
CSC 112: Computer Operating Systems
Lecture 7

Memory System I: Cache
Exercises ANS

Department of Computer Science,

Hofstra University

Cache Organization

ways (associativity)

sets

2

Tag Set Index Offset

#blocks = #ways * #sets

Use Set Index to
select a set

Compare Tag to
select a way

Tag Data
(Valid bit omitted)

Use Offset to find
Byte address within
cache block

(Set Index
increases
from top
to bottom)

Review

SI identifies a set; Tag

identifies the block within the

set; Offset identifies the byte

within the block (if cache hit).

Key Equations

5/12/2025

OffsetTag Set Index

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

SI size determines
sets = 2SI size

Offset size determines
Bytes/block = 2Offset size

Tag size does not affect cache
capacity; depends on memory
address length

Review

3

Decimal, Binary and Hex

4

Decimal Binary Hex

0 0000 0x0
1 0001 0x1
2 0010 0x2
3 0011 0x3
4 0100 0x4
5 0101 0x5
6 0110 0x6
7 0111 0x7
8 1000 0x8
9 1001 0x9
10 1010 0xA
11 1011 0xB
12 1100 0xC
13 1101 0xD
14 1110 0xE
15 1111 0xF

Prefix 0x denotes hex

Review

4

Quiz

• Memory hierarchies take advantage of spatial locality by keeping the most
recent data items closer to the processor.
– False. This is called temporal locality.

• For a given cache size, a larger block size may cause lower hit rate than a
smaller one.
– True. The relationship between block size and hit rate is non-monotonic. A large

block size leads to fewer cache blocks, so it may cause lower hit rate since useless
junk may be brought into cache along with useful data. But it may lead to higher
hit rate if the program has good locality.

• If you know your computer’s cache size, you can often make your code run
faster.
– True. By tuning your code to be cache-aware.

5

Quiz

• Q: How many 32-bit integers can be stored in a DM cache with
15 tag bits, 15 index bits, and 2 offset bits?

• A: Each cache block is 2^2=4 Bytes and can store one 32-bit
integer. The cache has a total number of 2^15=32K blocks,
hence it can store 32K integers. (The tag bits are irrelevant here
since it is related to memory size, not cache size)

6

Quiz I

• Q: Consider 32-bit address space; a direct-mapped cache with size
16KB;each cache block is 4 words. What is the TIO breakdown?

• A:

• Cache size = 16KB = 16 * 2^10 bytes

• Cache block size = 4 words = 4 * 4 bytes = 16 bytes = 2^4

• Number of cache blocks= 16 * 2^10 bytes / 16 bytes = 2^10

• Index bits = 10

• Offset bits = 4

• Tag bits = 32 – 10 – 4 = 18

7 7

Quiz II

• Q: Consider 32-bit address space; a two-way set-associative cache with size
16KB;each cache block is 4 words. What is the TIO breakdown?

• A:

• Cache size = 16 * 2^10 bytes

• cache block size = 16 bytes

• Set size = cache block size * set associativity = 16 bytes * 2 = 32 bytes

• Number of sets = 16 * 2^10 bytes / 32 bytes = 2^9

• Index bits = 9

• Offset bits = 4

• Tag bits = 32 – 9 – 4 = 19

8

Quiz
• Q: Consider 32-bit address space; a DM cache with size 32 KB; each cache block is 8 words. What is

the TIO breakdown?
• ANS: T=17, I=10, O=5

– 8-word per block => 32 bytes / block => O = 5
– 32 KB / (32 bytes / block) = 2^10 blocks total => I = 10
– T = 32 – 10 – 5 = 17

• Q: Consider 32-bit address space; a 4-way SA cache with size 32 KB; each cache block is 8 words.
What is the TIO breakdown?

