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Outline

• Paging

• Page Translation

• Page Table

• Table Lookaside Buffer (TLB)

• Multi-level paging

• Page Swapping

• Page Replacement 
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Typical Memory Hierarchy
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Two Views of Memory

• Two views of memory:
– View from the CPU (what program sees, virtual memory)
– View from memory (physical memory)
– Memory management unit (MMU) converts between the two views
– Kernel accesses physical memory directly without translation

• Translation helps to implement protection
– The same virtual address in different processes is mapped to different 

physical addresses, hence different processes cannot read/write each 
other’s memory

– Every program can be linked/loaded into same region of user address space
– Isolation achieved through translation, not relocation

Physical
AddressesCPU MMU

Virtual
Addresses

Untranslated read or write



Paging

• Divide physical memory into 

fixed-sized blocks, called 

physical page frames (or

simply frames) 

• Divide virtual memory into 

blocks of the same size called 

virtual pages (or simply pages) 

• Set up a page table to map 

from pages to frames

• Need both OS and hardware 

support (MMU)
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Paging Example
• Suppose page size is 4 KB, and the virtual address space has 8 pages

• Page Table maps from Virtual Page Number (VPN) to Physical Page Number (PPN)
– PPN also called Page Frame Number (PFN).

– Some VPNs (5, 6) are not mapped to PPN, and accessing them will cause a page fault to go to 
disk and fetch the page into memory.
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Steps in Handling Page Faults
virtual address

MMU
PT

instruction

physical address
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Operating System
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Paging Benefits

 Flexibility: Supporting the abstraction of address space effectively

– Don’t need assumption how heap and stack grow and are used.

• Simplicity: ease of free-space management

– The page in virtual address space and the physical page frame are the same size.

– Easy to allocate and keep a free list
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Page Translation

• A virtual address is split into two parts

– Virtual page number (or Page number ) – used as an index into a page table which contains 

base address of each page in physical memory

• High bits to indicate page number

– Offset – combined with base address to define the physical memory address within the page

• Low bits to indicate offset

• Given virtual address space 2m and page size 2n Bytes, n bits for offset and m-n

bits for page number

– Only need to translate the page number to determine where the physical page is

– Page offset determines page size, which is the same for both virtual and physical memory

• Page offset refers to byte address within a memory page (e.g., 4KB); compare with byte offset in 

caching, which refers to byte address within a cache/memory block (e.g., 8 Bytes)

Page # Offset

nm-n

9



Page Table

• Page Table

– Keeps track mapping of virtual to physical addresses

– Part of Process Control Block (PCB) for each process, kept in main memory
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Page Translation Mechanism

• Generally, VPN has more bits than PPN, since physical memory is smaller (# 

virtual pages ≥ # physical page)

Virtual Page Number Page Offset

valid Physical Page Number
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Page Translation Example

• Virtual Address: 32 bits, virtual address space 2^32=4GB

• Physical Address: 29 bits, physical address space 2^29=0.5GB

• Page size: 2^12=4KB, hence offset is 12 bits

– VPN has 32-12=20 bits, PPN has 29-12=17 bits

12
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Separate Address Space per Process

VA1Proc 1

Page Table 

VA1Proc 2

Page Table 

VA1Proc 3

Page Table 

P
h

ys
ic

al
 M

em
o

ry

free

OS
pages

Each process has own page table.
Same Virtual Address (VA1) is mapped to different physical 
addresses, so different processes cannot read/write each 
other’s memory
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Page Table Entry (PTE)

• A PTE contains:

– Physical Page Number (PPN), also called Page Frame Number

– Present/absent bit, also called Valid bit. If this bit is 1, the page is in memory and can be used. If it is 
0, the page is not currently in memory. Accessing a page table entry with this bit set to 0 causes a 
page fault to get page from disk.

– Protection bits tell what kinds of access are permitted on the page. 3 bits, one bit each for enabling 
read, write, and execute.

– Modified (M) bit, also called dirty bit, is set to 1 when a page is written to 

– Referenced (R) bit, is set whenever a page is referenced, either for reading or writing.

• M and R bits are useful to page replacement algorithms

– Caching disabled bit, important for pages that map onto device registers rather than memory
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Code Page Sharing Use Case

stdlib

#include <stdlib.h>

….

int main(){

  ….

}

Process 1

Physical page frames

#include <stdlib.h>

….

int main(){

  ….

