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Why are Large Memories Slow?
Library Analogy

• Time to find a book in a large library
– Search a large card catalog – (mapping 

title/author to index number)
– Round-trip time to walk to the stacks and 

retrieve the desired book

• Both delays become larger for larger 
libraries

• Computer memories have same issue, 
plus the technologies used to store a bit 
slow down as density increases (e.g., 
SRAM vs. DRAM vs. Disk)

However, what we want is a large yet fast memory! 
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Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access
2017 microprocessor executes ~1000 instructions in same time as DRAM access

Memory wall: memory access likely to be the performance bottleneck
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What To Do: Library Analogy

• Write a report using library books

• Go to library (main memory), look up relevant books, fetch 
from stacks, and place on your desk (cache)

• If need more, check them out and keep them on your desk

– But don’t return earlier books since might need them

• You hope this collection of a few books on your desk 
enough to write report, even though they are a tiny fraction 
of all books in the library
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Memory Hierarchy

Cache 
Small, Fast

(SRAM)

• Capacity:  register << cache (typically on-chip) << memory (off-chip)
• Latency:   register << cache (typically on-chip) << memory (off-chip)

On a data access:
if data  cache  cache hit  low latency access (SRAM)
if data  cache  cache miss  high latency access (DRAM, Flash)

Goal: create the illusion of accessing as much memory as is available in the slow 
memory at the speed of the fast cache

CPU
Big, Slow Memory

(DRAM, Flash)

holds hot (frequently-used) data

Registers
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Memory Hierarchy Technologies
• Caches use SRAM (Static Random Access 

Memory) for speed and technology 
compatibility
– Fast (typical access times of 0.5 to 2.5 ns)

– Low density (6 transistor cells), higher power, 
expensive 

– Static: content will last as long as power is on

• Main memory uses DRAM (Dynamic RAM) for 
size and density
– Slower (typical access times of 50 to 70 ns) 

– High density (1 transistor cells), lower power, cheaper 

– Dynamic: needs to be “refreshed” regularly (every ~8 
ms)
• Consumes 1% to 2% of the active cycles of the DRAM
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The Complete Memory Hierarchy
TLB: stores mappings of virtual 
addresses to physical addresses

PT: Page Table
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How is the Hierarchy Managed?

• Registers  memory hierarchy

– By compiler (or assembly programmer)

• Cache  main memory

– By the cache controller hardware

– Focus of this lecture

• Main memory  disks (secondary storage)

– By the operating system (virtual memory)

– By the programmer (files)
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Principle of Locality

• Principle of Locality: Programs access small portion of address space at any 
instant of time (spatial locality) and repeatedly access that portion (temporal 
locality)

• Temporal Locality (locality in time)
– Go back to same book on desk multiple times
– If a memory location is referenced, then it will tend to be referenced again soon

• Keep recently-accessed blocks in the cache

• Spatial Locality (locality in space)
– When go to book shelf, pick up multiple books around the book you want, since library 

stores related books together
– If a memory location is referenced, the locations with nearby addresses will tend to be 

referenced soon
• When fetching a block into cache, also fetch blocks around it

• If the program has poor temporal or spatial locality, then lots of useless junk may 
be brought into cache
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What locality does this program have?

• Data:
– Temporal locality: variable sum is referenced in every iteration

– Spatial locality: array a[] is accessed with stride 1 in each iteration (assuming a[] 
is stored in contiguous addresses in memory)

• Instructions:
– Temporal locality: the loop body is executed repeatedly for n times

– Spatial locality: instructions are accessed sequentially (with 1 branch in each 
iteration) (assuming instructions are stored in contiguous addresses in memory)

int sum = 0, a[n];

…

for (i = 0; i < n; i++) {

  sum += a[i];

}

return sum;
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Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. 
IBM Systems Journal 10(3): 168-192 (1971)
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Memory Reference Patterns

Address

Time

Instruction
   fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine 
call

subroutine 
return

argument access

scalar accesses

5/12/2025
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Outline

• Cache Introduction

• Cache Organization

• Cache Performance Analysis
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Processor

Control

Datapath

Processor with Cache

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write 
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Processor organized
around words and bytes

Memory (including
cache) organized
around blocks,

which are typically
multiple words
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Cache vs. Memory
• Cache size << memory size

– Smaller cache is faster

• 1-to-many correspondence between cache blocks and 
memory blocks
–Use Tags in the cache to match cache and memory blocks

• A cache block is also called a cache line
• Blocks are aligned in memory: 

– if each cache block is 4 Bytes (1 word), then binary address of 
each cache block always ends in 00

– If each cache block is 8 Bytes (2 words), then binary address 
each cache block always ends in 000
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Cache Blocks

• Larger, slower, cheaper memory.

• Smaller, faster, more expensive 
memory

• Typical block size: 1 – 4 words (4 – 16 
Bytes)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

14

CPU
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General Cache Concepts:  Hit

Data in block 14 is needed

Block 14 is in cache:
Hit!

Data is loaded from cache into CPU register 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Request: 14

14

CPU
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General Cache Concepts:  Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block 12 is needed

Request: 12 Block 12 is not in cache:
Miss!

