
Begränsad delning

Chapter 2
Application Layer

Application Layer: 2-1

Computer Networking: A
Top-Down Approach
8th edition n
Jim Kurose, Keith Ross
Pearson, 2020Acknowledgement: Based on the textbook’s website:

https://gaia.cs.umass.edu/kurose_ross/index.php

https://gaia.cs.umass.edu/kurose_ross/index.php

Begränsad delning

Application layer: overview

 Principles of network
applications

 Web and HTTP
 E-mail, SMTP, IMAP
 The Domain Name System

DNS

 P2P applications
 video streaming and content

distribution networks
 socket programming with

UDP and TCP

Application Layer: 2-2

Begränsad delning

Web and HTTP

First, a quick review…
 web page consists of objects, each of which can be stored on

different Web servers
 object can be HTML file, JPEG image, Java applet, audio file,…
 web page consists of base HTML-file which includes several

referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer: 2-3

IMPORTANT

Begränsad delning

HTTP overview

HTTP: hypertext transfer protocol
 Web’s application-layer protocol
 client/server model:

• client: browser that requests,
receives, (using HTTP protocol) and
“displays” Web objects

• server: Web server sends (using
HTTP protocol) objects in response
to requests

iPhone running
Safari browser

PC running
Firefox browser

server running
Apache Web

server

Application Layer: 2-4

IMPORTANT

Begränsad delning

HTTP overview (continued)

HTTP uses TCP:
 client initiates TCP connection

(creates socket) to server, port 80
 server accepts TCP connection

from client
 HTTP messages (application-layer

protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)
 TCP connection closed

HTTP is “stateless”
 server maintains no

information about past client
requests

protocols that maintain
“state” are complex!

 past history (state) must be
maintained
 if server/client crashes, their

views of “state” may be
inconsistent, must be reconciled

aside

Application Layer: 2-5

IMPORTANT

Begränsad delning

HTTP connections: two types

Non-persistent HTTP
1. TCP connection opened
2. at most one object sent

over TCP connection
3. TCP connection closed

downloading multiple
objects required multiple
connections

Persistent HTTP
TCP connection opened to

a server
multiple objects can be

sent over single TCP
connection between client,
and that server
TCP connection closed

Application Layer: 2-6

IMPORTANT

Begränsad delning

Non-persistent HTTP: example
User enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.edu on
port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for TCP
connection at port 80 “accepts”
connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message
into its socket

time

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer: 2-7

Begränsad delning

Non-persistent HTTP: example (cont.)
User enters URL:

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer: 2-8

Begränsad delning

Non-persistent HTTP: response time

RTT (definition): time for a small
packet to travel from client to
server and back

HTTP response time (per object):
 one RTT to initiate TCP connection
 one RTT for HTTP request and first few

bytes of HTTP response to return
 object/file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time
Application Layer: 2-9

Begränsad delning

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:
 requires 2 RTTs per object
OS overhead for each TCP

connection
browsers often open multiple

parallel TCP connections to
fetch referenced objects in
parallel

Persistent HTTP (HTTP1.1):

 server leaves connection open after
sending response
 subsequent HTTP messages

between same client/server sent
over open connection
 client sends requests as soon as it

encounters a referenced object
 as little as one RTT for all the

referenced objects (cutting
response time in half)

Application Layer: 2-10

Begränsad delning

Trying out HTTP (client side) for yourself
1. netcat to your favorite Web server:

 opens TCP connection to port 80 (default HTTP
server port) at gaia.cs.umass.edu.

 anything typed in will be sent to port 80 at
gaia.cs.umass.edu

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

2. type in a GET HTTP request:
GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu  by typing this in (hit carriage return twice), you

send this minimal (but complete) GET request to
HTTP server

Application Layer: 2-11

% nc -c -v gaia.cs.umass.edu 80 (for Mac)

>ncat –C gaia.cs.umass.edu 80 (for Windows)

Begränsad delning

Maintaining user/server state: cookies
Recall: HTTP GET/response

interaction is stateless
 no notion of multi-step exchanges of

HTTP messages to complete a Web
“transaction”
• no need for client/server to track

“state” of multi-step exchange
• all HTTP requests are independent of

each other
• no need for client/server to “recover”

from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes
two changes to X, or none at all

time time

X

X

X’

X’’

X’’

t’

Q: what happens if network connection or
client crashes at t’ ?

Application Layer: 2-12

IMPORTANT

Begränsad delning

Maintaining user/server state: cookies
Web sites and client browser use

cookies to maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message
2) cookie header line in next HTTP

request message
3) cookie file kept on user’s host,

managed by user’s browser
4) back-end database at Web site

Example:
 Susan uses browser on laptop,

visits specific e-commerce site
for first time
 when initial HTTP requests

arrives at site, site creates:
• unique ID (aka “cookie”)
• entry in backend database

for ID
• subsequent HTTP requests

from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Application Layer: 2-13

IMPORTANT

Begränsad delning

Maintaining user/server state: cookies
client

Amazon server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
 entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time Application Layer: 2-14

IMPORTANT

Begränsad delning

HTTP cookies: comments

What cookies can be used for:
 authorization
 shopping carts
 recommendations
 user session state (Web e-mail)

cookies and privacy:
 cookies permit sites to

learn a lot about you on
their site.

 third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state?
 at protocol endpoints: maintain state at

sender/receiver over multiple
transactions

 in messages: cookies in HTTP messages
carry state

Application Layer: 2-15

IMPORTANT

Begränsad delning

Example: displaying a NY Times web page

nytimes.com

AdX.com

1HTTP
GET 2 HTTP

reply

43

56

NY times page with
embedded ad displayed

GET base html file
from nytimes.com

1
2

fetch ad from
AdX.com

4
5

display composed
page

7

IMPORTANT

Begränsad delning

nytimes.com (sports)

AdX.com

1634: sports, 2/15/22

NY Times: 1634

7493: NY Times sports, 2/15/22

HTTP
reply
Set cookie: 1634

4

HTTP GET
Referrer: NY Times Sports

5
HTTP reply
Set cookie: 7493

HTTP
GET

AdX: 7493

Cookies: tracking a user’s browsing behavior

“first party” cookie –
from website you chose
to visit (provides base
html file)

“third party” cookie –
from website you did not
choose to visit

IMPORTANT

Begränsad delning

Cookies: tracking a user’s browsing behavior
Cookies can be used to:
 track user behavior on a given website (first party cookies)
 track user behavior across multiple websites (third party cookies)

without user ever choosing to visit tracker site (!)
 tracking may be invisible to user:

• rather than displayed ad triggering HTTP GET to tracker, could be an invisible
link

third party tracking via cookies:
 disabled by default in Firefox, Safari browsers
 to be disabled in Chrome browser in 2023

IMPORTANT

Begränsad delning

GDPR (EU General Data Protection Regulation) and cookies

“Natural persons may be associated with online
identifiers […] such as internet protocol addresses,
cookie identifiers or other identifiers […].
This may leave traces which, in particular when
combined with unique identifiers and other
information received by the servers, may be used to
create profiles of the natural persons and identify
them.”

GDPR, recital 30 (May 2018)

User has explicit control over
whether or not cookies are

allowed
when cookies can identify an individual, cookies
are considered personal data, subject to GDPR

personal data regulations

IMPORTANT

Begränsad delning

Web caches

 user configures browser to
point to a (local) Web cache
 browser sends all HTTP

requests to cache
• if object in cache: cache

returns object to client
• else cache requests object

from origin server, caches
received object, then
returns object to client

Goal: satisfy client requests without involving origin server

client

Web
cache

client

origin
server

Application Layer: 2-20

IMPORTANT

Begränsad delning

Web caches (aka proxy servers)

 Web cache acts as both
client and server
• server for original

requesting client
• client to origin server

Why Web caching?
 reduce response time for client

request
• cache is closer to client
 reduce traffic on an institution’s

access link
 Internet is dense with caches

• enables “poor” content providers
to more effectively deliver content

 server tells cache about
object’s allowable caching in
response header:

Application Layer: 2-21

IMPORTANT

Begränsad delning

Caching example

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access linkPerformance:

 access link utilization = .97
(=1.50Mbps/1.54Mbps)

 LAN utilization: .0015 (=1.50Mbps/1000Mbps)
 end-end delay = Internet delay +
 access link delay + LAN delay
 = 2 sec + minutes + usecs

Scenario:
 access link rate: 1.54 Mbps
 RTT from institutional router to server: 2 sec
 web object size: 100K bits
 average request rate from browsers to origin

servers: 15/sec
 avg data rate to browsers: 1.50 Mbps

problem: large
queueing delays
at high utilization! Application Layer: 2-22

IMPORTANT

Begränsad delning

Performance:
 access link utilization = .97
 LAN utilization: .0015
 end-end delay = Internet delay +
 access link delay + LAN delay
 = 2 sec + minutes + usecs

Option 1: buy a faster access link

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

Scenario:
 access link rate: 1.54 Mbps
 RTT from institutional router to server: 2 sec
 web object size: 100K bits
 average request rate from browsers to origin

servers: 15/sec
 avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)
Application Layer: 2-23

IMPORTANT

Begränsad delning

Performance:
 LAN utilization: .?
 access link utilization = ?
 average end-end delay = ?