}

Process 2

• Shared code pages are memory pages that contain 
executable code and are shared among multiple 
processes. They are typically read-only to ensure that 
the code remains consistent across all processes 
accessing it. This approach is used to save memory 
and improve efficiency, as only one copy of the code 
resides in physical memory, while multiple processes 
map it into their virtual address spaces. Examples:
– Shared libraries (e.g., dynamic link libraries or .so files).

– Common executables like shells or system utilities.

– Reentrant code, which can be safely executed by multiple 
processes simultaneously without modification.

• Implementation:
– OS maps the same physical page containing the code into 

the virtual address spaces of multiple processes.

– Protection mechanisms ensure that these pages are 
marked as non-writable to prevent accidental or malicious 
modification.

• The "X" bit in PTE stands for “Execute” permission.
– It can be used to enforce policies like W^X (Write XOR 

Execute). This policy ensures that a memory page cannot 
be both writable and executable at the same time, which 
helps prevent certain attacks.
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Data Page Sharing Use Case

• Shared global variables refer to data that can be accessed by multiple processes 
or threads. In most systems, global variables are private to each process by 
default, but they can be explicitly shared using mechanisms such as shared 
memory. Examples:
– Inter-Process Communication: Shared globals in a writable memory region enable efficient 

communication between processes without copying data.

– Shared Libraries: While code in shared libraries is typically read-only and executable, global 
data sections may require RW permissions if they store modifiable state.

– Kernel Data Structures: The kernel may use RW-protected shared memory regions for 
managing system-wide states accessible by user-space applications under strict controls.

• Implementation:
– Shared global variables are typically placed in shared memory regions, which allow multiple 

processes to access the same physical memory.

• The "RW" (Read/Write) bit in PTE determines whether a page can be written to 
or only read.
– If it is set, the page can be both read and written.

– If it is not set, the page is read-only. Any attempt to write to it will trigger a protection fault (e.g., 
segmentation fault).



Address Translation & Protection

Every instruction and data access needs address translation 
and protection checks
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Where Should Page Tables Reside?

• Space required by the page tables is proportional to 
the address space, number of users, …
– e.g., virtual address space 232 Byte, page size 212=4KB

– Number of pages: 232/212=220, i.e., 220 PTEs per process

– If each PTE is 4 Bytes, then size of one page table is: 4 * 
220 = 4MB

• Each process has its own page table. Suppose 50 
processes running on a system, then total size of all 
50 page tables is 200MB!

• Too large to keep in cache. Keep in main memory
– Keep physical address of page table in Page Table Base 

Register.

– One access to retrieve the physical page address from 
table.

– Second memory access to retrieve the data word

– Doubles the number of memory references!
• Use TLB to avoid the double memory access (later)

• What if Page Table doesn’t fit in memory?
– Multiple levels of page tables, or segmentation + paging 

(discussed later)

VA1

Process 1
Virtual Memory

Process 2
Virtual Memory

PT of 
Process 1

VA1

Physical Memory

PT of 
Process 2



• A single Inverted Page Table shared among all processes

• Indexed by PPN instead of VPN 
– One entry per PPN; # entries is equal to # PPNs, which is generally much 

smaller than #VPNs

• Each PTE contain the pair <process ID, VPN>. 
– It tells us which process is using this page, and which virtual page of that 

process maps to this physical page

• To translate a Virtual Address, current process ID and the the VPN are 
compared against each entry, scanning the table sequentially. 

– Reverse lookup from table entry to table index.

– If a match is found, its index in the inverted page table is the PPN, e.g., 
pid=1, VPN=2 → PPN=1

– If no match is found, a page fault occurs, e.g., pid=1, VPN=6 → page fault

• Pros:
– Reduces memory overhead since there is only one global table for all 

processes.

– Scales better with large physical memories compared to hierarchical 
page tables.

• Cons: 
– Table lookup is inefficient since finding a match may require searching the 

entire table. Poor cache locality because entries are scattered across the 
table.

– Difficult to implement page sharing among processes.

• Processors that use IPT:
–  PowerPC, UltraSPARC, Itel IA-64 (Itanium) 26
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Inverted Page Table Lookup Example

• pid=0, VPN=0x1 → PPN=0x18F1B

Inverted page table, EZCSE

https://www.youtube.com/watch?v=9pXnMfKq7Hw

https://www.youtube.com/watch?v=9pXnMfKq7Hw


Performance Implication of Paging

• The issue of paging:

– Page Table stored in main memory

– Fetch the translation from in-memory page table 

– Explicit load/store access on a memory address 

• Every data/instruction access incurs two memory accesses 

– One for the page table 

– and one for the data/instruction 

• Number of memory accesses is increased by a factor of 2!
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Memory Accesses of Paging

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical 

memory

load 0x200C

load 0x5000

load 0x200C

load 0x5004

load 0x200C

load 0x5008

load 0x200C

load 0x500C

…

• Page size: 212=4KB, hence offset is 12 bits. 16-bit 

virtual address space, hence VPN is 16-12=4 bits.

• Suppose a[N] is an array of ints. Each int is 4 Bytes, 

hence Virtual Memory addresses in the for loop has 

stride of 4: 0x3000, 0x3004, 0x3008, etc. Suppose 

physical address space is also 16 bits (in practice it 

is smaller), hence PPN is also 4 bits, and page table 

maps VPN=3 to PPN=5. Suppose Page Table for all 

VPNs accessed by this program fit within one 

physical page at physical memory address 0x200C

• Suppose the virtual page with VPN=3 has virtual 

memory address 0x3000, and the physical page 

with PPN=5 has physical memory address 0x5000

• Each loop iteration incurs two memory accesses! 

VPN PPN

0 3

1 2

2 8

3 5

Page Table 

stored

at memory

address 0x200C



Translation lookaside buffer (TLB)

• TLB is a cache for entries in 
Page Table
– Part of Memory Management

Unit (MMU)

• For historical reasons, called 
Translation Lookaside Buffer 
(TLB)
– More accurate name is Page Table 

Address Cache; should be small 
enough to fit in CPU cache.

– Maps from VPN to PPN (same as 
Page Table)

• Memory reference with TLB
– TLB hit: VPN is in cached in TLB, 

hence can get corresponding PPN 
w/o accessing Page Table

– TLB miss: VPN is not in TLB.
Access Page Table to get the 
translation to PPN, update the TLB 
entry with the translation

Or, directly access
physical memory address
w/o translation

CPU Physical
Memory

TLB

Page Table

No

Virtual
Address Physical

Address
Yes

Cached?



TLB is a Type of Cache

• TLB stores page table entries at Page Number granularity (not including the 

Byte Offset within a page), and each page is large (e.g., 4KB).

• Cache stores actual memory contents (instruction or data) at memory address 

granularity (including the Byte offset within a cache block).

• Hence TLB can be effective at a very small size (e.g.128-512 entries), and can 

fit within cache (L1 or L2) for fast access without touching memory.

Memory 
Address

Data at 
memory 
address

Virtual 
Page 
Number

Physical 
Page 
Number

On miss: Access 
next cache level / 
main memory

On miss: Access 
Page Table in 
memory

Cache TLB



TLB Organization
• TLB is usually fully-associative, but can also be 

set-associative
– Since miss penalty is high (one memory access, 

similar to Last-Level Cache), FA or high associativity 
SA is adopted to minimize miss rate at the cost of 
slightly increased hit time. (Recall “Cache Design 
Considerations”.)

– With FA, there is no set index bit, and the tag bits are 
the VPN. Any VPN entry can be anywhere in the TLB, 
and hardware searches entire TLB in parallel to find a 
tag match.

• TLB is write-through (not write-back)
– Always keep TLB and Page Table consistent

VPN         offset

V  R   W  X         tag               PPN

physical address PPN                offsethit?

(VPN = Virtual Page Number)

(PPN = Physical Page Number)

virtual address



Page Table Lookup w/ vs. w/o TLB

34
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TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

Page Table

Valid VPN PFN

0

0

0

TLB
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TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

Page Table

Valid VPN PFN

0

0

0

TLB

MISS!!
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TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

load 0x200C (PT)

load 0x5000

Page Table

Valid VPN PFN

1 3 5

0

0

TLB

Update TLB
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Table Lookaside Buffer (TLB)
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

load 0x200C (PT)

load 0x5000

load 0x5004

Page Table

Valid VPN PFN

1 3 5

0

0

TLB

TLB hit
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TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

