
CSC 112: Computer Operating Systems
Lecture 6

Real-Time Scheduling I

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on Buttazzo, Hard Real-Time Computing Systems

2

Outline

• Part I
– Introduction to RTOS and Real-Time Scheduling

– Fixed-Priority Scheduling

– Earliest Deadline First Scheduling

– Least Laxity First (LLF) Scheduling

– Preemptive vs. Non-Preemptive Scheduling

• Part II
– Multiprocessor Scheduling

– Resource Synchronization Protocols (for Fixed-Priority Scheduling)

3

Introduction to RTOS and Real-Time
Scheduling

4

Embedded Control Systems
• An embedded control system co´nsists of:

– The system-under-control (SUT)
» may include sensors and actuators

– The controller/computer
» sends signals to the system according to a

predetermined control objective

• In the old days, each control task runs on a
dedicated CPU

– No RTOS, bare metal
– No need for scheduling
– Just make sure that task execution time <

deadline

• Now, multiple control tasks share one CPU
– Multitasking RTOS
– Need scheduling to make sure all tasks meet

deadlines

Controller/computer

actuatorsD/A

SUT

sensorsA/D

Thread or
process (task)

Resource

5

Requirements

• The tight interaction with the environment requires the system to react to events
within precise timing constraints

• Timing constraints are imposed by the dynamics of the environment

• The real-time operating system (RTOS) must be able to execute tasks within timing
constraints

6

A Robot Control Example

• Consider a robot equipped with:
– two actuated wheels
– two proximity (US) sensors
– a mobile (pan/tilt) camera
– a wireless transceiver

• Goal:
– follow a path based on visual

feedback
– avoid obstacles

visual−base
d
navigation

visual
tracking

obstacle
avoidance

10 ms

100 ms
object

recognition

mot_dx mot_sxpan tiltcamera US1 US2

1 ms

vehicle
control

5 ms20 ms
feature

extraction motor
control

motor
control

motor
control

motor
control

1 ms

7

Real-Time Systems

• A computer system that is able to respond to events within
precise timing constraints

• A system where the correctness depends not only on the
output values, but also on the time at which results are
produced

• A real-time system is not a necessarily a real fast system
– Speed is always relative to a specific environment
– Running faster is good, but does not guarantee hard real-time

constraints
• The objective of a real-time system is to guarantee the

worst-case timing behaviour of each individual task
• The objective of a fast system is to optimize the average-

case performance
– A system with fast average-case performance may not meet

worst-case timing requirements
– Analogy: there was a person who drowned in a river with

average depth of 15 cm

x (t)
RT system

Environmen
t

t
y (t+∆)

8

RTOS Requirements

• Timeliness: results must be correct not only in their value but also in the time domain
– provide kernel mechanism for time management and for handling tasks with explicit

timing constraints and different criticality
• Predictability: system must be analyzable to predict the consequences of any

scheduling decision
– if some task cannot be guaranteed within time constraints, system must notify this in

advance, to handle the exception (plan alternative actions)
• Efficiency: operating system should optimize the use of available resources

(computation time, memory, energy)
• Robustness: must be resilient to peak-load conditions
• Fault tolerance: single software/hardware failures should not cause the system to

crash
• Maintainability: modular architecture to ensure that modifications are easy to

perform

9

Sources of Nondeterminism

• Architecture
– cache, pipelining, interrupts, DMA

• Operating System (our focus in this lecture)
– scheduling, synchronization, communication

• Language
– lack of explicit support for time

• Design Methodologies
– lack of analysis and verification techniques

10

Task

• The concept of concurrent tasks reflects the
intuition about the functionality of
embedded systems.

– Task here can refer to either process or
thread, depending on the underlying RTOS
support

• Tasks help us manage timing complexity:
– multiple execution rates

» multimedia
» automotive

– asynchronous input
» user interfaces
» communication systems

“activation” = “arrival” = “release” time

Task τiactivation time ai

start time si

finish time fi

Execution time Ci

CPU
activation dispatching terminationReady queue

τ3 τ2 τ1

11

• A specific assignment of tasks to the processor that determines the task
execution sequence. Formally:

• Given a task set Γ = {𝜏𝜏1, … , 𝜏𝜏𝑛𝑛}, a schedule is a function 𝜎𝜎:𝑅𝑅+ → 𝑁𝑁 that
associates an integer 𝑘𝑘 to each time slice [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) with the meaning:

• 𝑘𝑘 = 0: in [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) the processor is idle

• 𝑘𝑘 > 0: in [𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖+1) the processor executes 𝜏𝜏𝑘𝑘

At times t1, t2,…: context switch to a different task

τ1 τ2 τ3 idleidle

σ(t)
3

2

1

0
tt3 t4t1 t2

Schedule

12

priority

τ1

τ2

τ3

σ(t)

3
2
1
0

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

Preemptive vs. Nonpreemptive Scheduling

• A scheduling algorithm is:
– preemptive: if the active job can be

temporarily suspended to execute a more
important job

– non-preemptive: if the active job cannot
be suspended, i.e., always runs to
completion

Preemptive scheduling example

13

Definitions
• Feasible schedule

– A schedule 𝜎𝜎 is said to be feasible if all the tasks can complete according to a set of specified
constraints.