• ANS: T=19, I=8, O=5 (Tag 19b, Index 8b, Offset 5b)
– 8-word per block => 32 bytes / block => O = 5
– 32 KB / (32 bytes / block) = 2^10 blocks total
– 2^10 blocks / (4 blocks / set) = 2^8 sets total => I = 8
– T = 32 – 8 – 5 = 19

• Q: Consider 32-bit address space; an FA cache with size 32 KB; each cache block is 8 words. What is
the TIO breakdown?
– ANS: T=27, I=0, O=5
– 8-word per block => 32 bytes / block => O = 5
– FA cache => I = 0
– T = 32 – 0 – 5 = 27

9

Quiz

• Q: Consider 32-bit address space; a DM cache with size 16 KB; each cache block is 4 words. What is
the TIO breakdown?

• ANS: T=18, I=10, O=4
– 4-word per block => 16 bytes / block => O = 4
– 16 KB / (16 bytes / block) = 2^10 blocks total => I = 10
– T = 32 – 10 – 4 = 18

• Q: Consider 32-bit address space; a 2-way SA cache with size 16KB; each cache block is 4 words.
What is the TIO breakdown?

• ANS: T=19, I=9, O=4
– 4-word per block => 16 bytes / block => O = 4
– 16 KB / (16 bytes / block) = 2^10 blocks total
– 2^10 blocks / (2 blocks / set) = 2^9 sets total => I = 9
– T = 32 – 9 – 4 = 19

• Q: Consider 32-bit address space; an FA cache with size 16KB; each cache block is 4 words. What is
the TIO breakdown?
– ANS: T=27, I=0, O=5
– 4-word per block => 16 bytes / block => O = 4
– FA cache => I = 0
– T = 32 – 0 – 4 = 28 10

Q: 12-bit DM Cache
• Consider 12-bit memory address; DM cache with block size 4B; total of 16 cache blocks, with

contents shown below ("—“ means invalid data). All values are in hex. Within each block, B0
refers to Byte address 00, B1 refers to Byte address 01, and so on.
– 1. What are the sizes of Tag, Set Index, Offset?
– 2. Cache hit or miss for referencing the following memory addresses (individually, not

sequentially) ? If cache hit, give the actual value returned: 0x7AC, 0x024, 0x99F

11

IMPORTANT

A: 12-bit DM Cache

• 1. What are the sizes of Tag, Set Index, Offset?

• # Bytes/block=4, hence Offset size=2

• # Sets=(# Blocks for DM cache)=16, hence SI size=4

• Tag size=12-4-2=6

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

12

IMPORTANT

A: 12-bit DM Cache
• 2. Cache hit or miss for referencing the following memory addresses? If cache hit, give the actual value returned:

0x7AC, 0x024, 0x99F
• 0x7AC = 0111 1010 1100 (bin). Set Index=1011(bin)=0xB. The set with index 0xB has a single block with Valid=0,

hence it is a cache miss (no need to check for tag match. Even though the table shows some data in this block, all
data is invalid with Valid=0).

• 0x024 = 0000 0010 0100 (bin). Set Index=1001(bin)=0x9. The set with index 0x9 has a single block with Valid=1,
and the Tag 000000 (bin) = 0x0 matches, hence it is a cache hit. The Byte offset is 00, hence the actual data
returned is 0x01 contained in B0.

• 0x99F = 1001 1001 1111 (bin). Set Index=0111(bin)=0x7. The set with index 0x7 has a single block with Valid=0,
hence it is a cache miss (no need to check for tag match).

13

IMPORTANT

Q: 12-bit 2-way SA Cache
• Consider 12-bit memory address; 2-way SA cache with block size

4B; total of 16 cache blocks with contents shown below ("—“
means invalid data). All values are in hex.
– 1. What are the sizes of Tag, Set Index, Offset?
– 2. If cache hit, give the actual value returned: 0x435, 0x388, 0x0D3

14

IMPORTANT

A: 12-bit 2-way SA Cache

• 1. What are the sizes of Tag, Set Index, Offset?

• # Bytes/block=4, hence Offset size=2

• # Sets=#blocks/#ways=16/2=8, hence SI size=3

• Tag size=12-3-2=7

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

15

IMPORTANT

A: 12-bit 2-way SA Cache
• 2. Cache hit or miss for referencing the following memory addresses? If cache hit, give the actual value

returned: 0x435, 0x388, 0x0D3
• 0x435 = 0100 0011 0101 (bin). Set Index=101(bin)=0x5. The set with index 0x5 has 2 blocks, but only

one block with Valid=1. The Tag 0100001 (bin) = 0x21 matches the valid block Tag, hence it is a cache
hit. The Byte offset is 01, hence the actual data returned is 0xAD contained in B1.