Physical memory

load 0x200C (PT)

load 0x5000

load 0x5004

load 0x5008

Page Table

Valid VPN PFN

1 3 5

0

0

TLB

TLB hit
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TLB Example
VPN PFN

0 3

1 2

2 8

3 5

Virtual memory

load 0x3000

load 0x3004

load 0x3008

load 0x300C

…

load 0x2000

Physical memory

load 0x200C (PT)

load 0x5000

load 0x5004

load 0x5008

load 0x500C

…

load 0x200C (PT)

load 0x8000

Page Table

Valid VPN PFN

1 3 5

1 2 8

0

TLB

Miss!!
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Effective Access Time with TLB

• TLB lookup time =  time unit

• Memory access time = m time unit
– Assume: Page Table needs single access (no multilevel page tables)

– There is no cache

• TLB Hit Rate = 

• Effective access time: 
– EAT = Hit Time * Hit Rate + Miss Time * Miss Rate 

– = (m + )  + (2m + )(1 – ) = 2m +  – m 

– Assuming there is no cache. Upon TLB hit (w/ delay ), access physical memory page 
directly (w/ delay m); upon TLB miss (w/ delay ), first read Page Table (w/ delay m), then 
access physical memory page (w/ delay m)



Valid & Dirty Bits

• TLB entries have valid bits and dirty bits. Data cache blocks have them also. 

– The valid bit means the same in both: valid = 0 means either TLB miss or cache miss.

– The dirty bit has different meanings. For cache, it means the cache block has been 

changed. For TLBs, it means that the page corresponding to this TLB entry has been 

changed.
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Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10% of their code

– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk
– Demand paging: If a requested page is not found in page table, then 

page fault occurs, OS brings the requested page in from secondary 
storage to memory
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Summary

• Translation Lookaside Buffer (TLB)

– Small number of PTEs and process IDs (< 512)

– Often Fully Associative (Since conflict misses expensive)

– On TLB miss, page table must be traversed and if located PTE is invalid, cause 
Page Fault 

– On change in page table, TLB entries must be invalidated

• Demand Paging: Treating the DRAM as a cache on disk

– Page Table tracks which pages are in memory

– Any attempt to access a page that is not in memory generates a page fault, 
which causes OS to bring missing page into memory

• Replacement policies

– FIFO: Place pages on queue, replace page at end

– OPT (or MIN): Replace page that will be used farthest in future

– LRU: Replace page used farthest in past 



TLB Issue: Context Switch

• Each process has its own page table and virtual address space; But there is 

only a single TLB in the system

– TLB entries no longer valid upon process context-switch

• Solution 1:  Flush

– Invalidate TLB by setting valid bits of all TLB entries to 0

– Simple but expensive for frequent context switching between processes

• Solution 2: Address space identifier (ASID)

– Hardware provides an address space identifier (ASID) field in the TLB (Think of ASID as 

process ID (pid)), to distinguish which process a TLB entry belongs to

46



Problems of Paging

• Page Table is too big

• A linear page table array for 32-bit address space (232 

bytes) and 4KB page (212 bytes) 

– How many pages: 220 pages 

– How much memory: 4MB assuming each page-table entry is of 4 

bytes 

• 2 ^ (32-log(4KB)) * 4 = (2 ^ 20) * 4 = 4MB

– One page table for one process:

• 100 processes: 400MB
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Smaller Page Table

• Naïve solution: 

– Bigger page size -> smaller page table

– 32-bit address space: 4KB page size -> 16KB

– We can reduce the size by 4x to 1MB per page table

• Page size: 2X, 4KB – 1GB

– getconf PAGESIZE (MacOS and Linux)

– 16KB for MacOS

• Problem: Internal fragment

– Do not use up the whole page
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Variable Page Size

• TLB has limited size

– 16-512

– Multiple-level implementation, like cache

• Smaller page size → more TLB entries

– A process of 64KB, 4KB page size

• 16 TLB entries

– 1MB page size

• 1 TLB entry

• Variable page size:

– This depends on hardware and OS

– Windows 10 supports 4KB and 2MB

– Linux has default page size (4KB) and huge page
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Multi-Level Paging

• Large page table is contiguous and may have some unused pages

• Allocate page table in a non-contiguous manner

• Break the page table into pages, i.e., page the page tables

• Create multiple levels of page tables; outer level “page directory”

– Page directory to track whether a page of the page table is valid

• If an entire page of page table entries is invalid, no allocation
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Multi-Level Paging

• A virtual address of 32-bit with 4KB page size is divided into 

– a page number consisting of 20 bits 

– a page offset consisting of 12 bits 

• A page table entry is 4 bytes 

• With two-level paging, the page number is further divided into two parts: p1 is 

the page directory index, and p2 is the page table index
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Multi-Level Paging

• Problem with 2 levels: page directories may not fit in a page

• Split page directories into pieces

• Multi-level page directories and each one can fit in a page

• 30-bit address space, 512-byte page size, 4byte PTE

52



Multi-Level Paging
• XV6-Sv39 - 3 level

• XV6-Sv48 – 4 level
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Page Swapping

• Motivation

– Processes spend majority of time in small portion of code

• The 90/10 rule: approximately 90% of time in 10 % of code

– Process only uses small amount of address space (pages) at any moment

– Only small amount of address space (pages) need to be resident in physical memory

• Hardware:

– Memory: fast, but small, 2-100 GB/s

– Disk: slow, but large, 80-160 MB/s (HDD) 500MB/s (SSD)

• Idea:

– Process can run with only some of its pages in memory

– Only keep the actively used pages in memory

– Keep unreferenced pages on disk
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Page Swapping

• Swapping makes it possible for the total physical address space of all 

processes to exceed the real physical memory of the system

Swapping Space
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Page Swapping

• Reserve some space on the disk for moving pages back and 

forth —— Swap space

• OS keeps track of the swap space, in page-sized unit.

Proc 0
[VPN 0]

Proc 1
[VPN 2]

Proc 1
[VPN 3]

Proc 2
[VPN 0]

Physical
Memory

PFN 0 PFN 1 PFN 2 PFN 3

Proc 0
[VPN 1]

Proc 0
[VPN 2]

[Free]
Proc 1
[VPN 0]

Proc 1
[VPN 1]

Proc 3
[VPN 0]

Proc 2
[VPN 1]

Proc 3
[VPN 1]

Swap
Space

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7

Physical Memory and Swap Space
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Page Swapping

• How to know where a page lives?

– Present bit/Valid bit

– 1 indicates in-memory

– 0 indicates in-disk

                                X86 page table entry (PTE)

• Page fault: if present bit in PTE is 0, when accessing a page

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PFN G PA
T

D A

P
C
D

P
W

T

U
/S

R
/W P
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Page Swapping
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Page Swapping Policies

• The objective of page swapping policies: to minimize the number of 

page faults (cache misses)

• Two decisions:

– Page selection

• When should a page on disk be brought into memory?

– Page replacement

• Which in-memory page should be evicted to disk?
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Page Selection

• Demand paging:

– Load page only when it is needed (demand)

– Less I/O, less memory

– Problems: High page fault cost

• Prefetch:

– Load page before referenced

– OS predicts future accessed pages (oracle) and brings them into memory early

– Works well for some access patterns, like sequential pages
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Copy-On-Write Paging

• Copy the page only if a process writes to it (demand)

– Process creation fork() + exec()
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Page Replacement

• When does page replacement happen?

• Lazy approach

– If memory is entirely full, OS then replaces a page to make room for some other page.

– This is unrealistic.

– The OS usually needs to reserve some room for the new pages

• Swap Daemon, Page Daemon

– There are fewer than LW (low watermark) pages available, a background thread that is 

responsible for freeing memory is activated.

– The thread evicts pages until there are HW (high watermark) pages available.
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Page Replacement Policies

• OPT (Optimal) :

– Replace the page that will not be used for the longest time in future

– Pros: Minimal number of page faults

– Cons: impractical, need to predict the future.

– Can be used as a comparison baseline

• FIFO:

– Replace the oldest page, that was loaded into memory first

– Pros: Fair, easy to implement

– Cons: May evict useful pages

• Least-recently-used (LRU): (Predict using history)

– Replace the page which has not been used for longest time

– Pros: Approximate optimal replacement

– Cons: Difficult to implement
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Example 1

• Consider memory size of 3 frames, and 
following reference stream of virtual 
pages: 
– A B C A B D A D B C B

• FIFO incurs 7 page faults:
– When referencing D, replacing A is a bad 

choice, since A is references again right 
away

• OPT incurs 5 page faults:
– When D is first referenced, C is replaced, 

since it is the page not referenced farthest in 
the future

• LRU page replacement policy makes 
the same decisions as OPT in this case
– but not always true!

Ref A B C A B D A D B C B

F1 A A A A A D D D D C C

F2 B B B B B A A A A A

F3 C C C C C C B B B

Ref A B C A B D A D B C B

F1 A A A A A A A A A C C

F2 B B B B B B B B B B

F3 C C C D D D D D D

FIFO: 7 page faults

LRU & OPT: 5 page faults
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Example 2

• Consider memory size of 3 
frames, and following reference 
stream of virtual pages: 
– A B C D A B C D A B C D

– Cyclically referencing 4 pages A B C 
D

• FIFO & LRU both incurs 12 page 
faults, one for every page 
reference!

• OPT incurs 6 page faults, but it is 
not implementable 

Ref A B C D A B C D A B C D

F1 A A A D D D C C C B B B

F2 B B B A A A D D D C C

F3 C C C B B B A A A D

Ref A B C D A B C D A B C D

F1 A A A A A A A A A B B B

F2 B B B B B C C C C C C

F3 C D D D D D D D D D

FIFO & LRU: 12 page faults

OPT: 6 page faults
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Example 3

• Consider memory size of 3 
frames, and following reference 
stream of virtual pages: 
– A A B B C D B A B A

• FIFO incurs 6 page faults

• LRU incurs 5 page faults

• OPT incurs 4 page faults

Ref A A B B C D B A B A

F1 A A A A A D D D D D

F2 B B B B B A A A

F3 C C C C B B

Ref A A B B C D B A B A

F1 A A A A A D D D D D

F2 B B B B B B B B

F3 C C C A A A

Ref A A B B C D B A B A

F1 A A A A A A A A A A

F2 B B B B B B B B

F3 C D D D D D

FIFO: 6 page faults

LRU: 5 page faults

OPT: 4 page faults
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Page faults vs. cache size

• When you increase memory size (number of frames), number of page faults 

should go down
– Yes for LRU and OPT
– Not always for FIFO  (Called Belady’s anomaly)
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BeLady’s anomaly

• After increasing memory size from 3 pages to 4 pages, for the given reference 
stream: 
– With FIFO, number of page faults increases from 9 to 10!
– With LRU or OPT, memory contents with size of X pages are a subset of contents with size 

of X+1 Pages. Whereas for FIFO, memory contents can be completely different

Ref A B C D A B E A B C D E

F1 A A A D D D E E E E E E

F2 B B B A A A A A C C C

F3 C C C B B B B B D D

Ref A B C D A B E A B C D E

F1 A A A A A A E E E E D D

F2 B B B B B B A A A A E

F3 C C C C C C B B B B

F4 D D D D D D C C C

FIFO w/ 3 frames: 9 page faults

FIFO w/ 4 frames: 10 page faults
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Page Replacement Policies

• Other policies:

– Random (RAND), Least-frequently used (LFU)

• The performance of replacement policies also depends on workloads.

– Random workload: LRU, RAND, and FIFO no difference

– 80-20 workload: LRU is better than RAND and FIFO

– Looping sequential workload: RAND is better than LRU and FIFO
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Putting Everything Together: Address 

TranslationVirtual Address:

Offset
Virtual
P2 index

Virtual
P1 index

PageTablePtr

Page Table 

(1st level)

Page Table 

(2nd level)

Physical 

Memory:

Offset

Physical Address:
Physical
Page #
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Page Table 

(2nd level)

PageTablePtr

Page Table 

(1st level)

Putting Everything Together: TLB

Offset

Virtual Address:

Offset
Virtual
P2 index

Virtual
P1 index

Physical 

Memory:

Physical Address:

…

TLB:

Physical
Page #
Physical
Page #
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Page Table 

(2nd level)

PageTablePtr

Page Table 

(1st level)

Virtual Address:

Offset
Virtual
P2 index

Virtual
P1 index

…

TLB:

Putting Everything Together: TLB+Cache

Offset

Physical 

Memory:

Physical Address:

…

tag: block:

cache:

index bytetag

Physical
Page #
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Summary

• Paging: flexible virtual memory management

• Challenges with paging

– Slow access

– Big page table and high memory consumption

• Table Lookaside Buffer (TLB) for slow access

• Multi-level paging and inverted page tables for big page table

• Larger address space: swapping and replacement
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