• Schedulable set of tasks
– A set of tasks Γ is said to be schedulable if there exists at least one algorithm that can produce a

feasible schedule for it.
• Hard real-time task: missing deadline may have catastrophic consequences, so deadline violations are

not permitted. A system able to handle hard real-time tasks is a hard real-time system
– sensory acquisition
– low-level control
– sensory-motor planning

• Soft real-time task: missing deadlines causes Quality-of-Service(QoS)/performance degradation, so
deadline violations are expected and permitted

– reading data from the keyboard—user command interpretation
– message displaying
– graphical activities

14

Real-Time Task

tfi di

relative deadline Di

τi ai si

response time Ri
absolute deadline (di = ai + Di)

• A task characterized by a timing constraint on its response time, called deadline:
– relative deadline 𝐷𝐷𝑖𝑖 : part of task attribute definition, measured from task arrival time

ai
– Absolute deadline 𝑑𝑑𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝐷𝐷𝑖𝑖 : measured from some absolute reference time

point 0
– Gantt chart convention: upwards arrows denote job arrival/release times;

downwards arrows denote deadlines
• Definition: feasible task

– A real-time task 𝜏𝜏𝑖𝑖 is said to be feasible if it completes within its absolute deadline, that is,
if 𝑓𝑓𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖 , or, equivalently, if 𝑅𝑅𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖

15

Tasks and Jobs

• A task running several times on different input data generates a sequence of
instances (jobs)

– Upwards arrow: task arrival or release times; downwards arrow: task deadlines

• Activation mode:
– Periodic tasks: the task is activated by the operating system at predefined time intervals

– Aperiodic tasks: the task is activated at an event arrival

Job 1

τi,1

Job 2

τi,2

Job 3

τi,3

ai,k ai,k+1
t

τi
Ci

ai,1

16

Estimating WCET is Not Easy
• Each job operates on different data and can take different paths.
• Even for the same data, computation time depends on processor state (cache state, number

of preemptions).
• We use 𝐶𝐶𝑖𝑖 to denote 𝐶𝐶𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 Worst-Case Execution Time (WCET) in this lecture, and

assume it is given as part of task parameters.

?

Distribution
(probability density function)

loop
?

?

execution
timeCi

min
Ci

maxtimer

17

Predictability/Safety vs. Efficiency

execution
time

Ci
mi
n Ci

max
Ci

avg

Ci estimate
safeefficientunsafe

• Tradeoff between safety and efficiency in estimating the WCET 𝐶𝐶𝑖𝑖
– Setting a large 𝐶𝐶𝑖𝑖 achieves high predictability and safety, since it is unlikely to be exceeded at runtime;

but it hurts efficiency, since the system needs to reserve more CPU time for the task. Suitable for hard
real-time tasks.

– Setting a small 𝐶𝐶𝑖𝑖 achieves high efficiency, but hurts safety, since the task may execute for more than
its 𝐶𝐶𝑖𝑖 estimate. Suitable for soft real-time tasks.

Distribution
(probability density function)

18

Jitter

• It is a measure of the time variation of a periodic event:

fi,1

Finish-time Jitter

τi
fi,2 fi,3

si,1

Start-time Jitter

τi
si,1 si,2 si,3

Completion-time Jitter (I/O Jitter)

τi
si,2 si,3fi,2fi,1 fi,3

19

Periodic Task
• A periodic task 𝜏𝜏𝑖𝑖 has a tuple of 3 attributes (𝐶𝐶𝑖𝑖 ,𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖):

– Worst-Case Execution Time (WCET) 𝐶𝐶𝑖𝑖 ; Period 𝑇𝑇𝑖𝑖 ; Relative Deadline 𝐷𝐷𝑖𝑖
– Implicit deadline if 𝐷𝐷𝑖𝑖 = 𝑇𝑇𝑖𝑖 ; Constrained deadline if 𝐷𝐷𝑖𝑖 ≤ 𝑇𝑇𝑖𝑖

• It generates an infinite sequence of jobs in every period: 𝜏𝜏𝑖𝑖,1, 𝜏𝜏𝑖𝑖,1, … , 𝜏𝜏𝑖𝑖,𝑘𝑘 , …

Ti
job τik

ai,k ai,k+1

τi (Ci , Ti , Di)
Ci

tai,1 = Φi

task phase or
Release offset

ai,k

di,k

= Φi + (k−1) Ti

= ai,k + Di

often
Di = Ti

input

Ci

wait()

timer (period Ti)

output

A job of task 𝜏𝜏𝑖𝑖 Multiple jobs released by task 𝜏𝜏𝑖𝑖

20

Aperiodic & Sporadic Task

• Aperiodic task: jobs may arrive at arbitrary time instants

• Sporadic task: arrival times with a minimum interarrival time constraint

• Aperiodic: ai,k+1 > ai,k minimum
interarrival time

• Sporadic: ai,k+1 ≥ ai,k + Ti

Ci

job τik

Ci Ci

ai,k ai,k+1 t
τi

ai,1

21

Types of Constraints

• Timing constraints
– Deadline, jitter

• Precedence constraints
– Relative ordering among task executions

• Resource constraints
– Synchronization when accessing mutually-exclusive resources (shared data)