• 0x388 = 0011 1000 1000 (bin). Set Index=010(bin)=0x2. The set with index 0x2 has 2 blocks, both with
Valid=1, but the Tag 0011100 (bin) = 0x1C does not match any valid block Tag (0x03, 0x0E), hence it is a
cache miss.

• 0x0D3 = 0000 1101 0011 (bin). Set Index=100(bin)=0x4. The set with index 0x4 has 2 blocks, both with
Valid=0, hence it is a cache miss (no need to check for tag match).

16

IMPORTANT

Q: 12-bit FA Cache
• Consider 12-bit memory address; FA cache with block size 4B;

contents shown below ("—“ means invalid data). All values are in
hex.
– 1. What are the sizes of Tag, Set Index, Offset?
– 2. If cache hit, give the actual value returned: 0x1DD, 0x719, 0x2AA

17

IMPORTANT

A: 12-bit FA Cache

• 1. What are the sizes of Tag, Set Index, Offset?

• # Bytes/block=4, hence Offset size=2

• # Sets=1 for FA cache, hence SI size=0

• Tag size=12-0-2=10

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

18

IMPORTANT

A: 12-bit FA Cache
• 2. Cache hit or miss for referencing the following memory addresses? If cache hit, give the actual value

returned: 0x1DD, 0x719, 0x2AA
• 0x1DD = 00001 1101 1101 (bin). The Tag 00001110111 (bin) = 0x77, which matches a block with Valid=1,

hence it is a cache hit. The Byte offset is 01, hence the actual data returned is 0x23 contained in B1
• 0x719 = 0111 0001 1001 (bin). The Tag 0111000110 (bin) = 0x1C6, which matches a block with Valid=1,

hence it is a cache hit. The Byte offset is 01, hence the actual data returned is 0x11 contained in B1
• 0x2AA = 0010 1010 1010 (bin). The Tag 0010101010 (bin) = 0xAA, which does not match any block with

Valid=1, hence it is a cache miss.

19

IMPORTANT

Question: Tag

• Assume: DM cache; 6-bit memory address: 2-bit Tag, 2-bit index, 2-bit Offset. Compute cache
capacity and memory size.
– 2-bit Offset => Bytes/block = 4;

– # sets = 2SI Size = 4

– # cache blocks = # ways * # sets = 1*4 = 4

– cache capacity = # cache blocks * Bytes/block = 4*4 = 16B

• Memory size: 2^4 (2-bit tag +2-bit SI) = 16 blocks = 64 Bytes

05 1

Byte Within Block

Offset

23

Block Within $

4

Mem Block Within $Block

Tag Set Index

5/12/2025

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

20

Question: T-SI-O Distribution

• Consider 32-bit memory address, DM cache with size 64KB, 16
Bytes/block. What are the bit-widths of Tag-SetIndex-Offset?

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

21

Answer: T-SI-O Distribution

• Consider 32-bit memory address, DM cache with size 64KB, 16
Bytes/block. What are the bit-widths of Tag-Set Index-Offset?

• A: 16 Bytes/block → Offset size=4

• For DM cache, # Sets = # blocks = 64 KB/16 Bytes/block = 4K →
SI size=12

• Tag size = 32-12-4=16

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

22

Question: T-SI-O Distribution

• Consider 32-bit memory address, 8-way SA cache with size
64KB, 16 Bytes/block. What are the bit-widths of Tag-Set
Index-Offset?

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

23

Answer: T-SI-O Distribution

• Consider 32-bit memory address, 8-way SA cache with size
64KB, 16 Bytes/block. What are the bit-widths of Tag-Set
Index-Offset?

• A: 16 Bytes/block → Offset size=4

• For 8-way SA cache, # Sets = # blocks/8 = (64 KB/16
Bytes/block)/8 = 0.5K → SI size=9

• Tag size = 32-9-4=19

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

24

0
1
2
3

Set Number

Cache
(4 blocks)

DM 2-way SA FA (4-way SA)
In set ? In set ? In set ?
(? blocks) (? blocks) (? blocks)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory
(32 blocks)

Block Number

Q: Alternative Cache Organizations (4-block cache）

Where are possible locations in cache that block #12 in memory can be placed?

0
1
0
1

0

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

25

▪ Memory block #12 (decimal) corresponds to memory address 01100XXXX in binary (we don’t care
about block size)

▪ For DM cache:
– # cache blocks = 4 = # ways (1) * # sets

– => # sets = 4 = 22 => Set Index has 2b => Set Index is 00 (last 2b in 01100)

– Tag (3b); Set Index (2b)

▪ For 2-way SA cache:
– # cache blocks = 4 = # ways (2) * # sets

– => # sets = 2 = 21 => Set Index has 1b => Set Index is 0 (last 1b in 01100)

– Tag (4b); Set Index (1b)

▪ For FA (4-way SA) cache:
– # cache blocks = 4 = # ways (4) * # sets

– => # sets = 1 = 20 => No Set Index

– Tag (5b)

A: Alternative Cache Organizations (4-block cache）

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

26

0
1
2
3

Set Number

Cache
(4 blocks)

DM 2-way SA FA (4-way SA)
In set 0 In set 0 In set 0
(1 block) (2 blocks) (4 blocks)

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory
(32 blocks)

Block Number

A: Alternative Cache Organizations (4-block cache）

Where are possible locations in cache that block #12 in memory can be placed?

0
1
0
1

0

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

27

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

Q: Alternative Cache Organizations（8-block cache）

Where are possible locations in cache that block #12 in memory can be placed?

DM 2-way SA 4-way SA FA(8-way SA)
In set ? In set ? In set ? In set ?
(? block) (? blocks) (? blocks) (? blocks)

0
1
2
3
4
5
6
7

0
1
2
3
0
1
2
3

0
1
0
1
0
1
0
1

0

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

28

▪ Memory block #12 (decimal) corresponds to memory address 01100XXXX in binary (we don’t care about block size)
▪ For DM cache:

– # cache blocks = 8 = # ways (1) * # sets
– => # sets = 8 = 23 => Set Index has 3b => Set Index is 100 (4) (last 3b in 01100)
– Tag (2b); Set Index (3b)

▪ For 2-way SA cache:
– # cache blocks = 8 = # ways (2) * # sets
– => # sets = 4 = 22 => Set Index has 2b => Set Index is 00 (last 2b in 01100)
– Tag (3b); Set Index (2b)

▪ For 4-way SA cache:
– # cache blocks = 8 = # ways (4) * # sets
– => # sets = 2 = 21 => Set Index has 1b => Set Index is 0 (last 1b in 01100)
– Tag (4b); Set Index (1b)

▪ For FA (8-way SA) cache:
– # cache blocks = 8 = # ways (8) * # sets
– => # sets = 1 = 20 => No Set Index
– Tag (5b)

A: Alternative Cache Organizations (8-block cache）

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

29

Set Number

Cache

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9

2 2 2 2 2 2 2 2 2 2
0 1 2 3 4 5 6 7 8 9

3 3
0 1

Memory

Block Number

A: Alternative Cache Organizations（8-block
cache）

Where are possible locations in cache that block #12 in memory can be placed?

DM 2-way SA 4-way SA FA(8-way SA)
In set 4 In set 0 In set 0 In set 0
(1 block) (2 blocks) (4 blocks) (8 blocks)

0
1
2
3
4
5
6
7

0
1
2
3
0
1
2
3

0
1
0
1
0
1
0
1

0

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

30

▪ # cache blocks = 32; Block #12 in decimal is 01100 in binary

▪ For DM cache: Tag (2b); Set Index (3b)
– Set Index=100, hence it is set 4 (1 block)

▪ For 2-way SA cache: Tag (3b); Set Index (2b)
– Set Index=00, hence it is set 0 (2 blocks)

▪ For 4-way SA cache: Tag (4b); Set Index (1b)
– Set Index=0, hence it is set 0 (2 blocks)

▪ For FA (8-way SA) cache: Tag (5b)
– Can be anywhere for SA cache

A: Alternative Cache Organizations (4-block cache）

ways = # blocks/cache set = associativity
cache blocks = # ways * # sets
cache capacity = # cache blocks * Bytes/block

Recall:

31

• What are the possible locations in the cache that memory address 0x1833 (0b0001 1000
0011 0011) be mapped? Assuming: 16-bit memory address, Bytes/block=16, # cache
blocks=8

• For DM cache:
• For 2-way SA cache:
• For 4-way SA cache:
• For FA cache (8-way SA):

Set Tag Data
0
1
2
3
4
5
6
7

DM 2-way SA 4-way SA

Question: Cache Address Mapping

Set Tag Data
0
1
2
3
0
1
2
3

Set Tag Data
0
1
0
1
0
1
0
1

FA (8-way SA)

Set Tag Data
0
1
0
1
0
1
0
1

32

• What are the possible locations in the cache that memory address 0x1833 (0b0001 1000 0011 XXXX) be
mapped? Assuming: 16-bit memory address, Bytes/block=16, # cache blocks=8

• For DM cache: Tag (9b); Set Index (3b); Offset (4b)
– Set Index=011, hence it is set 3 (1 block)

• For 2-way SA cache: Tag (10b); Set Index (2b); Offset (4b)
– Set Index=11, hence it is set 3 (2 blocks)

• For 4-way SA cache: Tag (11b); Set Index (1b); Offset (4b)
– Set Index=1, hence it is set 1 (4 blocks)

• For FA cache (8-way SA): Tag (12b); Offset (4b)

Set Tag Data
0
1
2
3
4
5
6
7

DM 2-way SA 4-way SA

Answer: Cache Address Mapping

Set Tag Data
0
1
2
3
0
1
2
3

Set Tag Data
0
1
0
1
0
1
0
1

FA (8-way SA)

Set Tag Data
0
0
0
0
0
0
0
0

33

Question: Cache Capacity 1

• Work out the cache capacity :

0N-1 1

O
234

Tag S.I
0N-1 123

Tag S.I
0N-1 12

Tag

DM 2 Way SA 4-way SA (FA)

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

O O

34

Answer: Cache Capacity 1

• Work out the cache capacity :

0N-1 1234

Tag S.I
0N-1 123

Tag S.I
0N-1 12

Tag

cache blocks = 1 way * 2^2

sets = 4 blocks
cache capacity = 4 blocks *
4B/block = 16B

DM 2 Way SA 4-way SA

cache blocks = 2 ways * 2^1

sets = 4 blocks
cache capacity = 4 blocks *
4B/block = 16B

cache blocks = 4 ways * 2^0

sets = 4 blocks
cache capacity = 4 blocks *
4B/block = 16B

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

O O O

(Just saying FA is not enough to
determine cache capacity!)

35

Question: Cache Capacity 2
• Q: What is the cache capacity of a DM cache with 15 Tag bits,

15 Set Index bits, and 2 Offset bits?

• Q: What is the cache capacity of a 2-way SA cache with 15 Tag
bits, 15 Set Index bits, and 2 Offset bits?

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

36

Answer: Cache Capacity 2
• Q: What is the cache capacity of a DM cache with 15 Tag bits,

15 Set Index bits, and 2 Offset bits?

• A: Bytes/block = 22; # sets = 215; # cache blocks = 1 way * 215 =
215; cache capacity = 215 blocks * 22 Bytes/block=217 Bytes

• Q: What is the cache capacity of a 2-way SA cache with 15 Tag
bits, 15 Set Index bits, and 2 Offset bits?

• A: Bytes/block = 22; # sets = 215; # cache blocks = 2 ways * 215 =
216; cache capacity = 216 blocks * 22 Bytes/block=218 Bytes

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

37

Answer: Cache Capacity 3

• For a cache of 64 blocks, each block 4 Bytes in size:
1. The capacity of the cache is: _256_ bytes.
2. Given a 2-way SA organization, there are _32_ sets, each of _2_ blocks, and

2 places a block from memory could be placed.
3. Given a 4-way SA organization, there are _16_ sets each of _4_ blocks and

4 places a block from memory could be placed.
4. Given an 8-way SA organization, there are _8_ sets each of _8_ blocks and

8 places a block from memory could be placed.

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

38

Question: Cache Capacity 4

• For an N-way SA cache, # cache blocks = B, # sets = S, which
statements hold?

 (i) The cache has B number of tags
 (ii) The cache needs N comparators
 (iii) B = N x S
 (iv) Size of Set Index (in # bits) = Log2(S)

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

39

Answer: Cache Capacity 4

• For an N-way SA cache, # cache blocks = B, # sets = S, which
statements hold true?

 (i) The cache has B number of tags
 (ii) Size of Set Index (in # bits) = Log2(S)
• A: All statements are true

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

40

• 32 bit address space, 32KB 4-way SA cache with 8-word blocks. What
are the lengths of Tag - Set Index - Offset in the memory address?

ANS: T – 19, SI – 8, O – 5
Bytes/block=8 words=32B => Offset is 5b
cache capacity (32KB) = # cache blocks*32B/block
=> # cache blocks = 1K = 210

cache blocks (210) = # ways (4) * # sets
=> # sets = 28 => Set Index has 8b
Memory address length (32)
=> T = 32b – (8b+5b) = 19b

Q. Bits in Memory Address 1

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

41

• 32 bit address space, 16KB DM cache with 4-word blocks. What are the
lengths of Tag - Set Index - Offset?

ANS: T - 18, SI – 10, O – 4
Bytes/block=4 words=16B => Offset is 4b
cache capacity (16KB) = # cache blocks*16B/block
=> # cache blocks = 1K = 210

cache blocks (210) = # ways (1) * # sets
=> # sets = 210 => Set Index has 10b
Memory address length (32)
=> T = 32b – (10b+4b) = 18b

Q. Bits in Memory Address 2

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

42

Q. Bits in Memory Address 3
▪ We have a cache of size 2 KB with block size of 128 Bytes. If our cache has 2 sets,

what is its associativity? If memory address is 16 bits, how wide is the Tag field?

Bytes/block=128B = 27B => Offset has 7b
cache capacity (2KB=211B) = # cache blocks*27B/block
=> # cache blocks = 16 = 24

cache blocks (16) = # ways * # sets (2)
# ways = 8 = 23

Set Index has 1b
Memory address length (16) = T + SI + O
=> T = 16b – (1b+7b) = 8b

sets = 2SI size; # Bytes/block=2Offset size

blocks = # ways (associativity) * # sets
cache capacity = # blocks * # Bytes/block

Recall:

43

• 32 bit address space, 32KB DM cache with 8-word blocks

• 32 bit address space, 16KB 2-way SA cache with 4-word blocks

• 32 bit address space, 32KB FA cache with 8-word blocks

Question: Bits in Memory Address 4

44

• 32 bit address space, 32KB DM cache with 8-word blocks
• T - 17, SI - 10, O – 5 (# blocks = # sets = 210 => SI has 10b, T = 32b–

(10b+5b)=17b)
• 32 bit address space, 16KB 2-way SA cache with 4-word blocks
• T - 19, SI - 9, O – 4 (# blocks = 210; # sets = 210/2=29 => SI has 9b, T = 32b–

(9b+4b)=19b)
• 32 bit address space, 32KB FA cache with 8-word blocks
• T - 27, SI - 0, O – 5 (# blocks = 210; # sets = 1 => SI has 0b, T = 32b–(0b+5b) =

27b)

Answer: Bits in Memory Address 4

45

Question: Associativity 1

• For a cache with fixed total size, if we increase the number of
ways by a factor of two, which statement is false:

 A : The number of sets is halved

 B : The tag width decreases

 C : The block size stays the same

 D : The set index decreases

5/12/2025
46

Answer: Associativity 1

• For a cache with fixed total size, if we increase the number of
ways by a factor of two, which statement is false:

 A : The number of sets is halved

 B : The tag width decreases

 C : The block size stays the same

 D : The set index width decreases

5/12/2025

More Associativity (more ways)

OffsetTag Set Index

47

Question: Associativity 2

5/12/2025

OffsetTag Set Index

Push red bar right 1 bit
tag_size ?; index_size?; # sets?; # ways/associativity ?;
HW comparators ?
Push red bar left 1 bit
tag_size ?; index_size ?; # sets ?; # ways/associativity ?;
HW comparators ?

48

Answer: Associativity 2
Push red bar right 1 bit
tag_size +1; index_size -1; # sets halved; # ways/associativity doubled;
HW comparators doubled
Push red bar left 1 bit
tag_size -1; index_size +1; # sets doubled; # ways/associativity halved;
HW comparators halved

5/12/2025

More associativity (more ways)

OffsetTag Set Index

Less associativity (fewer ways)

49

Question: Associativity vs. Performance

For a cache of fixed capacity and block size, increasing
associativity causes __________ in hit time, and __________ in
miss rate

5/12/2025
50

Answer: Associativity vs. Performance

For a cache of fixed capacity and block size, increasing
associativity causes _increase_ in hit time, and _decrease_ in
miss rate

5/12/2025
51

Question: Tag bits & Offset bits

• Q: Under what condition will we have # Offset bits = 0?
Under what condition will we have # Tag bits = 0?

• A: # Offset bits = 0 when size of a cache block = 1 Byte
– (not realistic, since it cannot even fit a 16b short or 32b int)

• # Tag bits = 0 when we have a DM cache with the same
size as memory
– Tag bits are needed to disambiguate among multiple

possible memory blocks that may be mapped to one cache
block; if there is a 1-to-1 correspondence between cache
blocks and memory blocks, then Tag bits are not needed

– (not realistic, since cache must be small in order to be fast)

Main MemoryCache

OffsetSet Index

52

	Slide 1: CSC 112: Computer Operating Systems Lecture 7 Memory System I: Cache Exercises ANS
	Slide 2: Cache Organization
	Slide 3: Key Equations
	Slide 4: Decimal, Binary and Hex
	Slide 5: Quiz
	Slide 6: Quiz
	Slide 7: Quiz I
	Slide 8: Quiz II
	Slide 9: Quiz
	Slide 10: Quiz
	Slide 11: Q: 12-bit DM Cache
	Slide 12: A: 12-bit DM Cache
	Slide 13: A: 12-bit DM Cache
	Slide 14: Q: 12-bit 2-way SA Cache
	Slide 15: A: 12-bit 2-way SA Cache
	Slide 16: A: 12-bit 2-way SA Cache
	Slide 17: Q: 12-bit FA Cache
	Slide 18: A: 12-bit FA Cache
	Slide 19: A: 12-bit FA Cache
	Slide 20: Question: Tag
	Slide 21: Question: T-SI-O Distribution
	Slide 22: Answer: T-SI-O Distribution
	Slide 23: Question: T-SI-O Distribution
	Slide 24: Answer: T-SI-O Distribution
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Question: Cache Address Mapping
	Slide 33: Answer: Cache Address Mapping
	Slide 34: Question: Cache Capacity 1
	Slide 35: Answer: Cache Capacity 1
	Slide 36: Question: Cache Capacity 2
	Slide 37: Answer: Cache Capacity 2
	Slide 38: Answer: Cache Capacity 3
	Slide 39: Question: Cache Capacity 4
	Slide 40: Answer: Cache Capacity 4
	Slide 41
	Slide 42: Q. Bits in Memory Address 2
	Slide 43: Q. Bits in Memory Address 3
	Slide 44
	Slide 45
	Slide 46: Question: Associativity 1
	Slide 47: Answer: Associativity 1
	Slide 48: Question: Associativity 2
	Slide 49: Answer: Associativity 2
	Slide 50: Question: Associativity vs. Performance
	Slide 51: Answer: Associativity vs. Performance
	Slide 52: Question: Tag bits & Offset bits

