
CSC 112: Computer Operating Systems
Lecture 7

Memory System I: Cache

Department of Computer Science,

Hofstra University

Outline

• Cache Introduction

• Cache Organization

• Cache Performance Analysis

2

Why are Large Memories Slow?
Library Analogy

• Time to find a book in a large library
– Search a large card catalog – (mapping

title/author to index number)
– Round-trip time to walk to the stacks and

retrieve the desired book

• Both delays become larger for larger
libraries

• Computer memories have same issue,
plus the technologies used to store a bit
slow down as density increases (e.g.,
SRAM vs. DRAM vs. Disk)

However, what we want is a large yet fast memory!

3

Processor-DRAM Gap (Latency)

1980 microprocessor executes ~one instruction in same time as DRAM access
2017 microprocessor executes ~1000 instructions in same time as DRAM access

Memory wall: memory access likely to be the performance bottleneck

4

What To Do: Library Analogy

• Write a report using library books

• Go to library (main memory), look up relevant books, fetch
from stacks, and place on your desk (cache)

• If need more, check them out and keep them on your desk

– But don’t return earlier books since might need them

• You hope this collection of a few books on your desk
enough to write report, even though they are a tiny fraction
of all books in the library

5

Memory Hierarchy

Cache
Small, Fast

(SRAM)

• Capacity: register << cache (typically on-chip) << memory (off-chip)
• Latency: register << cache (typically on-chip) << memory (off-chip)

On a data access:
if data  cache  cache hit  low latency access (SRAM)
if data  cache  cache miss  high latency access (DRAM, Flash)

Goal: create the illusion of accessing as much memory as is available in the slow
memory at the speed of the fast cache

CPU
Big, Slow Memory

(DRAM, Flash)

holds hot (frequently-used) data

Registers

6

Memory Hierarchy Technologies
• Caches use SRAM (Static Random Access

Memory) for speed and technology
compatibility
– Fast (typical access times of 0.5 to 2.5 ns)

– Low density (6 transistor cells), higher power,
expensive

– Static: content will last as long as power is on

• Main memory uses DRAM (Dynamic RAM) for
size and density
– Slower (typical access times of 50 to 70 ns)

– High density (1 transistor cells), lower power, cheaper

– Dynamic: needs to be “refreshed” regularly (every ~8
ms)
• Consumes 1% to 2% of the active cycles of the DRAM

7

Processor

Size of memory at each level

Increasing
distance

from
processor,
decreasing

speed

Level 1

Level 2

Level n

Level 3

. . .

Inner

Outer

Levels in
memory
hierarchy

As we move to lower levels, latency goes up
 and price per bit goes down.

The Complete Memory Hierarchy
TLB: stores mappings of virtual
addresses to physical addresses

PT: Page Table

8

Secondary

 Storage

(Disk)

Processor

Main

Memory

(DRAM)

1
10,000,000

 (10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

0.3 3

10kBs 100kBs

Secondary

 Storage

(SSD)

100,000

(0.1 ms)

100GBs

Managed in
Hardware

Managed in Software - OS

PT

PT

PT
PT

TLB

TLB

Accessed in Hardware

?

How is the Hierarchy Managed?

• Registers  memory hierarchy

– By compiler (or assembly programmer)

• Cache  main memory

– By the cache controller hardware

– Focus of this lecture

• Main memory  disks (secondary storage)

– By the operating system (virtual memory)

– By the programmer (files)

9

Principle of Locality

• Principle of Locality: Programs access small portion of address space at any
instant of time (spatial locality) and repeatedly access that portion (temporal
locality)

• Temporal Locality (locality in time)
– Go back to same book on desk multiple times
– If a memory location is referenced, then it will tend to be referenced again soon

• Keep recently-accessed blocks in the cache

• Spatial Locality (locality in space)
– When go to book shelf, pick up multiple books around the book you want, since library

stores related books together
– If a memory location is referenced, the locations with nearby addresses will tend to be

referenced soon
• When fetching a block into cache, also fetch blocks around it

• If the program has poor temporal or spatial locality, then lots of useless junk may
be brought into cache

10

What locality does this program have?

• Data:
– Temporal locality: variable sum is referenced in every iteration

– Spatial locality: array a[] is accessed with stride 1 in each iteration (assuming a[]
is stored in contiguous addresses in memory)

• Instructions:
– Temporal locality: the loop body is executed repeatedly for n times

– Spatial locality: instructions are accessed sequentially (with 1 branch in each
iteration) (assuming instructions are stored in contiguous addresses in memory)

int sum = 0, a[n];

…

for (i = 0; i < n; i++) {

 sum += a[i];

}

return sum;

11

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory.
IBM Systems Journal 10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Spatial
Locality

Temporal
 Locality

5/12/2025
12

Memory Reference Patterns

Address

Time

Instruction
 fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

5/12/2025
13

Outline

• Cache Introduction

• Cache Organization

• Cache Performance Analysis

14

Processor

Control

Datapath

Processor with Cache

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Cache

Processor organized
around words and bytes

Memory (including
cache) organized
around blocks,

which are typically
multiple words

15

Cache vs. Memory
• Cache size << memory size

– Smaller cache is faster

• 1-to-many correspondence between cache blocks and
memory blocks
–Use Tags in the cache to match cache and memory blocks

• A cache block is also called a cache line
• Blocks are aligned in memory:

– if each cache block is 4 Bytes (1 word), then binary address of
each cache block always ends in 00

– If each cache block is 8 Bytes (2 words), then binary address
each cache block always ends in 000

16

Cache Blocks

• Larger, slower, cheaper memory.

• Smaller, faster, more expensive
memory

• Typical block size: 1 – 4 words (4 – 16
Bytes)

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

14

CPU

17

General Cache Concepts: Hit

Data in block 14 is needed

Block 14 is in cache:
Hit!

Data is loaded from cache into CPU register

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Request: 14

14

CPU

18

General Cache Concepts: Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block 12 is needed

Request: 12 Block 12 is not in cache:
Miss!

Block 12 is fetched from
memory

Request: 12

12

12

12

Block 12 is stored in cache
• Placement policy:

determines where the new block goes
•Replacement policy:

determines which old block
gets evicted (victim)

Data is loaded from cache into CPU register

CPU

19

Inside a Cache

Data
Byte

Data
Byte A Cache Block100

304

6848

416

Data
Byte

Data
Byte

TagValid

0

1

0

1

1

1

▪ A “valid bit” indicates of a cache
block contains valid data

– e.g., upon startup, the cache is “cold”: all
cache blocks are invalid

– The cache is “warmed-up” gradually by
bringing content into the cache

▪ A tag helps identify the memory
block contained in the cache block

– Disambiguate among multiple possible
memory blocks that may be mapped to the
same cache block

▪ Cache capacity refers to the total
size of cache blocks (not including
Tag and Valid bits)

20

CACHEProcessor Main
Memory

Address Address

DataData

Memory Address Fields

• Offset: Byte address within a cache block

• Set Index: Selects which set

• Tag: Remaining portion of processor address

• Size of Set Index (SI) = log2(number of sets)

• Size of Offset = log2(number of bytes/block)

• Size of Tag = Address size – Size of SI - Size of Offset

Memory Address

5/12/2025

OffsetTag Set Index

21

Cache Organization

ways (associativity)

sets

22

Tag Set Index Offset

#blocks = #ways * #sets

Use Set Index to
select a set

Compare Tag to
select a way

Tag Data
(Valid bit omitted)

Use Offset to find
Byte address within
cache block

(Set Index
increases
from top
to bottom)

SI identifies a set; Tag

identifies the block within the

set; Offset identifies the byte

within the block (if cache hit).

Sources of Cache Misses (3 C’s)

• Compulsory: cold start, first access to a block
– Unavoidable misses that would occur even with infinite cache

– Can be reduced by increasing block size

• Capacity: cache is too small to hold all data needed by the program
– Misses that would occur even under perfect replacement policy

– Can be reduced by increasing cache capacity

• Conflict: collisions due to multiple memory addresses mapped to
same cache set
– Can be reduced by increasing associativity and/or increasing cache

capacity

23

Alternative Cache Organizations
• A memory block is mapped to one cache set, which may contain one or more

cache blocks
• Direct Mapped (DM)

– Each cache set has 1 cache block; # cache sets = # cache blocks
– A memory block is mapped to 1 possible cache block

• N-way Set Associative (SA)
– Associativity = N → Each cache set has N cache blocks; # cache sets = # cache

blocks/N
– A memory block can be mapped to one of N possible cache blocks

• Fully Associative (FA)
– A single cache set contains all cache blocks; # cache sets = 1
– A memory block can be mapped to any cache block

• DM and FA are special cases of SA
– DM = 1-way SA (N = 1)
– FA = N-way SA (N = cache capacity (total # cache blocks))

24

0
1
2
3

Set Number

Cache
(4 blocks)

DM 2-way SA FA (4-way SA)
In set 0 In set 0 In set 0
(1 block) (2 blocks) (4 blocks)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory
(32 blocks)

Block Number

Alternative Cache Organizations (4-block cache)

Where are possible locations in cache that block #12 in memory can be placed?

0
1
0
1

0

25

Range of SA Cache Organizations
• memory_address_size = tag_size (T) +

set_index_size (SI) + block_offset_size (O)

• For fixed cache size, increasing
associativity decreases number of sets
while increasing number of blocks per set.

• If we decrease index by 1 bit and increase
tag by 1 bit (pushing the red bar to the
right by 1 bit) :

– Doubled: #ways = #blocks per cache set =
associativity

– Halved: #cache sets

OffsetSet IndexTag

Decreasing associativity,
lower way, more sets

Fully Associative (one set)
Tag + Offset, no Set IndexDirect Mapped

(only one way)
Smaller tag

Increasing associativity,
higher way, less sets

Selects the setUsed for tag compare Selects the Byte in the block

Direct Mapped

0

1

1

1

01

11

10

00

0

0
1

2

3

Tag DataValidSetWay Tag DataValidSetWay

0

1 0
2

3

0101

1110

1010

0011

0

1

1

1

2-Way Set Associative

Tag DataValidSetWay

0

1

0
1

0
1

010

111

101

001

0

1

1

1

Fully Associative
5 4

Tag Offset

3 2 1 0

26

5 4

Tag Index Offset

3 2 1 05 4

Tag Set Index Offset

3 2 1 0

4-Block Cache (Valid Bit Omitted)
Tag DataSet

0
1

2

3

Tag DataSet

0
1

0
1

Tag DataSet

0
1

Tag DataSetWay

0

1 0
2

3

0101

1110

1010

0011

Tag Data

Set 0

Tag Data Tag Data Tag Data

Way 0 Way 1 Way 2 Way 3

Tag Data

Redraw

Redraw

Way 0 Way 1

Direct-Mapped 2-way Set Associative

Fully Associative (4-way Set Associative)

05 123

OffsetTag Set Index
05 1

Offset
234

Tag Set Index

05 12

OffsetTag

cache blocks = 1 way * 4 sets = 4 # cache blocks = 2 ways * 2 sets = 4

cache blocks= 4 ways * 1 set = 4

27

Higher associativity → More ways → fewer
cache sets → cache structure is more “short
(vertically) and fat (horizontally)”
Lower associativity → Fewer ways → more
cache sets → cache structure is more “tall
(vertically) and skinny (horizontally)”

0

Way Way

0

1

Bookshelf Analogy

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

Tag Index Offset

Tag Index Offset

Tag Index Offset

Tag Offset

Direct Mapped (associativity=1): Each cache set

contains one block. A cache block can only go in one

position in the cache. It makes a cache block easy to find,

but it's not inflexible about where to put it.

Set Associative w/ low associativity: Each cache set

contains 2 blocks. The index is used to find the set, and

the tag is used to find the block within the set in case of

cache hit.

Set Associative w/ high associativity: Each cache set

contains 4 blocks, so there are fewer sets. As such, fewer

index bits are needed.

Fully Associative: No index is needed, since a cache

block can go anywhere in the cache. Every tag must be

compared when finding a block in the cache, but block

placement is very flexible.

B

o

o

k

B

o

o

k

28

Bookshelf Analogy

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

B

o

o

k

29

Tag DataSet

0
1

2

3

Direct-Mapped

0

Way

Tag DataSet

0
1

Tag Data

Way 0 Way 1

2-way Set Associative

Tag Data

Set 0

Tag Data Tag Data Tag Data

Way 0 Way 1 Way 2 Way 3

Fully Associative (4-way Set Associative)

Associativity and Performance

▪ Increasing associativity:
– increases hit time because there are more cache blocks per set (books per

partition) to compare the tags with to find a match

– reduces miss rate by reducing conflict misses, since block placement within
each set (book placement within each partition) becomes more flexible

▪Decreasing associativity
– reduces hit time because there are fewer blocks per set (books per

partition) to compare the tags with to find a match

– increases miss rate by increasing conflict misses, since block placement
within each set (book placement within each partition) becomes less
flexible (may cause Ping-Pong effect)

30

Direct-Mapped Cache

Cache

Main Memory
Q: Given a memory block, which cache
block is it mapped to?
A: Use 2 middle index bits in memory
address to determine which cache block
it is mapped to
 00: mapped to blue block in cache
 01: mapped to green block in cache
 10: mapped to pink block in cache
 11: mapped to grey block in cache

Tag Data

6-bit memory address: 2-bit Tag, 2-bit Set
Index, 2-bit Offset (4 Bytes/block).

Valid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Is the memory block in the cache?
A: Compare 2 higher tag bits in memory
address to the cache tag to tell if the
memory block is in the cache (provided
valid bit is set)

SetWay

0

00
01

10

11

Q: Which exact Byte address in the
given cache block of 4 Bytes?
A: Use the Offset

5 4

Tag Set Index Offset

3 2 1 0

31

DM Cache Example

Cache

Main Memory

Q: Given memory address 001110, is it in
the cache?

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

0

1

1

1

01

11

10

00

Q: Given memory address 0100xx, is it in
the cache?

Q: Given memory address 1110xx, is it in
the cache?

0

0
1

2

3

Tag DataValidSetWay

6-bit memory address: 2-bit Tag, 2-bit Set
Index, 2-bit Offset (4 Bytes/block).

5 4

Tag Set Index Offset

3 2 1 0

32

Cache

Main Memory

Q: Given memory address 001110, is it in
the cache?
A: Yes. First, 2 middle index bits (11)
means that it is mapped to a grey block in
cache; Second, the 2 higher tag bits (00)
matches the tag in the grey block, with
valid bit of 1; Finally, to get the exact Byte
address, use the Offset of 10

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

0

1

1

1

01

11

10

00

Q: Given memory address 1110xx, is it in
the cache?
A: No. First, 2 middle index bits (10)
means that it is mapped to a pink block in
cache, with valid bit of 1; Second, the 2
higher tag bits (11) does not match the
tag (10) in the pink block.

Q: Given memory address 0100xx, is it in
the cache?
A: No. First, 2 middle bits (00) means that
it is mapped to a blue block in cache;
Second, the 2 higher tag bits (01)
matches the tag in the blue block, with
valid bit of 0, so cache block is invalid.

0

Tag DataValidSetWay

6-bit memory address: 2-bit Tag, 2-bit Set
Index, 2-bit Offset (4 Bytes/block).

DM Cache Example

00
01

10

11

5 4

Tag Set Index Offset

3 2 1 0

33

• Consider the sequence of
memory block addresses (0
and 4) referenced at
runtime (Offset omitted):

– 0000xx (0), 0100xx (4),
0000xx, 0100xx, 0000xx,
0100xx, 0000xx, 0100xx

• They all map to Set 0, which
contains 1 cache block

Cache

Main Memory

Tag DataValid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

SetWay

0

0
1

2

3

DM Cache w/ Ping Pong Effect

1 0001

34

0000xx 0100xx 0000xx 0100xx

0000xx 0100xx 0000xx 0100xx

miss miss miss miss

miss miss miss miss

00 Mem(0) 00 Mem(0)
01 4

01 Mem(4)
000

00 Mem(0)

01 4

00 Mem(0)

01 4

00 Mem(0)

01 4

01 Mem(4)
000

01 Mem(4)

000

Start with an empty cache - all blocks
initially marked as not valid

Ping-pong effect due to conflict misses - two memory addresses that map
into the same cache block

• 8 requests, 8 misses

DM Cache w/ Ping Pong Effect

35

• Consider the sequence of memory addresses referenced at runtime: 0000xx,
0100xx, 0000xx, 0100xx, 0000xx, 0100xx, 0000xx, 0100xx. All mapped to Set
0.

2-Way Set-Associative Cache

Cache

Main Memory
Q: Given a memory block, which cache
set is it mapped to?
A: Use 1 middle index bits in memory
address to determine which cache set it
is mapped to
 0: mapped to blue set in cache
 1: mapped to pink set in cache

Tag Data

6-bit memory address: 3-bit Tag, 1-bit
Set Index, 2-bit Offset (each cache block
is 4 Bytes/1 Word).

ValidSet

Q: Is the memory block in the cache?
A: Compare 3 higher tag bits in memory
address to the cache tag to tell if the
memory block is in the cache (provided
valid bit is set)

Way

0

1

0
1

0
1

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

5 4

Tag Index Offset

3 2 1 0

36

2-Way SA Cache Example
Main Memory

6-bit memory address: 3-bit Tag, 1-bit
Set Index, 2-bit Offset (each cache block
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Given memory address 0111xx, is it in
the cache?

Q: Given memory address 0100xx, is it in
the cache?

Q: Given memory address 1110xx, is it in
the cache?

Cache

Tag DataValidSetWay

0

1

0
1

0
1

010

111

101

001

0

1

1

1

5 4

Tag Index Offset

3 2 1 0

37

38

Q: Given memory address 0111xx, is it in
the cache?
A: No. First, 1 middle index bit (1) means
that it is mapped to pink set in cache;
Second, the 3 higher tag bits (011) does
not match any tag in the pink set (101
and 001).
Q: Given memory address 0100xx, is it in
the cache?
A: No. First, 1 middle index bit (0) means
that it is mapped to blue set in cache;
Second, the 3 higher tag bits (010)
matches one of the tags in the blue set
(010 and 111); Third, the valid bit of the
corresponding cache block is 0.
Q: Given memory address 1110xx, is it in
the cache?
A: Yes. First, 1 middle index bit (0) means
that it is mapped to blue set in cache;
Second, the 3 higher tag bits (111)
matches one of the tags in the blue set
(010 and 111); Third, the valid bit is 1.

Main Memory

6-bit memory address: 3-bit Tag, 1-bit
Set Index, 2-bit Offset (each cache block
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Cache

Tag DataValidSetWay

0

1

0
1

0
1

010

111

2-Way SA Cache Example

0

1

1

1

101

001

5 4

Tag Index Offset

3 2 1 0

38

• Consider the sequence of
memory block addresses (0
and 4) referenced at
runtime (Offset omitted):
– 0000xx (0), 0100xx (4),

0000xx, 0100xx, 0000xx,
0100xx, 0000xx, 0100xx

• They all map to Set 0, which
contains 2 cache blocks. This
avoids Ping Pong effect

2-Way SA Cache w/o Ping Pong Effect

Cache

Main Memory

Tag DataValidSetWay

0

1

0
1

0
1

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

39

0001

0101

2-Way SA Cache w/o Ping Pong Effect

0000xx 0100xx 0000xx 0100xxmiss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all blocks
initially marked as not valid

010 Mem(4) 010 Mem(4)

000 Mem(0) 000 Mem(0)

010 Mem(4)

• Two memory addresses that map into the same cache set can co-
exist in the 2-way SA cache, removes the Ping-Pong effect of DM
cache

• 8 requests, 2 misses

5/12/2025

… …

40

• Consider the sequence of memory addresses referenced at runtime: 0000xx,
0100xx, 0000xx, 0100xx, 0000xx, 0100xx, 0000xx, 0100xx. All mapped to Set
0.

Fully-Associative Cache (4-way SA)
Main Memory

Q: Given a memory block, which cache
set is it mapped to?
A: There is only a single blue set.

6-bit memory address: 4-bit Tag, 0-bit
Set Index, 2-bit Offset (each cache block
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Is the exact memory block in the
cache?
A: Compare 4 higher tag bits in memory
address to the cache tag to tell if the
memory block is in the cache (provided
valid bit is set)
Q: Which exact Byte address in a given
cache block of 4 Bytes?
A: Use the Offset

Cache

Tag DataValidSetWay

0

1 0
2

3

Each memory block is
mapped to anywhere in
the cache set

5 4

Tag Offset

3 2 1 0

41

FA Cache Example
Main Memory

6-bit memory address: 3-bit Tag, 1-bit
Set Index, 2-bit Offset (each cache block
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Given memory address 0011xx, is it in
the cache?

Q: Given memory address 0100xx, is it in
the cache?

Q: Given memory address 0101xx, is it in
the cache?

Cache

Tag DataValidSetWay

0

1 0
2

3

0101

1110

1010

0011

0

1

1

1

5 4

Tag Offset

3 2 1 0

42

Main Memory

6-bit memory address: 4-bit Tag, 0-bit
Set Index, 2-bit Offset (each cache block
is 4 Bytes/1 Word).

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Q: Given memory address 0011xx, is it in
the cache?
A: Yes. The 4 higher tag bits (0011)
matches one of the tags in the cache (the
blue set), and the valid bit of the
corresponding cache block is 1.

Q: Given memory address 0100xx, is it in
the cache?
A: No. The 4 higher tag bits (0100) does
not match any of the tags in the cache.

Q: Given memory address 0101xx, is it in
the cache?
A: No. The 4 higher tag bits (0101)
matches one of the tags in the blue set,
but the valid bit of the corresponding
cache block is 0.

Cache

Tag DataValidSetWay

0

1 0
2

3

0101

1110

1010

0011

FA Cache Example

0

1

1

1

5 4

Tag Offset

3 2 1 0

43

• Consider the sequence of
memory block addresses (0
and 4) referenced at
runtime (Offset omitted):
– 0000xx (0), 0100xx (4),

0000xx, 0100xx, 0000xx,
0100xx, 0000xx, 0100xx

• They all map to Set 0, which
contains 4 cache blocks. This
avoids Ping Pong effect

FA Cache w/o Ping Pong Effect
Main Memory

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

Cache

Tag DataValidSetWay

0

1 0
2

3

00001

01001

44

FA Cache w/o Ping Pong Effect

0000xx 0100xx 0000xx 0100xxmiss miss hit hit

000 Mem(0) 000 Mem(0)

Start with an empty cache - all blocks
initially marked as not valid

010 Mem(1) 010 Mem(1)

000 Mem(0) 000 Mem(0)

010 Mem(1)

• Two memory addresses that map into the same cache set can co-
exist in the FA cache, removes the Ping-Pong effect of DM cache

• 8 requests, 2 misses

5/12/2025

… …

• Consider the sequence of memory addresses referenced at runtime: 0000xx,
0100xx, 0000xx, 0100xx, 0000xx, 0100xx, 0000xx, 0100xx. All mapped to Set
0.

45

Example: Calculate Number of Cache Misses
• Consider the following program that repeatedly accesses an

array A of four words (4 bytes each):
 for (int i=0; i++, i<10000) {sum += A[0]+A[1]+A[2]+A[3];}

• Suppose A[0] starts at memory address 000000, then A[0],
A[1], A[2], A[3] start at memory addresses 000000, 000100,
001000, 001100, respectively, and this sequence of memory
addresses are visited repeatedly in a cyclic manner.

• 1) How many cache misses occur due to reading array A[] for a
DM cache?

• 2) Answer the same questions for a two-way SA cache.

• 3) Answer the same questions for a FA cache.
46

Example: DM Cache

Cache

Main Memory

Tag Data

A[0]

A[3]

A[1]

A[2]
Valid

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

SetWay

0

00
01

10

11

DM cache: 4 misses
• 1st cache miss brings a block with address

0000xx into cache Set 0, which contains A[0]
• 2nd cache miss brings a block with address

0001xx into cache Set 1, which contains A[1]
• 3rd cache miss brings a block with address

0010xx into cache Set 2, which contains A[2]
• 4th cache miss brings a block with address

0011xx into cache Set 3, which contains A[3]
• All subsequent cache accesses are cache

hits
• After 10000 iterations, 4 cache misses, 9996

cache hits.
5 4

Tag Set Index Offset

3 2 1 0

A[0]001

A[1]001

A[2]001
A[3]001

47

Example: 2-Way SA Cache
2-Way SA Cache: 4 misses
• 1st cache miss brings into cache a block with

address 0000xx into Set 0, which contains
A[0]

• 2nd cache miss brings into cache a block with
address 0001xx into Set 1, which contains
A[1]

• 3rd cache miss brings into cache a block with
address 0010xx into Set 0, which contains
A[2]

• 4th cache miss brings into cache a block with
address 0011xx into Set 1, which contains
A[3]

• All subsequent cache accesses are cache hits
• After 10000 iterations, 4 cache misses, 9996

cache hits

Cache

Main Memory

Tag Data

A[0]

A[1]

ValidSet
A[2]

A[3]Way

0

1

0
1

0
1

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

1 A[0]000

1 A[2]001

1 000 A[1]

1 001 A[3]

5 4

Tag Index Offset

3 2 1 0

48

Example: FA Cache

Cache

Main Memory

Tag Data

A[0]

A[1]

Valid
A[2]

A[3]

0000xx

0001xx

0010xx

0011xx

0100xx

0101xx

0110xx

0111xx

1000xx

1001xx

1010xx

1011xx

1100xx

1101xx

1110xx

1111xx

SetWay

0

0

1

2

3

5 4

Tag Offset

3 2 1 0

FA cache: 4 misses with LRU (Least-Recently-Used)
replacement policy
• 1st cache miss brings into cache a block with

address 0000xx into Set 0, which contains A[0]
• 2nd cache miss brings into cache a block with

address 0001xx into Set 0, which contains A[1]
• 3rd cache miss brings into cache a block with

address 0010xx into Set 0, which contains A[2]
• 4th cache miss brings into cache a block with

address 0011xx into Set 0, which contains A[3]
• All subsequent cache accesses are cache hits
• After 10000 iterations, 4 cache misses, 9996

cache hits.

1 A[0]0000

1 A[1]0001

1 A[2]0010
1 A[3]0011

49

Tradeoffs of Cache Block Sizes

• Smaller cache blocks → more fine-grained caching → take
better advantage of temporal locality

– A given data item stays in the cache longer before getting replaced

• Larger cache blocks → more coarse-grained caching, take
better advantage of spatial locality

– Fetching each cache block brings in lots of data at nearby addresses
into the cache

50

DM Cache: Memory Access Example

0 1 2 3

4 3 4 15

• Consider 6-bit memory address with Tag 2b; Index 2b; Offset 2b (We ignore Byte offset bits,
and only consider 4-bit word addresses: Tag 2b; Index 2b)

• Start with an empty cache - all blocks initially marked as not valid. Fill in the cache state table
below for the sequence of memory address accesses:

00 Mem(0) 00 Mem(0)

00 Mem(1)
00 Mem(0) 00 Mem(0)

00 Mem(1)

00 Mem(2)

miss miss miss miss

miss misshit hit

00 Mem(0)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 Mem(4)

00 Mem(1)

00 Mem(2)

00 Mem(3)

01 (4)

11 (15)

00 Mem(1)

00 Mem(2)

00 Mem(3)

0000 0001 0010 0011 0100 0011 0100 1111

Time

Time
• 8 requests, 6 misses

5 4

Tag Set Index Offset

3 2 1 0

51

0 1 2 3 4 3 4 15

DM cache: larger block size helps take advantage of
spatial locality

0 1 2

3 4 3

4 15

00 Mem(1) Mem(0)

miss

00 Mem(1) Mem(0)

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

hit

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)

miss

00 Mem(3) Mem(2)

00 Mem(1) Mem(0)
01 (5) (4)

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

hit

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

00 Mem(3) Mem(2)

01 Mem(5) Mem(4)

miss

11

(15) (14)
• 8 requests, 4 misses

• Each cache block holds 2 words; so Tag 2b; Index 1b; Offset 3b for Byte address (we use

Offset 1b to refer to 1 of 2 words in block, not Bytes.)

 0 1 2 3 4 3 4 15Start with an empty cache - all

blocks initially marked as not valid 0000 0001 0010 0011 0100 0011 0100 1111

52

5 4

Tag Index Offset

3 2 1 0

Second
Level
Cache
(SRAM)

Associativity in the Memory Hierarchy

CPU Control

CPU
Datapath

Secondary
Memory
(Disk
Or Flash)

On-Chip Components

R
egFile

Main
Memory
(DRAM)

D
ata

C
ach

e
In

str
C

ach
e

Speed (cycles): ½’s 1’s 10’s 100’s 1,000,000’s

Size (bytes): 100B’s 10KB’s MB’s GB’s TB’s

• The closer to the CPU (e.g., L1/L2 cache), the lower associativity (e.g., Direct Mapped), to minimize
hit time, since CPU needs to access cache contents fast

• The farther away from the CPU (e.g., Last-Level Cache), the higher associativity (e.g., Fully-
Associative), to minimize miss rate, since cache misses will go to main memory, which is very slow

• Main memory can be viewed a “cache” for disk or Flash, and it is a Fully-Associative cache

Cost/bit: highest lowest

53

Summary of Cache Organizations
• A memory block is mapped to one cache set, which may contain

one or more cache blocks
• Direct Mapped (DM)

– Each cache set has 1 cache block; # cache sets = # cache blocks
– A memory block is mapped to 1 possible cache block

• Fully Associative (FA)
– A single cache set contains all cache blocks; # cache sets = 1
– A memory block can be mapped to any cache block

• N-way Set Associative (SA)
– Each cache set has N cache blocks; # cache sets = # cache blocks / N
– N is also called associativity
– A memory block can be mapped to one of N possible cache blocks

• DM and FA are special cases of SA
– DM = 1-way SA (N = 1)
– FA = N-way SA (N = total number of cache blocks)

54

Key Equations

OffsetTag Set Index

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

SI size determines
sets = 2SI size

Offset size determines
Bytes/block = 2Offset size

Tag size does not affect cache
capacity; depends on memory
address length

55

Cache Example

• Assume: DM cache; 6-bit memory address: 2-bit Tag, 2-bit index, 2-bit Offset.
Compute cache capacity and memory size.
– 2-bit Offset => Bytes/block = 4;

– # sets = 2SI Size = 4

– # cache blocks = # ways * # sets = 1*4 = 4

– cache capacity = # cache blocks * Bytes/block = 4*4 = 16B

• Memory size: 2^4 (2-bit tag +2-bit SI) = 16 blocks = 64 Bytes

05 1

Byte Within Block

Offset

23

Block Within $

4

Mem Block Within $Block

Tag Set Index

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

56

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

Alternative Cache Organizations (8-block cache)

Where are possible locations in cache that block #12 in memory can be placed?

DM 2-way SA 4-way SA FA(8-way SA)
In set 4 In set 0 In set 0 In set 0
(1 block) (2 blocks) (4 blocks) (8 blocks)

0
1
2
3
4
5
6
7

0
1
2
3
0
1
2
3

0
1
0
1
0
1
0
1

0
1
0
1
0
1
0
1

57

8-Block Cache
• Each color denotes a cache set

Set 0

Set 1

Set 2

DM:
8 sets
1 way

Set 4

Set 5

Set 6

Set 7

Set 0

Set 0

Set 0

Set 0

FA: 1 set
1 set,
8 ways

Set 0

Set 0

Set 0

Set 0

2-Way SA:
4 sets,
2 ways

Set 0

Set 1

Set 2

Set 3

4-Way SA:
2 sets,
4 ways Set 0

Set 1

0N-1 1

O
245

Tag S.I O O O
0N-1 1234 0N-1 123 0N-1 12

Tag

cache blocks = 1 way * 8 sets =8 # cache blocks = 2 ways * 4 sets =8 # cache blocks = 4 ways * 2 sets =8 # cache blocks = 8 ways * 1 set =8

Tag S.I Tag S.I

Set 0

Set 1

Set 2

Set 3

Set 0

Set 1

Set 2

Set 3

Set 3

Set 0

Set 1

Set 0

Set 0

Set 1

Set 0

Set 1

Set 1

58

8-Block Cache Summary
• Cache: 8 blocks, each 4 Bytes. # cache

blocks is equal to number of sets x
associativity.

• For fixed cache size, increasing
associativity decreases number of sets
while increasing number of blocks per
set.
– DM (1-way SA): 8 sets x 1 block per set
– 2-way SA: 4 sets x 2 blocks per set
– 4-way SA: 2 sets x 4 blocks per set
– FA (4-way SA): 1 set x 8 blocks per set

• Higher associativity → More ways →
fewer cache sets → cache structure is
more “short (vertically) and fat
(horizontally)”

• Lower associativity → Fewer ways →
more cache sets → cache structure is
more “tall (vertically) and skinny
(horizontally)”

59

YouTube: How Cache Works Inside a CPU

60

How Cache Works Inside a CPU
https://www.youtube.com/watch?v=zF4VMombo7U&list=PL38NNHQLqJqYnNrTenxBvGJSPC
kV9EOWk&index=1

DM Cache

DM Cache SA Cache

FA Cache

https://www.youtube.com/watch?v=zF4VMombo7U&list=PL38NNHQLqJqYnNrTenxBvGJSPCkV9EOWk&index=1
https://www.youtube.com/watch?v=zF4VMombo7U&list=PL38NNHQLqJqYnNrTenxBvGJSPCkV9EOWk&index=1

Outline

• Cache Introduction

• Cache Organization

• Cache Performance Analysis

61

Cache (Performance) Terms

• Hit rate: fraction of accesses that hit in the cache

• Miss rate: 1 – Hit rate

• Miss penalty: time to access a block from lower level in
memory hierarchy

• Hit time: time to access cache memory (including tag
comparison)

62

Average Memory Access Time (AMAT)

• Average Memory Access Time (AMAT) is the average time to
access memory considering both hits and misses in the cache

 AMAT = Hit rate * Hit time + Miss rate * Miss time

 = (1 – Miss rate)*Hit time + Miss rate * (Hit time +
Miss penalty)

 = Hit time + Miss rate * Miss penalty

• For single-level cache, Miss penalty = Memory access time,
since Miss time = Memory access time + Hit time

63

AMAT Example

AMAT = Hit time + Miss rate * Miss penalty

• Given a 200 psec clock, a miss penalty of 50 clock cycles, a miss
rate of 2%, and a cache hit time of 1 clock cycle, what is AMAT?

 A : ≤200 psec

 B : 400 psec

 C : 600 psec

 D : ≥ 800 psec

64

AMAT=(1+.02*50)*200=400 psec

Cache Replacement Policies
• Random Replacement

– A cache block is randomly selected to evict

• Least-Recently Used
– Hardware keeps track of access history

– Replace the entry that has not been used for the longest time

– For 2-way SA cache, one bit per set → set to 1 when a block is referenced; reset the other way’s
bit to 0; always replace the block with bit=0.

– For N-way SA cache, can be expensive to implement

• Example of a simple “Pseudo” LRU Implementation for 64-way SA cache
– Replacement pointer points to one cache entry

– Whenever access is made to the entry the pointer points to:
• Move the pointer to the next entry

– Otherwise: do not move the pointer

– (example of “not-most-recently used” replacement policy)

65

:

Entry 0

Entry 1

Entry 63

Replacement

Pointer

Benefits of Set-Associative Caches
• Choice of DM $ versus SA $ depends on the cost of a miss versus the cost of

implementation

• Largest gains are in going from direct mapped to 2-way (20%+ reduction in
miss rate)

66

Reduce AMAT

• Reduce hit time
–e.g., smaller cache, lower associativity

• Reduce miss rate
–e.g., larger cache, higher associativity

• Reduce miss penalty
–e.g., multiple-level cache hierarchy

• Need to balance cache parameters (Capacity,
associativity, block size)

67

Recall: Sources of Cache Misses (3 C’s)

• Compulsory: cold start, first access to a block
– Misses that would occur even with infinite cache
– Can be reduced by increasing block size

• Capacity: cache is too small to hold all data needed by the program
– Misses that would occur even under perfect replacement policy
– Can be reduced by increasing cache capacity

• Conflict: collisions due to multiple memory addresses mapped to
same cache set
– Recall the ping-pong cache example
– Can be reduced by increasing associativity and/or increasing cache

capacity

68

Effect of Cache Parameters on Performance

• Larger cache size
+ reduces capacity and conflict misses
- Increases hit time

• Higher associativity
+ reduces conflict misses, and the overall miss rate
- increases hit time

• Larger block size
+ reduces compulsory misses
- increases conflict misses and miss penalty

69

Improving Cache Performance

• Reduce hit time
– e.g., smaller cache, lower associativity

• Reduce miss rate
– e.g., larger cache, higher associativity

• Reduce miss penalty
– e.g., multiple-level cache hierarchy

• Optimal choice is a compromise
– Depends on access characteristics

• Workload
• Use (I-cache, D-cache)

– Depends on technology / cost

AMAT = Hit time + Miss rate x Miss penalty

70

(Associativity)

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

Multiple Cache Levels

L1$

L2$

Main Memory

CPU Mem
Access Miss

Hit

Miss

Hit

Path of Data Back to CPU

71L1 cache size < L2 cache size << memory size

Local vs. Global Miss Rates
• Local miss rate – the fraction of references to one level of a cache that miss

– L2 Local Miss Rate = L2 Misses / L1 Misses

• Global miss rate – the fraction of references that miss in all levels of caches and must go to
memory
• Global Miss rate = L2 Misses / Total Accesses
• = (L2 Misses / L1 Misses) × (L1 Misses / Total Accesses)
• = L2 Local Miss Rate × L1 Local Miss Rate

• With L1 cache only:
• AMAT = Hit Time + Miss rate × Miss penalty

• With 2-level cache hierarchy (L1+L2):
• L1 Miss Penalty = L2 AMAT; L2 Miss Penalty = Memory access time
• AMAT = L1 Hit Time + L1 Local Miss rate ×

(L2 Hit Time + L2 Local Miss rate × L2 Miss penalty)

• With 3-level cache hierarchy (L1+L2+L3):
• L1 Miss Penalty = L2 AMAT; L2 Miss Penalty = L3 AMAT; L3 Miss Penalty = Memory access time
• AMAT = L1 Hit Time + L1 Local Miss rate ×

(L2 Hit Time + L2 Local Miss rate × (L3 Hit Time + L3 Local Miss rate × L3 Miss penalty))

72

AMAT Example

• L1 Hit Time: 1 cycle, L1 Miss Rate: 2%

• L2 Hit Time: 5 cycles, L2 Miss Rate: 5%

• Main Memory access time: 100 cycles

• No L2 Cache:

– AMAT = 1 + .02*100 = 3

• With L2 Cache:

– AMAT = 1 + .02*(5 + .05*100) = 1.2

73

Multilevel Cache Considerations

• Different design considerations for L1 Cache and LLC (Last Level
Cache)

– L1 Cache design should focus on fast access: minimize hit time to
achieve shorter clock cycle, e.g., with smaller size, lower associativity;
miss penalty is small thanks to L2 and lower caches, so higher miss rate
is OK

– LLC design should focus on low miss rate: miss penalty due to main
memory access is very large, e.g., with larger size, higher associativity

• c.f., Slide “Associativity in the Memory Hierarchy”

74

Summary

• Cache – copy of data in lower level of memory hierarchy
• Principle of locality:

– Program likely to access a relatively small range of memory addresses at any instant of time.
• Temporal locality vs. spatial locality

• Cache organizations:
– Direct Mapped: 1 block per set
– N-way Set Associative: N blocks per set, N possible places in cache to hold a given memory block
– Fully Associative: all blocks in 1 set

• Increasing associativity helps to reduce miss rate, but increases runtime overhead
• Calculation of AMAT
• Three major categories of cache misses:

– Compulsory Misses; Conflict Misses; Capacity Misses
• Multi-level caches

– Optimize 1st level to minimize hit time
– Optimize last level to minimize miss rate

• Lots of cache parameters (large design space)
– Block size, cache size, associativity, etc.

75

	Slide 1: CSC 112: Computer Operating Systems Lecture 7 Memory System I: Cache
	Slide 2: Outline
	Slide 3: Why are Large Memories Slow? Library Analogy
	Slide 4: Processor-DRAM Gap (Latency)
	Slide 5: What To Do: Library Analogy
	Slide 6: Memory Hierarchy
	Slide 7: Memory Hierarchy Technologies
	Slide 8: The Complete Memory Hierarchy
	Slide 9: How is the Hierarchy Managed?
	Slide 10: Principle of Locality
	Slide 11: What locality does this program have?
	Slide 12: Memory Reference Patterns
	Slide 13: Memory Reference Patterns
	Slide 14: Outline
	Slide 15: Processor with Cache
	Slide 16: Cache vs. Memory
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Inside a Cache
	Slide 21: Memory Address Fields
	Slide 22: Cache Organization
	Slide 23: Sources of Cache Misses (3 C’s)
	Slide 24: Alternative Cache Organizations
	Slide 25
	Slide 26: Range of SA Cache Organizations
	Slide 27: 4-Block Cache (Valid Bit Omitted)
	Slide 28: Bookshelf Analogy
	Slide 29: Bookshelf Analogy
	Slide 30: Associativity and Performance
	Slide 31: Direct-Mapped Cache
	Slide 32: DM Cache Example
	Slide 33
	Slide 34
	Slide 35
	Slide 36: 2-Way Set-Associative Cache
	Slide 37: 2-Way SA Cache Example
	Slide 38: 2-Way SA Cache Example
	Slide 39
	Slide 40: 2-Way SA Cache w/o Ping Pong Effect
	Slide 41: Fully-Associative Cache (4-way SA)
	Slide 42: FA Cache Example
	Slide 43
	Slide 44
	Slide 45: FA Cache w/o Ping Pong Effect
	Slide 46: Example: Calculate Number of Cache Misses
	Slide 47: Example: DM Cache
	Slide 48: Example: 2-Way SA Cache
	Slide 49: Example: FA Cache
	Slide 50: Tradeoffs of Cache Block Sizes
	Slide 51: DM Cache: Memory Access Example
	Slide 52: DM cache: larger block size helps take advantage of spatial locality
	Slide 53: Associativity in the Memory Hierarchy
	Slide 54: Summary of Cache Organizations
	Slide 55: Key Equations
	Slide 56: Cache Example
	Slide 57
	Slide 58: 8-Block Cache
	Slide 59: 8-Block Cache Summary
	Slide 60: YouTube: How Cache Works Inside a CPU
	Slide 61: Outline
	Slide 62: Cache (Performance) Terms
	Slide 63: Average Memory Access Time (AMAT)
	Slide 64: AMAT Example
	Slide 65: Cache Replacement Policies
	Slide 66: Benefits of Set-Associative Caches
	Slide 67: Reduce AMAT
	Slide 68: Recall: Sources of Cache Misses (3 C’s)
	Slide 69: Effect of Cache Parameters on Performance
	Slide 70: Improving Cache Performance
	Slide 71: Multiple Cache Levels
	Slide 72: Local vs. Global Miss Rates
	Slide 73: AMAT Example
	Slide 74: Multilevel Cache Considerations
	Slide 75: Summary