22

Precedence Constraints

• Tasks must be executed with specific precedence
relations, specified by a Directed Acyclic Graph
(Precedence Graph)

• Example application of parts inspection in a factory.
Tasks:

– Image acquisition (acq1, acq2)

– Edge detection (edge1, edge2)

– Shape detection (shape), pixel disparities (disp)

– Height determination (height), recognition (rec)

stereo vision

processing recognition

acq1 acq2

edge1 edge2

shapedisp

depth

rec

23

Resource Constraints
• To ensure data consistency, shared data

must be accessed in mutual exclusion

• Example: the writer task 𝜏𝜏𝑊𝑊 writes to
variables 𝑥𝑥 and 𝑦𝑦; the reader task 𝜏𝜏𝑅𝑅 reads
𝑥𝑥 and 𝑦𝑦. The pair of variables (𝑥𝑥,𝑦𝑦) should
be updated atomically, i.e., 𝜏𝜏𝑅𝑅 should read
either 𝑥𝑥,𝑦𝑦 = 1,8 or 𝑥𝑥,𝑦𝑦 = 3,5 .

• Left upper: an erroneous scenario when τR
reads a set of inconsistent values 𝑥𝑥,𝑦𝑦 =
3,5 .

• Left lower: protecting the critical section
(yellow parts) with a mutex lock ensures
atomicity.

x = 3
y = 5

τW τRx = 1
y = 8

x = 1
y = 5

τW

τR

x=1 y=5

read

x = 3
y = 5x = 1

y = 8
x = 1
y = 8

τW τR

x = 1 y = 8τW

τR

∆

rea
d

Erroneous scenario with no lock protection

Correct scenario with lock protection

24

Scheduling Metrics
• Lateness 𝐿𝐿𝐿 = 𝑓𝑓𝐿 − 𝑑𝑑𝐿 represents the delay of a task completion with respect

to its deadline; if a task completes before the deadline, its lateness is negative.

• Tardiness or exceeding time 𝐸𝐸𝐿 = max (0, 𝐿𝐿𝐿) is the time a task stays active
after its deadline; if a task completes before the deadline, its tardiness is 0.

25

Example: Lateness

• Which schedule is better
depends on application
requirements:

• In (a), the maximum lateness
is minimized with 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 3,
but all jobs 𝐽𝐽1 to 𝐽𝐽5 miss
their deadlines.

• In (b), the maximal lateness
is larger with 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 23,
but only one job 𝐽𝐽1 misses
its deadline.

26

Scheduling Algorithms

• Static cyclic scheduling (offline)
– All task invocation times are computed offline and

stored in a table; Runtime dispatch is a simple table
lookup

• Online scheduling;
– Fixed priority scheduling (also called static-priority

scheduling)
» Each task is assigned a fixed priority; Runtime

dispatch is priority-based, e.g., Rate Monotonic
(RM), Deadline Monotonic (DM)

– Dynamic priority scheduling
» Task priorities are assigned dynamically at

runtime, e.g., Earliest Deadline First (EDF),
Least-Laxity First (LLF)

– Non-real-time scheduling, e.g., round-robin, multi-
level queue…

RT scheduling algorithms

Static cyclic scheduling
(offline) Online scheduling

Fixed-priority
(e.g., RM, DM)

Dynamic-priority
(e.g., EDF, LLF)

27

Static Cyclic Scheduling
• The same schedule is executed once during each hyper-period (least common multiple of all

task periods in a taskset).
– The hyper-period is partitioned into frames of length f.

» If a task’s WCET exceeds f, then programmer needs to cut it to fit within a frame, and save/restore
program state manually

– The schedule is computed offline and stored in a table. Runtime task dispatch is a simple table lookup.
• Pros:

– Deals with precedence, exclusion, and distance constraints
– Efficient, low-overhead for runtime task dispatch
– Lock-free at runtime

• Cons:
– Task table can get very large if task periods are relatively prime
– Maintenance nightmare: complete redesign when new tasks are added, or old tasks are deleted

• Not widely used
– Except in certain safety-critical systems such as avionic systems

28

Fixed-Priority Scheduling

29

Fixed Priority Scheduling

• Each task is assigned a fixed priority for all its invocations

• Pros:
– Predictability

– Low runtime overhead

– Temporal isolation during overload

• Cons:
– Cannot achieve 100% utilization in general, except when task periods are harmonic

• Widely used in most commercial RTOSes and CAN bus

30

Rate Monotonic & Deadline Monotonic Scheduling
• Rate Monotonic (RM)

– Assign higher priority to task with smaller period
– For implicit deadline tasksets (deadline D = period T),

RM is the optimal priority assignment, i.e., if a taskset
is not schedulable with RMS priority assignment,
then it is not schedulable with any other fixed
priority assignment

• Deadline Monotonic (DM)
– