
CSC 112: Computer Operating Systems
Lecture 8

Memory System II: Paging

Department of Computer Science,

Hofstra University

Outline

• Paging

• Page Translation

• Page Table

• Table Lookaside Buffer (TLB)

• Multi-level paging

• Page Swapping

• Page Replacement

2

Typical Memory Hierarchy

3

Secondary

 Storage

(Disk)

Processor

Main

Memory

(DRAM)

1
10,000,000

 (10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary

 Storage

(SSD)

100,000

(0.1 ms)

100GBs

Managed in
Hardware

Managed in Software - OS

PT

PT

PT
PT

TLB

TLB

Accessed in Hardware

?

Two Views of Memory

• Two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Memory management unit (MMU) converts between the two views
– Kernel accesses physical memory directly without translation

• Translation helps to implement protection
– The same virtual address in different processes is mapped to different

physical addresses, hence different processes cannot read/write each
other’s memory

– Every program can be linked/loaded into same region of user address space
– Isolation achieved through translation, not relocation

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write

Paging

• Divide physical memory into

fixed-sized blocks, called

physical page frames (or

simply frames)

• Divide virtual memory into

blocks of the same size called

virtual pages (or simply pages)

• Set up a page table to map

from pages to frames

• Need both OS and hardware

support (MMU)

5

Proc 1
Virtual
Address
Space 1

Proc 2
Virtual
Address
Space 2

Stack

Heap

Data

Code

Stack

Heap

Data

Code

Heap 2

Code1

Data 1

OS heap &
Stacks

Stack 1

Code 2

Heap 1

Data 2

Stack 2

OS code

OS dataTranslation Map 1
(Page Table)

Translation Map 2
(Page Table)

Physical Address Space

Paging Example
• Suppose page size is 4 KB, and the virtual address space has 8 pages

• Page Table maps from Virtual Page Number (VPN) to Physical Page Number (PPN)
– PPN also called Page Frame Number (PFN).

– Some VPNs (5, 6) are not mapped to PPN, and accessing them will cause a page fault to go to
disk and fetch the page into memory.

6

Page Table makes it possible to store the pages of a
process non-contiguously in physical memory.

0
0

1

2
3

Virtual
Address
Space

Page Table
(contains
VPN => PPN
mapping)

Physical
Memory

Virtual Address
Space
consists of
8 x 4K Byte
pages, or
16768 Bytes

4

5

6
7

0

1
2
3
4
5
6
7

1

2

3

4

7

Steps in Handling Page Faults
virtual address

MMU
PT

instruction

physical address

page#
frame#

offset
page fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

Paging Benefits

 Flexibility: Supporting the abstraction of address space effectively

– Don’t need assumption how heap and stack grow and are used.

• Simplicity: ease of free-space management

– The page in virtual address space and the physical page frame are the same size.

– Easy to allocate and keep a free list

8

Page Translation

• A virtual address is split into two parts

– Virtual page number (or Page number) – used as an index into a page table which contains

base address of each page in physical memory

• High bits to indicate page number

– Offset – combined with base address to define the physical memory address within the page

• Low bits to indicate offset

• Given virtual address space 2m and page size 2n Bytes, n bits for offset and m-n

bits for page number

– Only need to translate the page number to determine where the physical page is

– Page offset determines page size, which is the same for both virtual and physical memory

• Page offset refers to byte address within a memory page (e.g., 4KB); compare with byte offset in

caching, which refers to byte address within a cache/memory block (e.g., 8 Bytes)

Page # Offset

nm-n

9

Page Table

• Page Table

– Keeps track mapping of virtual to physical addresses

– Part of Process Control Block (PCB) for each process, kept in main memory

10

Page Translation Mechanism

• Generally, VPN has more bits than PPN, since physical memory is smaller (#

virtual pages ≥ # physical page)