Block 12 is fetched from
memory

Request: 12

12

12

12

Block 12 is stored in cache
• Placement policy:

determines where the new block goes
•Replacement policy:

determines which old block
gets evicted (victim)

Data is loaded from cache into CPU register 

CPU
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Inside a Cache

Data
Byte

Data
Byte A Cache Block100

304

6848

416

Data
Byte

Data
Byte

TagValid

0

1

0

1

1

1

▪ A “valid bit” indicates of a cache 
block contains valid data

– e.g., upon startup, the cache is “cold”: all 
cache blocks are invalid

– The cache is “warmed-up” gradually by 
bringing content into the cache

▪ A tag helps identify the memory 
block contained in the cache block 

– Disambiguate among multiple possible 
memory blocks that may be mapped to the 
same cache block 

▪ Cache capacity refers to the total 
size of cache blocks (not including 
Tag and Valid bits) 

20

CACHEProcessor Main
Memory 

Address Address

DataData



Memory Address Fields

• Offset: Byte address within a cache block

• Set Index: Selects which set

• Tag: Remaining portion of processor address

• Size of Set Index (SI) = log2(number of sets)

• Size of Offset = log2(number of bytes/block)

• Size of Tag = Address size – Size of SI - Size of Offset        

Memory Address

5/12/2025

OffsetTag Set Index
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Cache Organization

# ways (associativity)

# sets
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Tag Set Index Offset

#blocks = #ways * #sets

Use Set Index to 
select a set

Compare Tag to 
select a way

Tag Data
(Valid bit omitted)

Use Offset to find 
Byte address within 
cache block 

(Set Index 
increases 
from top 
to bottom)

SI identifies a set; Tag 

identifies the block within the 

set; Offset identifies the byte 

within the block (if cache hit).



Sources of Cache Misses (3 C’s)

• Compulsory: cold start, first access to a block
– Unavoidable misses that would occur even with infinite cache

– Can be reduced by increasing block size 

• Capacity: cache is too small to hold all data needed by the program
– Misses that would occur even under perfect replacement policy

– Can be reduced by increasing cache capacity 

• Conflict: collisions due to multiple memory addresses mapped to 
same cache set 
– Can be reduced by increasing associativity and/or increasing cache 

capacity
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Alternative Cache Organizations
• A memory block is mapped to one cache set, which may contain one or more 

cache blocks
• Direct Mapped (DM)

– Each cache set has 1 cache block; # cache sets = # cache blocks
– A memory block is mapped to 1 possible cache block

• N-way Set Associative (SA)
– Associativity = N → Each cache set has N cache blocks; # cache sets = # cache 

blocks/N
– A memory block can be mapped to one of N possible cache blocks

• Fully Associative (FA)
– A single cache set contains all cache blocks; # cache sets = 1
– A memory block can be mapped to any cache block

• DM and FA are special cases of SA 
– DM = 1-way SA (N = 1)
– FA = N-way SA (N = cache capacity (total # cache blocks))
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0 
1 
2 
3

Set Number

Cache
(4 blocks)

DM  2-way SA FA (4-way SA)
In set 0          In set 0              In set 0
(1 block)  (2 blocks) (4 blocks)
 

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory
(32 blocks)

Block Number

Alternative Cache Organizations (4-block cache)

Where are possible locations in cache that block #12 in memory can be placed?

0 
1 
0 
1

0
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Range of SA Cache Organizations
• memory_address_size = tag_size (T) + 

set_index_size (SI) + block_offset_size (O)

• For fixed cache size, increasing 
associativity decreases number of sets 
while increasing number of blocks per set.

• If we decrease index by 1 bit and increase 
tag by 1 bit (pushing the red bar to the 
right by 1 bit) :

– Doubled: #ways = #blocks per cache set = 
associativity

– Halved: #cache sets

OffsetSet IndexTag

Decreasing associativity,
lower way, more sets

Fully Associative (one set)
Tag + Offset, no Set IndexDirect Mapped

(only one way)
Smaller tag

Increasing associativity, 
higher way, less sets

Selects the setUsed for tag compare Selects the Byte in the block

Direct Mapped

0

1

1

1

01

11

10

00

0

0
1

2

3

Tag DataValidSetWay Tag DataValidSetWay

0

1 0
2

3

0101

1110

1010

0011

0

1

1

1

2-Way Set Associative

Tag DataValidSetWay

0

1

0
1

0
1

010

111

101

001

0

1

1

1

Fully Associative
5 4

Tag Offset

3 2 1 0
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4-Block Cache (Valid Bit Omitted)
Tag DataSet

0
1

2

3

Tag DataSet

0
1

0
1

Tag DataSet

0
1

Tag DataSetWay

0

1 0
2

3

0101

1110

1010

0011

Tag Data

Set 0

Tag Data Tag Data Tag Data

Way 0 Way 1 Way 2 Way 3

Tag Data

Redraw

Redraw

Way 0 Way 1

Direct-Mapped 2-way Set Associative

Fully Associative (4-way Set Associative)

05 123

OffsetTag Set Index
05 1

Offset
234

Tag Set Index

05 12

OffsetTag

# cache blocks = 1 way * 4 sets = 4 # cache blocks = 2 ways * 2 sets = 4

# cache blocks= 4 ways * 1 set = 4
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Higher associativity → More ways → fewer 
cache sets → cache structure is more “short 
(vertically) and fat (horizontally)”
Lower associativity → Fewer ways → more 
cache sets → cache structure is more “tall 
(vertically) and skinny (horizontally)”

0

Way Way

0

1



Bookshelf Analogy
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Tag Offset

Direct Mapped (associativity=1): Each cache set 

contains one block. A cache block can only go in one 

position in the cache. It makes a cache block easy to find, 

but it's not inflexible about where to put it.

Set Associative w/ low associativity: Each cache set 

contains 2 blocks. The index is used to find the set, and 

the tag is used to find the block within the set in case of 

cache hit.

Set Associative w/ high associativity: Each cache set 

contains 4 blocks, so there are fewer sets. As such, fewer 

index bits are needed.

Fully Associative: No index is needed, since a cache 

block can go anywhere in the cache. Every tag must be 

compared when finding a block in the cache, but block 

placement is very flexible.
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Bookshelf Analogy
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Associativity and Performance

▪ Increasing associativity:
– increases hit time because there are more cache blocks per set (books per 

partition) to compare the tags with to find a match

– reduces miss rate by reducing conflict misses, since block placement within 
each set (book placement within each partition) becomes more flexible

▪Decreasing associativity
– reduces hit time because there are fewer blocks per set (books per 

partition) to compare the tags with to find a match

– increases miss rate by increasing conflict misses, since block placement 
within each set (book placement within each partition) becomes less 
flexible (may cause Ping-Pong effect)
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Direct-Mapped Cache

Cache

Main Memory
Q: Given a memory block, which cache 
block is it mapped to? 
A: Use 2 middle index bits in memory 
address to determine which cache block 
it is mapped to
 00: mapped to blue block in cache
 01: mapped to green block in cache
 10: mapped to pink block in cache
 11: mapped to grey block in cache

Tag Data

6-bit memory address: 2-bit Tag, 2-bit Set 
Index, 2-bit Offset (4 Bytes/block).

Valid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Is the memory block in the cache? 
A: Compare 2 higher tag bits in memory 
address to the cache tag to tell if the 
memory block is in the cache (provided 
valid bit is set)

SetWay

0

00
01

10

11

Q: Which exact Byte address in the 
given cache block of 4 Bytes?
A: Use the Offset

5 4

Tag Set Index Offset

3 2 1 0
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DM Cache Example

Cache

Main Memory

Q: Given memory address 001110, is it in 
the cache?

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

0

1

1

1

01

11

10

00

Q: Given memory address 0100xx, is it in 
the cache?

Q: Given memory address 1110xx, is it in 
the cache?

0

0
1

2

3

Tag DataValidSetWay

6-bit memory address: 2-bit Tag, 2-bit Set 
Index, 2-bit Offset (4 Bytes/block).

5 4

Tag Set Index Offset

3 2 1 0
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Cache

Main Memory

Q: Given memory address 001110, is it in 
the cache?
A: Yes. First, 2 middle index bits (11) 
means that it is mapped to a grey block in 
cache; Second, the 2 higher tag bits (00) 
matches the tag in the grey block, with 
valid bit of 1; Finally, to get the exact Byte 
address, use the Offset of 10

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

0

1

1

1

01

11

10

00

Q: Given memory address 1110xx, is it in 
the cache?
A: No. First, 2 middle index bits (10) 
means that it is mapped to a pink block in 
cache, with valid bit of 1; Second, the 2 
higher tag bits (11) does not match the 
tag (10) in the pink block.

Q: Given memory address 0100xx, is it in 
the cache?
A: No. First, 2 middle bits (00) means that 
it is mapped to a blue block in cache; 
Second, the 2 higher tag bits (01) 
matches the tag in the blue block, with 
valid bit of 0, so cache block is invalid.

0

Tag DataValidSetWay

6-bit memory address: 2-bit Tag, 2-bit Set 
Index, 2-bit Offset (4 Bytes/block).

DM Cache Example

00
01

10

11

5 4

Tag Set Index Offset

3 2 1 0
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• Consider the sequence of 
memory block addresses (0 
and 4) referenced at 
runtime (Offset omitted):

– 0000xx (0), 0100xx (4), 
0000xx, 0100xx, 0000xx, 
0100xx, 0000xx, 0100xx

• They all map to Set 0, which 
contains 1 cache block

Cache

Main Memory

Tag DataValid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

SetWay

0

0
1

2

3

DM Cache w/ Ping Pong Effect

1 0001
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0000xx 0100xx 0000xx 0100xx

0000xx 0100xx 0000xx 0100xx

miss miss miss miss

miss miss miss miss

00    Mem(0) 00    Mem(0)
01 4

01    Mem(4)
000

00    Mem(0)

01 4

00    Mem(0)

01 4

00    Mem(0)

01 4

01    Mem(4)
000

01    Mem(4)

000

Start with an empty cache - all blocks 
initially marked as not valid

Ping-pong effect due to conflict misses - two memory addresses that map 
into the same cache block

• 8 requests, 8 misses

DM Cache w/ Ping Pong Effect
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• Consider the sequence of memory addresses referenced at runtime: 0000xx, 
0100xx, 0000xx, 0100xx, 0000xx, 0100xx, 0000xx, 0100xx. All mapped to Set 
0. 