Option 2: install a web cache

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

Scenario:
 access link rate: 1.54 Mbps
 RTT from institutional router to server: 2 sec
 web object size: 100K bits
 average request rate from browsers to origin

servers: 15/sec
 avg data rate to browsers: 1.50 Mbps

How to compute link
utilization, delay?

Cost: web cache (cheap!)

local web cache

Application Layer: 2-24

IMPORTANT

Begränsad delning

Calculating access link utilization, end-end
delay with cache:

origin
servers

public
 Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

local web cache

suppose cache hit rate is 0.4:
 40% requests served by cache, with low

(msec) delay
  60% requests satisfied at origin

• rate to browsers over access link
 = 0.6 * 1.50 Mbps = .9 Mbps

• access link utilization = 0.9/1.54 = .58 means
low (msec) queueing delay at access link

 average end-end delay:
= 0.6 * (delay from origin servers)
 + 0.4 * (delay when satisfied at cache)
= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs

 lower average end-end delay than with 154 Mbps link (and cheaper too!)
Application Layer: 2-25

IMPORTANT

Begränsad delning

Browser caching: Conditional GET

Goal: don’t send object if browser
has up-to-date cached version

• no object transmission delay (or use
of network resources)

 client: specify date of browser-
cached copy in HTTP request
If-modified-since: <date>

 server: response contains no
object if browser-cached copy is
up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer: 2-26

IMPORTANT

Begränsad delning

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection
 server responds in-order (FCFS: first-come-first-served scheduling) to

GET requests
with FCFS, small object may have to wait for transmission (head-of-

line (HOL) blocking) behind large object(s)
 loss recovery (retransmitting lost TCP segments) stalls object

transmission

Application Layer: 2-27

Begränsad delning

HTTP/2

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:
 methods, status codes, most header fields unchanged from HTTP 1.1
 transmission order of requested objects based on client-specified

object priority (not necessarily FCFS)

 push unrequested objects to client
 divide objects into frames, schedule frames to mitigate HOL blocking

Key goal: decreased delay in multi-object HTTP requests

Application Layer: 2-28

Begränsad delning

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file) and 3 smaller
objects

client

server

GET O1
GET O2

GET O3
GET O4

O1 O2
O3O4

object data requested

O1

O2
O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1 Application Layer: 2-29

Begränsad delning

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2
O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

Application Layer: 2-30

Begränsad delning

HTTP/2 to HTTP/3

HTTP/2 over single TCP connection means:
 recovery from packet loss still stalls all object transmissions

• as in HTTP 1.1, browsers have incentive to open multiple parallel
TCP connections to reduce stalling, increase overall throughput

 no security over vanilla TCP connection
 HTTP/3: adds security, per object error- and congestion-

control (more pipelining) over UDP
• more on HTTP/3 in transport layer

Application Layer: 2-31

	Slide Number 1
	Application layer: overview
	Web and HTTP
	HTTP overview
	HTTP overview (continued)
	HTTP connections: two types
	Non-persistent HTTP: example
	Non-persistent HTTP: example (cont.)
	Non-persistent HTTP: response time
	Persistent HTTP (HTTP 1.1)
	Trying out HTTP (client side) for yourself
	Maintaining user/server state: cookies
	Maintaining user/server state: cookies
	Maintaining user/server state: cookies
	HTTP cookies: comments
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Web caches
	Web caches (aka proxy servers)
	Caching example
	Option 1: buy a faster access link
	Option 2: install a web cache
	Calculating access link utilization, end-end delay with cache:
	Browser caching: Conditional GET
	HTTP/2
	HTTP/2
	HTTP/2: mitigating HOL blocking
	HTTP/2: mitigating HOL blocking
	HTTP/2 to HTTP/3