Virtual Page Number Page Offset

valid Physical Page Number

Physical Page Number Page Offset

Virtual Address

Physical Address

page

table

0 1 0 1 0 1

VPN Offse
t

1 1 0 1 0 1

PPN offset

Virtual
Address

Physical
Address

Page Table
Address

Translation

1

11

Page Translation Example

• Virtual Address: 32 bits, virtual address space 2^32=4GB

• Physical Address: 29 bits, physical address space 2^29=0.5GB

• Page size: 2^12=4KB, hence offset is 12 bits

– VPN has 32-12=20 bits, PPN has 29-12=17 bits

12

17 bits

20 bits 12 bits

12 bits

Separate Address Space per Process

VA1Proc 1

Page Table

VA1Proc 2

Page Table

VA1Proc 3

Page Table

P
h

ys
ic

al
 M

em
o

ry

free

OS
pages

Each process has own page table.
Same Virtual Address (VA1) is mapped to different physical
addresses, so different processes cannot read/write each
other’s memory

13

Page Table Entry (PTE)

• A PTE contains:

– Physical Page Number (PPN), also called Page Frame Number

– Present/absent bit, also called Valid bit. If this bit is 1, the page is in memory and can be used. If it is
0, the page is not currently in memory. Accessing a page table entry with this bit set to 0 causes a
page fault to get page from disk.

– Protection bits tell what kinds of access are permitted on the page. 3 bits, one bit each for enabling
read, write, and execute.

– Modified (M) bit, also called dirty bit, is set to 1 when a page is written to

– Referenced (R) bit, is set whenever a page is referenced, either for reading or writing.

• M and R bits are useful to page replacement algorithms

– Caching disabled bit, important for pages that map onto device registers rather than memory

14

(Physical)

Other possible bits

15

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

Process 1
Virtual Memory

Process 2
Virtual Memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Page
Table

Page
Table

Physical Memory

Paging example: initial state

16

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

Process 1
Virtual Memory

Process 2
Virtual Memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Page
Table

Page
Table

Code 1
Static 1
Heap 1
Stack 1

Physical Memory

Paging example: Process 1 starts to run

17

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

Process 1
Virtual Memory

Process 2
Virtual Memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Page
Table

Page
Table

Code 1
Static 1
Heap 1
Stack 1
Code 2
Static 2
Heap 2
Stack 2

Physical Memory

Paging example: Process 2 starts to run

18

Process 1
Virtual Memory

Process 2
Virtual Memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Page
Table

Page
Table

Code 1
Static 1
Heap 1
Stack 1
Code 2
Static 2
Heap 2
Stack 2
Heap’ 1

Physical Memorymalloc(4097)

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

Paging example: Process 1 dynamic memory

allocation on its heap with malloc()

19

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

Process 1
Virtual Memory

Process 2
Virtual Memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Page
Table

Page
Table

Code 1
Static 1
Heap 1
Stack 1
Code 2
Static 2
Heap 2
Stack 2
Heap’ 1
Stack’ 2

Physical Memorymalloc(4097) Recursive function call

Paging example: Process 2 dynamic memory

allocation on its stack with Recursive function call

20

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

Process 1
Virtual Memory

Process 2
Virtual Memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Page
Table

Page
Table

Code
Static 1
Heap 1
Stack 1
Static 2
Heap 2
Stack 2

Physical Memory Shared Code Page
“X” Protection Bit

Paging example: controlled sharing of Code

(Instruction) page

Code Page Sharing Use Case

stdlib

#include <stdlib.h>

….

int main(){

 ….

}

Process 1

Physical page frames

#include <stdlib.h>

….

int main(){

 ….

}

Process 2

• Shared code pages are memory pages that contain
executable code and are shared among multiple
processes. They are typically read-only to ensure that
the code remains consistent across all processes
accessing it. This approach is used to save memory
and improve efficiency, as only one copy of the code
resides in physical memory, while multiple processes
map it into their virtual address spaces. Examples:
– Shared libraries (e.g., dynamic link libraries or .so files).

– Common executables like shells or system utilities.

– Reentrant code, which can be safely executed by multiple
processes simultaneously without modification.

• Implementation:
– OS maps the same physical page containing the code into

the virtual address spaces of multiple processes.

– Protection mechanisms ensure that these pages are
marked as non-writable to prevent accidental or malicious
modification.

• The "X" bit in PTE stands for “Execute” permission.
– It can be used to enforce policies like W^X (Write XOR

Execute). This policy ensures that a memory page cannot
be both writable and executable at the same time, which
helps prevent certain attacks.

22

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

Process 1
Virtual Memory

Process 2
Virtual Memory

code

static data

heap

stack~ FFFF FFFFhex

~ 0hex

7
6
5
4
3
2
1
0

7
6
5
4
3
2
1
0

Page
Table

Page
Table

Code
Static

Heap 1
Stack 1
Heap 2
Stack 2

Physical Memory Shared Code Page
“X” Protection Bit

Shared Globals
“RW” Protection
 Bits

Paging example: controlled sharing of Global Data

(Static Data) page

Data Page Sharing Use Case

• Shared global variables refer to data that can be accessed by multiple processes
or threads. In most systems, global variables are private to each process by
default, but they can be explicitly shared using mechanisms such as shared
memory. Examples:
– Inter-Process Communication: Shared globals in a writable memory region enable efficient

communication between processes without copying data.

– Shared Libraries: While code in shared libraries is typically read-only and executable, global
data sections may require RW permissions if they store modifiable state.

– Kernel Data Structures: The kernel may use RW-protected shared memory regions for
managing system-wide states accessible by user-space applications under strict controls.

• Implementation:
– Shared global variables are typically placed in shared memory regions, which allow multiple

processes to access the same physical memory.

• The "RW" (Read/Write) bit in PTE determines whether a page can be written to
or only read.
– If it is set, the page can be both read and written.

– If it is not set, the page is read-only. Any attempt to write to it will trigger a protection fault (e.g.,
segmentation fault).

Address Translation & Protection

Every instruction and data access needs address translation
and protection checks

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection

Check

Exception?

Kernel/User Mode

Read/Write

Where Should Page Tables Reside?

• Space required by the page tables is proportional to
the address space, number of users, …
– e.g., virtual address space 232 Byte, page size 212=4KB

– Number of pages: 232/212=220, i.e., 220 PTEs per process

– If each PTE is 4 Bytes, then size of one page table is: 4 *
220 = 4MB

• Each process has its own page table. Suppose 50
processes running on a system, then total size of all
50 page tables is 200MB!

• Too large to keep in cache. Keep in main memory
– Keep physical address of page table in Page Table Base

Register.

– One access to retrieve the physical page address from
table.

– Second memory access to retrieve the data word

– Doubles the number of memory references!
• Use TLB to avoid the double memory access (later)

• What if Page Table doesn’t fit in memory?
– Multiple levels of page tables, or segmentation + paging

(discussed later)

VA1

Process 1
Virtual Memory

Process 2
Virtual Memory

PT of
Process 1

VA1

Physical Memory

PT of
Process 2

• A single Inverted Page Table shared among all processes

• Indexed by PPN instead of VPN
– One entry per PPN; # entries is equal to # PPNs, which is generally much

smaller than #VPNs

• Each PTE contain the pair <process ID, VPN>.
– It tells us which process is using this page, and which virtual page of that

process maps to this physical page

• To translate a Virtual Address, current process ID and the the VPN are
compared against each entry, scanning the table sequentially.

– Reverse lookup from table entry to table index.

– If a match is found, its index in the inverted page table is the PPN, e.g.,
pid=1, VPN=2 → PPN=1

– If no match is found, a page fault occurs, e.g., pid=1, VPN=6 → page fault

• Pros:
– Reduces memory overhead since there is only one global table for all

processes.

– Scales better with large physical memories compared to hierarchical
page tables.

• Cons:
– Table lookup is inefficient since finding a match may require searching the

entire table. Poor cache locality because entries are scattered across the
table.

– Difficult to implement page sharing among processes.

• Processors that use IPT:
– PowerPC, UltraSPARC, Itel IA-64 (Itanium) 26

4
0
1

7
6
5
4
3
2
1
0 2

3
5

7
6
5
4
3
2
1
0

Process 1
(pid 1)

Page Table

Process 2
(pid 2)

Page Table

1
1
2
2
1
25

4
3
2
1
0 1

2
0
1
0
2

Inverted
Page Table

pid VPN

VPN PPN VPN PPN
PPN

index

Forward
Page Table

Inverted Page Table

4
0
1

7
6
5
4
3
2
1
0 2

3
5

7
6
5
4
3
2
1
0

Process 1
(pid 1)

Page Table

Process 2
(pid 2)

Page Table

1
1
2
2
1
25

4
3
2
1
0 1

2
0
1
0
2

Inverted
Page Table

pid VPN

VPN PPN VPN PPN

PPN
index

Forward
Page Table

Forward
Page Table Lookup

Inverted
Page Table Lookup

Inverted Page Table Lookup Example

• pid=0, VPN=0x1 → PPN=0x18F1B

Inverted page table, EZCSE

https://www.youtube.com/watch?v=9pXnMfKq7Hw

https://www.youtube.com/watch?v=9pXnMfKq7Hw

Performance Implication of Paging

• The issue of paging:

– Page Table stored in main memory

– Fetch the translation from in-memory page table

– Explicit load/store access on a memory address

• Every data/instruction access incurs two memory accesses

– One for the page table

– and one for the data/instruction

• Number of memory accesses is increased by a factor of 2!