2-Way Set-Associative Cache

Cache

Main Memory
Q: Given a memory block, which cache 
set is it mapped to? 
A: Use 1 middle index bits in memory 
address to determine which cache set it 
is mapped to
 0: mapped to blue set in cache
 1: mapped to pink set in cache

Tag Data

6-bit memory address: 3-bit Tag, 1-bit 
Set Index, 2-bit Offset (each cache block 
is 4 Bytes/1 Word).

ValidSet

Q: Is the memory block in the cache? 
A: Compare 3 higher tag bits in memory 
address to the cache tag to tell if the 
memory block is in the cache (provided 
valid bit is set)

Way

0

1

0
1

0
1

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

5 4

Tag Index Offset

3 2 1 0
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2-Way SA Cache Example
Main Memory

6-bit memory address: 3-bit Tag, 1-bit 
Set Index, 2-bit Offset (each cache block 
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Given memory address 0111xx, is it in 
the cache?

Q: Given memory address 0100xx, is it in 
the cache?

Q: Given memory address 1110xx, is it in 
the cache?

Cache

Tag DataValidSetWay

0

1

0
1

0
1

010

111

101

001

0

1

1

1

5 4

Tag Index Offset

3 2 1 0
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Q: Given memory address 0111xx, is it in 
the cache?
A: No. First, 1 middle index bit (1) means 
that it is mapped to pink set in cache; 
Second, the 3 higher tag bits (011) does 
not match any tag in the pink set (101 
and 001).
Q: Given memory address 0100xx, is it in 
the cache?
A: No. First, 1 middle index bit (0) means 
that it is mapped to blue set in cache; 
Second, the 3 higher tag bits (010) 
matches one of the tags in the blue set 
(010 and 111); Third, the valid bit of the 
corresponding cache block is 0.
Q: Given memory address 1110xx, is it in 
the cache?
A: Yes. First, 1 middle index bit (0) means 
that it is mapped to blue set in cache; 
Second, the 3 higher tag bits (111) 
matches one of the tags in the blue set 
(010 and 111); Third, the valid bit is 1.

Main Memory

6-bit memory address: 3-bit Tag, 1-bit 
Set Index, 2-bit Offset (each cache block 
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Cache

Tag DataValidSetWay

0

1

0
1

0
1

010

111

2-Way SA Cache Example

0

1

1

1

101

001

5 4

Tag Index Offset

3 2 1 0
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• Consider the sequence of 
memory block addresses (0 
and 4) referenced at 
runtime (Offset omitted):
– 0000xx (0), 0100xx (4), 

0000xx, 0100xx, 0000xx, 
0100xx, 0000xx, 0100xx

• They all map to Set 0, which 
contains 2 cache blocks. This 
avoids Ping Pong effect

2-Way SA Cache w/o Ping Pong Effect 

Cache

Main Memory

Tag DataValidSetWay

0

1

0
1

0
1

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

39
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2-Way SA Cache w/o Ping Pong Effect 

0000xx 0100xx 0000xx 0100xxmiss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache - all blocks 
initially marked as not valid

010    Mem(4) 010    Mem(4)

000    Mem(0) 000    Mem(0)

010    Mem(4)

• Two memory addresses that map into the same cache set can co-
exist in the 2-way SA cache, removes the Ping-Pong effect of DM 
cache

• 8 requests, 2 misses

5/12/2025

… …
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• Consider the sequence of memory addresses referenced at runtime: 0000xx, 
0100xx, 0000xx, 0100xx, 0000xx, 0100xx, 0000xx, 0100xx. All mapped to Set 
0. 



Fully-Associative Cache (4-way SA)
Main Memory

Q: Given a memory block, which cache 
set is it mapped to? 
A: There is only a single blue set.

6-bit memory address: 4-bit Tag, 0-bit 
Set Index, 2-bit Offset (each cache block 
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Is the exact memory block in the 
cache? 
A: Compare 4 higher tag bits in memory 
address to the cache tag to tell if the 
memory block is in the cache (provided 
valid bit is set)
Q: Which exact Byte address in a given 
cache block of 4 Bytes?
A: Use the Offset

Cache

Tag DataValidSetWay

0

1 0
2

3

Each memory block is 
mapped to anywhere in 
the cache set

5 4

Tag Offset

3 2 1 0
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FA Cache Example
Main Memory

6-bit memory address: 3-bit Tag, 1-bit 
Set Index, 2-bit Offset (each cache block 
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Given memory address 0011xx, is it in 
the cache?

Q: Given memory address 0100xx, is it in 
the cache?

Q: Given memory address 0101xx, is it in 
the cache?

Cache

Tag DataValidSetWay

0

1 0
2

3

0101

1110

1010

0011

0

1

1

1

5 4

Tag Offset

3 2 1 0
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Main Memory

6-bit memory address: 4-bit Tag, 0-bit 
Set Index, 2-bit Offset (each cache block 
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Given memory address 0011xx, is it in 
the cache?
A: Yes. The 4 higher tag bits (0011) 
matches one of the tags in the cache (the 
blue set), and the valid bit of the 
corresponding cache block is 1.

Q: Given memory address 0100xx, is it in 
the cache?
A: No. The 4 higher tag bits (0100) does 
not match any of the tags in the cache.

Q: Given memory address 0101xx, is it in 
the cache?
A: No. The 4 higher tag bits (0101) 
matches one of the tags in the blue set, 
but the valid bit of the corresponding 
cache block is 0.

Cache

Tag DataValidSetWay

0

1 0
2

3

0101

1110

1010

0011

FA Cache Example

0

1

1

1

5 4

Tag Offset

3 2 1 0
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• Consider the sequence of 
memory block addresses (0 
and 4) referenced at 
runtime (Offset omitted):
– 0000xx (0), 0100xx (4), 

0000xx, 0100xx, 0000xx, 
0100xx, 0000xx, 0100xx

• They all map to Set 0, which 
contains 4 cache blocks. This 
avoids Ping Pong effect

FA Cache w/o Ping Pong Effect 
Main Memory

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Cache

Tag DataValidSetWay

0

1 0
2

3

00001

01001
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FA Cache w/o Ping Pong Effect 

0000xx 0100xx 0000xx 0100xxmiss miss hit hit

000    Mem(0) 000    Mem(0)

Start with an empty cache - all blocks 
initially marked as not valid

010    Mem(1) 010    Mem(1)

000    Mem(0) 000    Mem(0)

010    Mem(1)

• Two memory addresses that map into the same cache set can co-
exist in the FA cache, removes the Ping-Pong effect of DM cache

• 8 requests, 2 misses

5/12/2025

… …

• Consider the sequence of memory addresses referenced at runtime: 0000xx, 
0100xx, 0000xx, 0100xx, 0000xx, 0100xx, 0000xx, 0100xx. All mapped to Set 
0. 
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Example: Calculate Number of Cache Misses
• Consider the following program that repeatedly accesses an 

array A of four words (4 bytes each):
   for (int i=0; i++, i<10000) {sum += A[0]+A[1]+A[2]+A[3];}

• Suppose A[0] starts at memory address 000000, then A[0], 
A[1], A[2], A[3] start at memory addresses 000000, 000100, 
001000, 001100, respectively, and this sequence of memory 
addresses are visited repeatedly in a cyclic manner. 

• 1) How many cache misses occur due to reading array A[] for a 
DM cache?

• 2) Answer the same questions for a two-way SA cache.

• 3) Answer the same questions for a FA cache.
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Example: DM Cache

Cache

Main Memory

Tag Data

A[0]

A[3]

A[1]

A[2]
Valid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

SetWay

0

00
01

10

11

DM cache: 4 misses
• 1st cache miss brings a block with address 

0000xx into cache Set 0, which contains A[0]
• 2nd cache miss brings a block with address 

0001xx into cache Set 1, which contains A[1]
• 3rd cache miss brings a block with address 

0010xx into cache Set 2, which contains A[2]
• 4th cache miss brings a block with address 

0011xx into cache Set 3, which contains A[3]
• All subsequent cache accesses are cache 

hits
• After 10000 iterations, 4 cache misses, 9996 

cache hits.
5 4

Tag Set Index Offset

3 2 1 0

A[0]001

A[1]001

A[2]001
A[3]001
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Example: 2-Way SA Cache
2-Way SA Cache: 4 misses
• 1st cache miss brings into cache a block with 

address 0000xx into Set 0, which contains 
A[0]

• 2nd cache miss brings into cache a block with 
address 0001xx into Set 1, which contains 
A[1]

• 3rd cache miss brings into cache a block with 
address 0010xx into Set 0, which contains 
A[2]

• 4th cache miss brings into cache a block with 
address 0011xx into Set 1, which contains 
A[3]

• All subsequent cache accesses are cache hits
• After 10000 iterations, 4 cache misses, 9996 

cache hits

Cache

Main Memory

Tag Data

A[0]

A[1]

ValidSet
A[2]

A[3]Way

0

1

0
1

0
1

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

1 A[0]000

1 A[2]001

1 000 A[1]

1 001 A[3]

5 4

Tag Index Offset

3 2 1 0
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Example: FA Cache

Cache

Main Memory

Tag Data

A[0]

A[1]

Valid
A[2]

A[3]

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

SetWay

0

0

1

2

3

5 4

Tag Offset

3 2 1 0

FA cache: 4 misses with LRU (Least-Recently-Used) 
replacement policy
• 1st cache miss brings into cache a block with 

address 0000xx into Set 0, which contains A[0]
• 2nd cache miss brings into cache a block with 

address 0001xx into Set 0, which contains A[1]
• 3rd cache miss brings into cache a block with 

address 0010xx into Set 0, which contains A[2]
• 4th cache miss brings into cache a block with 

address 0011xx into Set 0, which contains A[3]
• All subsequent cache accesses are cache hits
• After 10000 iterations, 4 cache misses, 9996 

cache hits.

1 A[0]0000

1 A[1]0001

1 A[2]0010
1 A[3]0011
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Tradeoffs of Cache Block Sizes

• Smaller cache blocks → more fine-grained caching → take 
better advantage of temporal locality

– A given data item stays in the cache longer before getting replaced

• Larger cache blocks → more coarse-grained caching, take 
better advantage of spatial locality

– Fetching each cache block brings in lots of data at nearby addresses 
into the cache

50



DM Cache: Memory Access Example

0 1 2 3

4 3 4 15

• Consider 6-bit memory address with Tag 2b; Index 2b; Offset 2b (We ignore Byte offset bits, 
and only consider 4-bit word addresses: Tag 2b; Index 2b)

• Start with an empty cache - all blocks initially marked as not valid. Fill in the cache state table 
below for the sequence of memory address accesses: 

00    Mem(0) 00    Mem(0)

00    Mem(1)
00    Mem(0) 00    Mem(0)

00    Mem(1)

00    Mem(2)

miss miss miss miss

miss misshit hit

00    Mem(0)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01    Mem(4)

00    Mem(1)

00    Mem(2)

00    Mem(3)

01 (4)

11 (15)

00    Mem(1)

00    Mem(2)

00    Mem(3)

0000 0001 0010 0011 0100 0011 0100 1111

Time

Time
• 8 requests, 6 misses

5 4

Tag Set Index Offset

3 2 1 0

51

0       1        2       3        4        3        4      15



DM cache: larger block size helps take advantage of 
spatial locality 

0 1 2

3 4 3

4 15

00    Mem(1)    Mem(0)

miss

00    Mem(1)    Mem(0)

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

hit

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)

miss

00    Mem(3)    Mem(2)

00    Mem(1)    Mem(0)
01 (5) (4)

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

hit

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

00    Mem(3)    Mem(2)

01    Mem(5)    Mem(4)

miss

11

(15) (14)
• 8 requests, 4 misses

• Each cache block holds 2 words; so Tag 2b; Index 1b; Offset 3b for Byte address (we use 

Offset 1b to refer to 1 of 2 words in block, not Bytes.)

                                         0     1      2       3       4     3     4     15Start with an empty cache - all 

blocks initially marked as not valid 0000 0001 0010 0011 0100 0011 0100 1111
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Second
Level
Cache
(SRAM)

Associativity in the Memory Hierarchy

CPU Control

CPU
Datapath

Secondary
Memory
(Disk
Or Flash)

On-Chip Components

R
egFile

Main
Memory
(DRAM)

D
ata

C
ach

e
In

str
C

ach
e

Speed (cycles):        ½’s                     1’s                    10’s                       100’s               1,000,000’s

Size (bytes):    100B’s   10KB’s               MB’s                      GB’s                      TB’s

• The closer to the CPU (e.g., L1/L2 cache), the lower associativity (e.g., Direct Mapped), to minimize 
hit time, since CPU needs to access cache contents fast

• The farther away from the CPU (e.g., Last-Level Cache), the higher associativity (e.g., Fully-
Associative), to minimize miss rate, since cache misses will go to main memory, which is very slow

• Main memory can be viewed a “cache” for disk or Flash, and it is a Fully-Associative cache 

Cost/bit:         highest                                                                                                 lowest
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Summary of Cache Organizations
• A memory block is mapped to one cache set, which may contain 

one or more cache blocks
• Direct Mapped (DM)

– Each cache set has 1 cache block; # cache sets = # cache blocks
– A memory block is mapped to 1 possible cache block

• Fully Associative (FA)
– A single cache set contains all cache blocks; # cache sets = 1
– A memory block can be mapped to any cache block

• N-way Set Associative (SA)
– Each cache set has N cache blocks; # cache sets = # cache blocks / N
– N is also called associativity
– A memory block can be mapped to one of N possible cache blocks

• DM and FA are special cases of SA 
– DM = 1-way SA (N = 1)
– FA = N-way SA (N = total number of cache blocks)
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Key Equations

OffsetTag Set Index

# sets = 2SI size; # Bytes/block=2Offset size

# blocks = # ways (associativity) * # sets
cache capacity  = # blocks * # Bytes/block

SI size determines 
# sets = 2SI size

Offset size determines 
Bytes/block = 2Offset size

Tag size does not affect cache 
capacity; depends on memory 
address length
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Cache Example

• Assume: DM cache; 6-bit memory address: 2-bit Tag, 2-bit index, 2-bit Offset. 
Compute cache capacity and memory size.
– 2-bit Offset => Bytes/block = 4; 

– # sets = 2SI Size = 4

– # cache blocks = # ways * # sets = 1*4 = 4

– cache capacity  = # cache blocks * Bytes/block = 4*4 = 16B

• Memory size: 2^4 (2-bit tag +2-bit SI) = 16 blocks = 64 Bytes

05 1

Byte Within Block

Offset

23

Block Within $

4

Mem Block Within $Block

Tag Set Index

# sets = 2SI size; # Bytes/block=2Offset size

# blocks = # ways (associativity) * # sets
cache capacity  = # blocks * # Bytes/block
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Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2 
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

Alternative Cache Organizations (8-block cache)

Where are possible locations in cache that block #12 in memory can be placed?

