source port

* destination port # numbers will be directed to same
socket at receiving host

= when creating datagram to
send into UDP socket, must

Transport Layer: 3-23



Connectionless demultiplexing: an example

mySocket =

socket (AF_INET, SOCK DGRAM)
mySocket.bind (myaddr, 6428) ;

mySocket =
socket (AF_INET, SOCK STREAM)

mySocket.bind (myaddr, 9157) ;

mySocket =
socket (AF_INET, SOCK STREAM)

Socket.bi 775) ;
application mySocket.bind (myaddr,5775)

application application
-

s tramsport ol sl
tramgport netwobk trangport
nefwork link netwprk

link m,/ cal link

[ ‘f physdical

source port: 6428
dest port: 9157

-
<

phyeical \
 + \5»

source port: ?
dest port: ?

) 2

source port: 9157
dest port: 6428

\ 4

<
<

source port: ?
dest port: ?



Connection-oriented demultiplexing

" TCP socket identified by " server may support many
4-tuple: simultaneous TCP sockets:
e source IP address * each socket identified by its
e source port number own 4-tuple
e dest IP address e each socket associated with
« dest port number a different connecting client

= demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket
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Connection-oriented demultiplexing: exam\ﬁle
-/

APACHE

HTTP SERVER

application application
4 anébort T [,
tranIsport etwlork transpﬁtf_
netyvork . lik network
= .
link = bhydical link -
L” ‘! phypical I server: IP physical 5 é
N address B e
host: IP source IP,port: B,80 e (ljw(cj:st: IPC
es “por : B,
source [P pers- 9157

Three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

dest I, port: B,80
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Summary

" Multiplexing, demultiplexing: based on segment, datagram
header field values

= UDP: demultiplexing using destination port number (only)

= TCP: demultiplexing using 4-tuple: source and destination IP
addresses, and port numbers

= Multiplexing/demultiplexing happen at all layers
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Quiz

= https://gaia.cs.umass.edu/kurose ross/interactive/UDP Mux Demu
X.php
= https://gaia.cs.umass.edu/kurose ross/interactive/TCP Mux Demux
.php
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