
Begränsad delning

Chapter 2
Application Layer

Application Layer: 2-1

Computer Networking: A
Top-Down Approach
8th edition n
Jim Kurose, Keith Ross
Pearson, 2020Acknowledgement: Based on the textbook’s website:

https://gaia.cs.umass.edu/kurose_ross/index.php

https://gaia.cs.umass.edu/kurose_ross/index.php

Begränsad delning

Application Layer: Overview

 Principles of network
applications

 Web and HTTP
 E-mail, SMTP, IMAP
 The Domain Name System

DNS

 P2P applications
 video streaming and content

distribution networks
 socket programming with

UDP and TCP

Application Layer: 2-2

Begränsad delning

Socket programming
goal: learn how to build client/server applications that

communicate using sockets
socket: door between application process and end-end-transport

protocol

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Application Layer: 2-3

IMPORTANT

Begränsad delning

Socket programming
Two socket types for two transport services:
 UDP: unreliable datagram
 TCP: reliable, byte stream-oriented

Application Example:
1. client reads a line of characters (data) from its keyboard and sends

data to server
2. server receives the data and converts characters to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on its screen

Application Layer: 2-4

IMPORTANT

Begränsad delning

Socket programming with UDP
UDP: no “connection” between

client and server:
 no handshaking before sending data
 sender explicitly attaches IP destination

address and port # to each packet
 receiver extracts sender IP address and

port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
 UDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server processes
Application Layer: 2-5

IMPORTANT

Begränsad delning

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with serverIP address
And port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

Application Layer: 2-6

IMPORTANT

Begränsad delning

Example app: UDP client

from socket import *
serverName = 'hostname'
serverPort = 12000
clientSocket = socket(AF_INET,
 SOCK_DGRAM)
message = input('Input lowercase sentence:')
clientSocket.sendto(message.encode(),
 (serverName, serverPort))
modifiedMessage, serverAddress =
 clientSocket.recvfrom(2048)
print(modifiedMessage.decode())
clientSocket.close()

Python UDPClient
include Python’s socket library

create UDP socket

get user keyboard input

attach server name, port to message; send into socket

print out received string and close socket

read reply data (bytes) from socket

Application Layer: 2-7Note: this code update (2023) to Python 3

IMPORTANT

Begränsad delning

Example app: UDP server
Python UDPServer

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print('The server is ready to receive')
while True:
 message, clientAddress = serverSocket.recvfrom(2048)
 modifiedMessage = message.decode().upper()
 serverSocket.sendto(modifiedMessage.encode(),
 clientAddress)

create UDP socket

bind socket to local port number 12000

loop forever

Read from UDP socket into message, getting
client’s address (client IP and port)

send upper case string back to this client

Application Layer: 2-8Note: this code update (2023) to Python 3

IMPORTANT

Begränsad delning

Socket programming with TCP
Client must contact server
 server process must first be

running
 server must have created socket

(door) that welcomes client’s
contact

Client contacts server by:
 Creating TCP socket, specifying IP

address, port number of server
process
 when client creates socket: client

TCP establishes connection to
server TCP

when contacted by client, server
TCP creates new socket for server
process to communicate with that
particular client
• allows server to talk with multiple

clients
• client source port # and IP address used

to distinguish clients (more in Chap 3)

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server
processes

Application viewpoint

Application Layer: 2-9

IMPORTANT

Begränsad delning

Client/server socket interaction: TCP
server (running on hostid) client

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Application Layer: 2-10

IMPORTANT

Begränsad delning

Example app: TCP client

from socket import *
serverName = 'servername'
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = input('Input lowercase sentence:')
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print ('From Server:', modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for server,
remote port 12000

No need to attach server name, port

Application Layer: 2-11Note: this code update (2023) to Python 3

IMPORTANT

Begränsad delning

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind(('',serverPort))
serverSocket.listen(1)
print('The server is ready to receive')
while True:
 connectionSocket, addr = serverSocket.accept()

 sentence = connectionSocket.recv(1024).decode()
 capitalizedSentence = sentence.upper()
 connectionSocket.send(capitalizedSentence.
 encode())
 connectionSocket.close()

Python TCPServer

create TCP welcoming socket

server begins listening for
incoming TCP requests

loop forever
server waits on accept() for incoming
requests, new socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this client (but not
welcoming socket)

Application Layer: 2-12Note: this code update (2023) to Python 3

IMPORTANT

Begränsad delning

Chapter 2: Summary

 application architectures
• client-server
• P2P

 application service requirements:
• reliability, bandwidth, delay

 Internet transport service model
• connection-oriented, reliable: TCP
• unreliable, datagrams: UDP

our study of network application layer is now complete!

 specific protocols:
• HTTP
• SMTP, IMAP
• DNS
• P2P: BitTorrent

 video streaming, CDNs
 socket programming:
 TCP, UDP sockets

Application Layer: 2-13

IMPORTANT

Begränsad delning

Chapter 2: Summary
Most importantly: learned about protocols!
 typical request/reply message

exchange:
• client requests info or service
• server responds with data, status code

 message formats:
• headers: fields giving info about data
• data: info(payload) being

communicated

important themes:
 centralized vs. decentralized
 stateless vs. stateful
 scalability
 reliable vs. unreliable

message transfer
 “complexity at network

edge”

Application Layer: 2-14

IMPORTANT

Begränsad delning

Application Layer: 2-15

Additional Chapter 2 slides

JFK note: the timeout slides are important IMHO if one is doing a programming assignment (especially
an RDT programming assignment in Chapter 3), since students will need to use timers in their code,
and the TRY/EXCEPT is really the easiest way to do this. I introduce this here in Chapter 2 with the
socket programming assignment since it teaches something (how to handle exceptions/timeouts), and
lets students learn/practice that before doing the RDT programming assignment, which is harder

Begränsad delning

Execute a block of code, and handle “exceptions” that may occur when
executing that block of code

Python try-except block

try:
 <do something>
except <exception>:
 <handle the exception>

Executing this try code block may cause exception(s) to catch. If an exception
is raised, execution jumps from jumps directly into except code block

this except code block is only executed if an <exception> occurred in the try
code block (note: except block is required with a try block)

	Slide Number 1
	Application Layer: Overview
	Socket programming
	Socket programming
	Socket programming with UDP
	Client/server socket interaction: UDP
	Example app: UDP client
	Example app: UDP server
	Socket programming with TCP
	Client/server socket interaction: TCP
	Example app: TCP client
	Example app: TCP server
	Chapter 2: Summary
	Chapter 2: Summary
	Additional Chapter 2 slides
	Slide Number 16