DM  2-way SA     4-way SA       FA(8-way SA)
In set 4          In set 0              In set 0         In set 0
(1 block)  (2 blocks) (4 blocks)      (8 blocks)
 

0 
1 
2 
3
4
5
6
7

0 
1 
2 
3
0
1
2
3

0 
1 
0 
1
0
1
0
1

0 
1 
0 
1
0
1
0
1
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8-Block Cache
• Each color denotes a cache set

Set 0

Set 1

Set 2

DM: 
8 sets
1 way

Set 4

Set 5

Set 6

Set 7

Set 0

Set 0

Set 0

Set 0

FA: 1 set
1 set,
8 ways

Set 0

Set 0

Set 0

Set 0

2-Way SA: 
4 sets, 
2 ways

Set 0

Set 1

Set 2

Set 3

4-Way SA: 
2 sets,
4 ways Set 0

Set 1

0N-1 1

O
245

Tag S.I O O O
0N-1 1234 0N-1 123 0N-1 12

Tag

# cache blocks = 1 way * 8 sets =8 # cache blocks = 2 ways * 4 sets =8 # cache blocks = 4 ways * 2 sets =8 # cache blocks = 8 ways * 1 set =8

Tag S.I Tag S.I

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Set 3

Set 0

Set 1

Set 0

Set 0

Set 1

Set 0

Set 1

Set 1
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8-Block Cache Summary
• Cache: 8 blocks, each 4 Bytes. # cache 

blocks is equal to number of sets x 
associativity. 

• For fixed cache size, increasing 
associativity decreases number of sets 
while increasing number of blocks per 
set. 
– DM (1-way SA): 8 sets x 1 block per set 
– 2-way SA: 4 sets x 2 blocks per set
– 4-way SA: 2 sets x 4 blocks per set
– FA (4-way SA): 1 set x 8 blocks per set

• Higher associativity → More ways → 
fewer cache sets → cache structure is 
more “short (vertically) and fat 
(horizontally)”

• Lower associativity → Fewer ways → 
more cache sets → cache structure is 
more “tall (vertically) and skinny 
(horizontally)”

59



YouTube: How Cache Works Inside a CPU

60

How Cache Works Inside a CPU
https://www.youtube.com/watch?v=zF4VMombo7U&list=PL38NNHQLqJqYnNrTenxBvGJSPC
kV9EOWk&index=1 

DM Cache

DM Cache SA Cache

FA Cache

https://www.youtube.com/watch?v=zF4VMombo7U&list=PL38NNHQLqJqYnNrTenxBvGJSPCkV9EOWk&index=1
https://www.youtube.com/watch?v=zF4VMombo7U&list=PL38NNHQLqJqYnNrTenxBvGJSPCkV9EOWk&index=1


Outline

• Cache Introduction

• Cache Organization

• Cache Performance Analysis
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Cache (Performance) Terms

• Hit rate: fraction of accesses that hit in the cache

• Miss rate: 1 – Hit rate

• Miss penalty: time to access a block from lower level in 
memory hierarchy

• Hit time: time to access cache memory (including tag 
comparison)
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Average Memory Access Time (AMAT)

• Average Memory Access Time (AMAT) is the average time to 
access memory considering both hits and misses in the cache

 AMAT =  Hit rate * Hit time + Miss rate * Miss  time

  = (1 – Miss rate)*Hit time  +  Miss rate * (Hit time + 
Miss penalty)

  = Hit time + Miss rate * Miss penalty

• For single-level cache, Miss penalty = Memory access time, 
since Miss time = Memory access time + Hit time
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AMAT Example

AMAT =  Hit time + Miss rate * Miss penalty

• Given a 200 psec clock, a miss penalty of 50 clock cycles, a miss 
rate of 2%, and a cache hit time of 1 clock cycle, what is AMAT?

  A : ≤200 psec

  B : 400 psec

  C : 600 psec

 D : ≥ 800 psec

64

AMAT=(1+.02*50)*200=400 psec



Cache Replacement Policies
• Random Replacement

– A cache block is randomly selected to evict

• Least-Recently Used
– Hardware keeps track of access history

– Replace the entry that has not been used for the longest time

– For 2-way SA cache, one bit per set → set to 1 when a block is referenced; reset the other way’s 
bit to 0; always replace the block with bit=0.

– For N-way SA cache, can be expensive to implement

• Example of a simple “Pseudo” LRU Implementation for 64-way SA cache
– Replacement pointer points to one cache entry

– Whenever access is made to the entry the pointer points to:
• Move the pointer to the next entry

– Otherwise: do not move the pointer

– (example of “not-most-recently used” replacement policy)

65

:

Entry 0

Entry 1

Entry  63

Replacement

Pointer



Benefits of Set-Associative Caches
• Choice of DM $ versus SA $ depends on the cost of a miss versus the cost of 

implementation

• Largest gains are in going from direct mapped to 2-way (20%+ reduction in 
miss rate)
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Reduce AMAT

• Reduce hit time
–e.g., smaller cache, lower associativity

• Reduce miss rate
–e.g., larger cache, higher associativity

• Reduce miss penalty
–e.g., multiple-level cache hierarchy

• Need to balance cache parameters (Capacity, 
associativity, block size)
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Recall: Sources of Cache Misses (3 C’s)

• Compulsory: cold start, first access to a block
– Misses that would occur even with infinite cache
– Can be reduced by increasing block size 

• Capacity: cache is too small to hold all data needed by the program
– Misses that would occur even under perfect replacement policy
– Can be reduced by increasing cache capacity 

• Conflict: collisions due to multiple memory addresses mapped to 
same cache set 
– Recall the ping-pong cache example
– Can be reduced by increasing associativity and/or increasing cache 

capacity
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Effect of Cache Parameters on Performance

• Larger cache size
+ reduces capacity and conflict misses  
- Increases hit time

• Higher associativity
+ reduces conflict misses, and the overall miss rate
- increases hit time

• Larger block size
+ reduces compulsory misses
- increases conflict misses and miss penalty
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Improving Cache Performance

• Reduce hit time
– e.g., smaller cache, lower associativity

• Reduce miss rate
– e.g., larger cache, higher associativity

• Reduce miss penalty
– e.g., multiple-level cache hierarchy

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost

AMAT =  Hit time  +  Miss rate x Miss penalty

70

(Associativity)

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B



Multiple Cache Levels

L1$

L2$

Main Memory

CPU Mem
Access Miss

Hit

Miss

Hit

Path of Data Back to CPU

71L1 cache size < L2 cache size << memory size



Local vs. Global Miss Rates
• Local miss rate – the fraction of references to one level of a cache that miss

– L2 Local Miss Rate = L2 Misses / L1 Misses

• Global miss rate – the fraction of references that miss in all levels of caches and must go to 
memory
• Global Miss rate = L2 Misses / Total Accesses
• = (L2 Misses / L1 Misses) × (L1 Misses / Total Accesses)
• = L2 Local Miss Rate × L1 Local Miss Rate

• With L1 cache only:
• AMAT = Hit Time +  Miss rate × Miss penalty

• With 2-level cache hierarchy (L1+L2):
• L1 Miss Penalty = L2 AMAT; L2 Miss Penalty = Memory access time
• AMAT = L1 Hit Time + L1 Local Miss rate × 

(L2 Hit Time + L2 Local Miss rate × L2 Miss penalty)

• With 3-level cache hierarchy (L1+L2+L3):
• L1 Miss Penalty = L2 AMAT; L2 Miss Penalty = L3 AMAT; L3 Miss Penalty = Memory access time
• AMAT = L1 Hit Time + L1 Local Miss rate × 

(L2 Hit Time + L2 Local Miss rate × (L3 Hit Time + L3 Local Miss rate × L3 Miss penalty))
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AMAT Example

• L1 Hit Time: 1 cycle, L1 Miss Rate: 2% 

• L2 Hit Time: 5 cycles, L2 Miss Rate: 5%

• Main Memory access time: 100 cycles 

• No L2 Cache:

– AMAT = 1 + .02*100 = 3

• With L2 Cache:

– AMAT = 1 + .02*(5 + .05*100) = 1.2

73



Multilevel Cache Considerations

• Different design considerations for L1 Cache and LLC (Last Level 
Cache)

– L1 Cache design should focus on fast access: minimize hit time to 
achieve shorter clock cycle, e.g., with smaller size, lower associativity; 
miss penalty is small thanks to L2 and lower caches, so higher miss rate 
is OK

– LLC design should focus on low miss rate: miss penalty due to main 
memory access is very large, e.g., with larger size, higher associativity

• c.f., Slide “Associativity in the Memory Hierarchy”
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Summary

• Cache – copy of data in lower level of memory hierarchy
• Principle of locality:

– Program likely to access a relatively small range of memory addresses at any instant of time.
• Temporal locality vs. spatial locality

• Cache organizations:
– Direct Mapped: 1 block per set
– N-way Set Associative: N blocks per set, N possible places in cache to hold a given memory block
– Fully Associative: all blocks in 1 set

• Increasing associativity helps to reduce miss rate, but increases runtime overhead
• Calculation of AMAT
• Three major categories of cache misses:

– Compulsory Misses; Conflict Misses; Capacity Misses
• Multi-level caches

– Optimize 1st level to minimize hit time
– Optimize last level to minimize miss rate

• Lots of cache parameters (large design space)
– Block size, cache size, associativity, etc.
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