29

Memory Accesses of Paging

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical

memory

load 0x200C

load 0x5000

load 0x200C

load 0x5004

load 0x200C

load 0x5008

load 0x200C

load 0x500C

…

• Page size: 212=4KB, hence offset is 12 bits. 16-bit

virtual address space, hence VPN is 16-12=4 bits.

• Suppose a[N] is an array of ints. Each int is 4 Bytes,

hence Virtual Memory addresses in the for loop has

stride of 4: 0x3000, 0x3004, 0x3008, etc. Suppose

physical address space is also 16 bits (in practice it

is smaller), hence PPN is also 4 bits, and page table

maps VPN=3 to PPN=5. Suppose Page Table for all

VPNs accessed by this program fit within one

physical page at physical memory address 0x200C

• Suppose the virtual page with VPN=3 has virtual

memory address 0x3000, and the physical page

with PPN=5 has physical memory address 0x5000

• Each loop iteration incurs two memory accesses!

VPN PPN

0 3

1 2

2 8

3 5

Page Table

stored

at memory

address 0x200C

Translation lookaside buffer (TLB)

• TLB is a cache for entries in
Page Table
– Part of Memory Management

Unit (MMU)

• For historical reasons, called
Translation Lookaside Buffer
(TLB)
– More accurate name is Page Table

Address Cache; should be small
enough to fit in CPU cache.

– Maps from VPN to PPN (same as
Page Table)

• Memory reference with TLB
– TLB hit: VPN is in cached in TLB,

hence can get corresponding PPN
w/o accessing Page Table

– TLB miss: VPN is not in TLB.
Access Page Table to get the
translation to PPN, update the TLB
entry with the translation

Or, directly access
physical memory address
w/o translation

CPU Physical
Memory

TLB

Page Table

No

Virtual
Address Physical

Address
Yes

Cached?

TLB is a Type of Cache

• TLB stores page table entries at Page Number granularity (not including the

Byte Offset within a page), and each page is large (e.g., 4KB).

• Cache stores actual memory contents (instruction or data) at memory address

granularity (including the Byte offset within a cache block).

• Hence TLB can be effective at a very small size (e.g.128-512 entries), and can

fit within cache (L1 or L2) for fast access without touching memory.

Memory
Address

Data at
memory
address

Virtual
Page
Number

Physical
Page
Number

On miss: Access
next cache level /
main memory

On miss: Access
Page Table in
memory

Cache TLB

TLB Organization
• TLB is usually fully-associative, but can also be

set-associative
– Since miss penalty is high (one memory access,

similar to Last-Level Cache), FA or high associativity
SA is adopted to minimize miss rate at the cost of
slightly increased hit time. (Recall “Cache Design
Considerations”.)

– With FA, there is no set index bit, and the tag bits are
the VPN. Any VPN entry can be anywhere in the TLB,
and hardware searches entire TLB in parallel to find a
tag match.

• TLB is write-through (not write-back)
– Always keep TLB and Page Table consistent

VPN offset

V R W X tag PPN

physical address PPN offsethit?

(VPN = Virtual Page Number)

(PPN = Physical Page Number)

virtual address

Page Table Lookup w/ vs. w/o TLB

34

Page Table Lookup
without TLB Page Table Lookup

with TLB

TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

Page Table

Valid VPN PFN

0

0

0

TLB

35

Suppose page table
is stored within one
physical memory
page at address
0x200C (PFN=2,
Offset=00C)

TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

Page Table

Valid VPN PFN

0

0

0

TLB

MISS!!

36

Suppose page table
is stored within one
physical memory
page at address
0x200C (PFN=2,
Offset=00C)

TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

load 0x200C (PT)

load 0x5000

Page Table

Valid VPN PFN

1 3 5

0

0

TLB

Update TLB

37

Suppose page table
is stored within one
physical memory
page at address
0x200C (PFN=2,
Offset=00C)

Table Lookaside Buffer (TLB)
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

load 0x200C (PT)

load 0x5000

load 0x5004

Page Table

Valid VPN PFN

1 3 5

0

0

TLB

TLB hit

38

Suppose page table
is stored within one
physical memory
page at address
0x200C (PFN=2,
Offset=00C)

TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

load 0x200C (PT)

load 0x5000

load 0x5004

load 0x5008

Page Table

Valid VPN PFN

1 3 5

0

0

TLB

TLB hit

39

Suppose page table
is stored within one
physical memory
page at address
0x200C (PFN=2,
Offset=00C)

TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

load 0x2000

Physical memory

load 0x200C (PT)

load 0x5000

load 0x5004

load 0x5008

load 0x500C

…

load 0x200C (PT)

load 0x8000

Page Table

Valid VPN PFN

1 3 5

1 2 8

0

TLB

Miss!!

40

Suppose page table
is stored within one
physical memory
page at address
0x200C (PFN=2,
Offset=00C)

Effective Access Time with TLB

• TLB lookup time =  time unit

• Memory access time = m time unit
– Assume: Page Table needs single access (no multilevel page tables)

– There is no cache

• TLB Hit Rate = 

• Effective access time:
– EAT = Hit Time * Hit Rate + Miss Time * Miss Rate

– = (m + )  + (2m + )(1 – ) = 2m +  – m 

– Assuming there is no cache. Upon TLB hit (w/ delay ), access physical memory page
directly (w/ delay m); upon TLB miss (w/ delay ), first read Page Table (w/ delay m), then
access physical memory page (w/ delay m)

Valid & Dirty Bits

• TLB entries have valid bits and dirty bits. Data cache blocks have them also.

– The valid bit means the same in both: valid = 0 means either TLB miss or cache miss.

– The dirty bit has different meanings. For cache, it means the cache block has been

changed. For TLBs, it means that the page corresponding to this TLB entry has been

changed.

42

Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10% of their code

– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk
– Demand paging: If a requested page is not found in page table, then

page fault occurs, OS brings the requested page in from secondary
storage to memory

O
n

-C
h

ip
C

ach
e

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

pagingcaching

43

Summary

• Translation Lookaside Buffer (TLB)

– Small number of PTEs and process IDs (< 512)

– Often Fully Associative (Since conflict misses expensive)

– On TLB miss, page table must be traversed and if located PTE is invalid, cause
Page Fault

– On change in page table, TLB entries must be invalidated

• Demand Paging: Treating the DRAM as a cache on disk

– Page Table tracks which pages are in memory

– Any attempt to access a page that is not in memory generates a page fault,
which causes OS to bring missing page into memory

• Replacement policies

– FIFO: Place pages on queue, replace page at end

– OPT (or MIN): Replace page that will be used farthest in future

– LRU: Replace page used farthest in past

TLB Issue: Context Switch

• Each process has its own page table and virtual address space; But there is

only a single TLB in the system

– TLB entries no longer valid upon process context-switch

• Solution 1: Flush

– Invalidate TLB by setting valid bits of all TLB entries to 0

– Simple but expensive for frequent context switching between processes

• Solution 2: Address space identifier (ASID)

– Hardware provides an address space identifier (ASID) field in the TLB (Think of ASID as

process ID (pid)), to distinguish which process a TLB entry belongs to

46

Problems of Paging

• Page Table is too big

• A linear page table array for 32-bit address space (232

bytes) and 4KB page (212 bytes)

– How many pages: 220 pages

– How much memory: 4MB assuming each page-table entry is of 4

bytes

• 2 ^ (32-log(4KB)) * 4 = (2 ^ 20) * 4 = 4MB

– One page table for one process:

• 100 processes: 400MB

47

Smaller Page Table

• Naïve solution:

– Bigger page size -> smaller page table

– 32-bit address space: 4KB page size -> 16KB

– We can reduce the size by 4x to 1MB per page table

• Page size: 2X, 4KB – 1GB

– getconf PAGESIZE (MacOS and Linux)

– 16KB for MacOS

• Problem: Internal fragment

– Do not use up the whole page

48

Variable Page Size

• TLB has limited size

– 16-512

– Multiple-level implementation, like cache

• Smaller page size → more TLB entries

– A process of 64KB, 4KB page size

• 16 TLB entries

– 1MB page size

• 1 TLB entry

• Variable page size:

– This depends on hardware and OS

– Windows 10 supports 4KB and 2MB

– Linux has default page size (4KB) and huge page

49

Multi-Level Paging

• Large page table is contiguous and may have some unused pages

• Allocate page table in a non-contiguous manner

• Break the page table into pages, i.e., page the page tables

• Create multiple levels of page tables; outer level “page directory”

– Page directory to track whether a page of the page table is valid

• If an entire page of page table entries is invalid, no allocation

50

Multi-Level Paging

• A virtual address of 32-bit with 4KB page size is divided into

– a page number consisting of 20 bits

– a page offset consisting of 12 bits

• A page table entry is 4 bytes

• With two-level paging, the page number is further divided into two parts: p1 is

the page directory index, and p2 is the page table index

51

Multi-Level Paging

• Problem with 2 levels: page directories may not fit in a page

• Split page directories into pieces

• Multi-level page directories and each one can fit in a page

• 30-bit address space, 512-byte page size, 4byte PTE

52

Multi-Level Paging
• XV6-Sv39 - 3 level

• XV6-Sv48 – 4 level

53

Page Swapping

• Motivation

– Processes spend majority of time in small portion of code

• The 90/10 rule: approximately 90% of time in 10 % of code

– Process only uses small amount of address space (pages) at any moment

– Only small amount of address space (pages) need to be resident in physical memory

• Hardware:

– Memory: fast, but small, 2-100 GB/s

– Disk: slow, but large, 80-160 MB/s (HDD) 500MB/s (SSD)

• Idea:

– Process can run with only some of its pages in memory

– Only keep the actively used pages in memory

– Keep unreferenced pages on disk

54

Page Swapping

• Swapping makes it possible for the total physical address space of all

processes to exceed the real physical memory of the system

Swapping Space

55

Page Swapping

• Reserve some space on the disk for moving pages back and

forth —— Swap space

• OS keeps track of the swap space, in page-sized unit.

Proc 0
[VPN 0]

Proc 1
[VPN 2]

Proc 1
[VPN 3]

Proc 2
[VPN 0]

Physical
Memory

PFN 0 PFN 1 PFN 2 PFN 3

Proc 0
[VPN 1]

Proc 0
[VPN 2]

[Free]
Proc 1
[VPN 0]

Proc 1
[VPN 1]

Proc 3
[VPN 0]

Proc 2
[VPN 1]

Proc 3
[VPN 1]

Swap
Space

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Physical Memory and Swap Space

56

Page Swapping

• How to know where a page lives?

– Present bit/Valid bit

– 1 indicates in-memory

– 0 indicates in-disk

 X86 page table entry (PTE)

• Page fault: if present bit in PTE is 0, when accessing a page

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN G PA
T

D A

P
C
D

P
W

T

U
/S

R
/W P

57

Page Swapping

58

Page Swapping Policies

• The objective of page swapping policies: to minimize the number of

page faults (cache misses)

• Two decisions:

– Page selection

• When should a page on disk be brought into memory?

– Page replacement

• Which in-memory page should be evicted to disk?

59

Page Selection

• Demand paging:

– Load page only when it is needed (demand)

– Less I/O, less memory

– Problems: High page fault cost

• Prefetch:

– Load page before referenced

– OS predicts future accessed pages (oracle) and brings them into memory early

– Works well for some access patterns, like sequential pages

60

Copy-On-Write Paging

• Copy the page only if a process writes to it (demand)

– Process creation fork() + exec()

61

Page Replacement

• When does page replacement happen?

• Lazy approach

– If memory is entirely full, OS then replaces a page to make room for some other page.

– This is unrealistic.

– The OS usually needs to reserve some room for the new pages

• Swap Daemon, Page Daemon

– There are fewer than LW (low watermark) pages available, a background thread that is

responsible for freeing memory is activated.

– The thread evicts pages until there are HW (high watermark) pages available.

62

Page Replacement Policies

• OPT (Optimal) :

– Replace the page that will not be used for the longest time in future

– Pros: Minimal number of page faults

– Cons: impractical, need to predict the future.

– Can be used as a comparison baseline

• FIFO:

– Replace the oldest page, that was loaded into memory first

– Pros: Fair, easy to implement

– Cons: May evict useful pages

• Least-recently-used (LRU): (Predict using history)

– Replace the page which has not been used for longest time

– Pros: Approximate optimal replacement

– Cons: Difficult to implement

63

Example 1

• Consider memory size of 3 frames, and
following reference stream of virtual
pages:
– A B C A B D A D B C B

• FIFO incurs 7 page faults:
– When referencing D, replacing A is a bad

choice, since A is references again right
away

• OPT incurs 5 page faults:
– When D is first referenced, C is replaced,

since it is the page not referenced farthest in
the future

• LRU page replacement policy makes
the same decisions as OPT in this case
– but not always true!

Ref A B C A B D A D B C B

F1 A A A A A D D D D C C

F2 B B B B B A A A A A

F3 C C C C C C B B B

Ref A B C A B D A D B C B

F1 A A A A A A A A A C C

F2 B B B B B B B B B B

F3 C C C D D D D D D

FIFO: 7 page faults

LRU & OPT: 5 page faults

64

Example 2

• Consider memory size of 3
frames, and following reference
stream of virtual pages:
– A B C D A B C D A B C D

– Cyclically referencing 4 pages A B C
D

• FIFO & LRU both incurs 12 page
faults, one for every page
reference!

• OPT incurs 6 page faults, but it is
not implementable

Ref A B C D A B C D A B C D

F1 A A A D D D C C C B B B

F2 B B B A A A D D D C C

F3 C C C B B B A A A D

Ref A B C D A B C D A B C D

F1 A A A A A A A A A B B B

F2 B B B B B C C C C C C

F3 C D D D D D D D D D

FIFO & LRU: 12 page faults

OPT: 6 page faults

65

Example 3

• Consider memory size of 3
frames, and following reference
stream of virtual pages:
– A A B B C D B A B A

• FIFO incurs 6 page faults

• LRU incurs 5 page faults

• OPT incurs 4 page faults

Ref A A B B C D B A B A

F1 A A A A A D D D D D

F2 B B B B B A A A

F3 C C C C B B

Ref A A B B C D B A B A

F1 A A A A A D D D D D

F2 B B B B B B B B

F3 C C C A A A

Ref A A B B C D B A B A

F1 A A A A A A A A A A

F2 B B B B B B B B

F3 C D D D D D

FIFO: 6 page faults

LRU: 5 page faults

OPT: 4 page faults
66

Page faults vs. cache size

• When you increase memory size (number of frames), number of page faults

should go down
– Yes for LRU and OPT
– Not always for FIFO (Called Belady’s anomaly)

67

BeLady’s anomaly

• After increasing memory size from 3 pages to 4 pages, for the given reference
stream:
– With FIFO, number of page faults increases from 9 to 10!
– With LRU or OPT, memory contents with size of X pages are a subset of contents with size

of X+1 Pages. Whereas for FIFO, memory contents can be completely different

Ref A B C D A B E A B C D E

F1 A A A D D D E E E E E E

F2 B B B A A A A A C C C

F3 C C C B B B B B D D

Ref A B C D A B E A B C D E

F1 A A A A A A E E E E D D

F2 B B B B B B A A A A E

F3 C C C C C C B B B B

F4 D D D D D D C C C

FIFO w/ 3 frames: 9 page faults

FIFO w/ 4 frames: 10 page faults
68

Page Replacement Policies

• Other policies:

– Random (RAND), Least-frequently used (LFU)

• The performance of replacement policies also depends on workloads.

– Random workload: LRU, RAND, and FIFO no difference

– 80-20 workload: LRU is better than RAND and FIFO

– Looping sequential workload: RAND is better than LRU and FIFO

69

Putting Everything Together: Address

TranslationVirtual Address:

Offset
Virtual
P2 index

Virtual
P1 index

PageTablePtr

Page Table

(1st level)

Page Table

(2nd level)

Physical

Memory:

Offset

Physical Address:
Physical
Page #

70

Page Table

(2nd level)

PageTablePtr

Page Table

(1st level)

Putting Everything Together: TLB

Offset

Virtual Address:

Offset
Virtual
P2 index

Virtual
P1 index

Physical

Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #

71

Page Table

(2nd level)

PageTablePtr

Page Table

(1st level)

Virtual Address:

Offset
Virtual
P2 index

Virtual
P1 index

…

TLB:

Putting Everything Together: TLB+Cache

Offset

Physical

Memory:

Physical Address:

…

tag: block:

cache:

index bytetag

Physical
Page #

72

Summary

• Paging: flexible virtual memory management

• Challenges with paging

– Slow access

– Big page table and high memory consumption

• Table Lookaside Buffer (TLB) for slow access

• Multi-level paging and inverted page tables for big page table

• Larger address space: swapping and replacement

73

References

• Memory Management (Virtual Memory / Paging / DMA), BitLemon

– https://www.youtube.com/playlist?list=PL38NNHQLqJqZoDp4CrAueD1aBin7OebEL

• Lectures on Virtual Memory, by David Black-Schaffer

– https://www.youtube.com/playlist?list=PLiwt1iVUib9s2Uo5BeYmwkDFUh70fJPxX

• Inverted page table, EZCSE

– https://www.youtube.com/watch?v=9pXnMfKq7Hw

https://www.youtube.com/playlist?list=PL38NNHQLqJqZoDp4CrAueD1aBin7OebEL
https://www.youtube.com/playlist?list=PLiwt1iVUib9s2Uo5BeYmwkDFUh70fJPxX
https://www.youtube.com/watch?v=9pXnMfKq7Hw

	Slide 1: CSC 112: Computer Operating Systems Lecture 8 Memory System II: Paging
	Slide 2: Outline
	Slide 3: Typical Memory Hierarchy
	Slide 4: Two Views of Memory
	Slide 5: Paging
	Slide 6: Paging Example
	Slide 7: Steps in Handling Page Faults
	Slide 8: Paging Benefits
	Slide 9: Page Translation
	Slide 10: Page Table
	Slide 11: Page Translation Mechanism
	Slide 12: Page Translation Example
	Slide 13: Separate Address Space per Process
	Slide 14: Page Table Entry (PTE)
	Slide 15: Paging example: initial state
	Slide 16: Paging example: Process 1 starts to run
	Slide 17: Paging example: Process 2 starts to run
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Code Page Sharing Use Case
	Slide 22
	Slide 23: Data Page Sharing Use Case
	Slide 24: Address Translation & Protection
	Slide 25: Where Should Page Tables Reside?
	Slide 26: Inverted Page Table
	Slide 27
	Slide 28: Inverted Page Table Lookup Example
	Slide 29: Performance Implication of Paging
	Slide 30: Memory Accesses of Paging
	Slide 31: Translation lookaside buffer (TLB)
	Slide 32: TLB is a Type of Cache
	Slide 33: TLB Organization
	Slide 34: Page Table Lookup w/ vs. w/o TLB
	Slide 35: TLB Example
	Slide 36: TLB Example
	Slide 37: TLB Example
	Slide 38: Table Lookaside Buffer (TLB)
	Slide 39: TLB Example
	Slide 40: TLB Example
	Slide 41: Effective Access Time with TLB
	Slide 42: Valid & Dirty Bits
	Slide 43: Demand Paging
	Slide 44: Summary
	Slide 46: TLB Issue: Context Switch
	Slide 47: Problems of Paging
	Slide 48: Smaller Page Table
	Slide 49: Variable Page Size
	Slide 50: Multi-Level Paging
	Slide 51: Multi-Level Paging
	Slide 52: Multi-Level Paging
	Slide 53: Multi-Level Paging
	Slide 54: Page Swapping
	Slide 55: Page Swapping
	Slide 56: Page Swapping
	Slide 57: Page Swapping
	Slide 58: Page Swapping
	Slide 59: Page Swapping Policies
	Slide 60: Page Selection
	Slide 61: Copy-On-Write Paging
	Slide 62: Page Replacement
	Slide 63: Page Replacement Policies
	Slide 64: Example 1
	Slide 65: Example 2
	Slide 66: Example 3
	Slide 67: Page faults vs. cache size
	Slide 68: BeLady’s anomaly
	Slide 69: Page Replacement Policies
	Slide 70: Putting Everything Together: Address Translation
	Slide 71: Putting Everything Together: TLB
	Slide 72: Putting Everything Together: TLB+Cache
	Slide 73: Summary
	Slide 74: References

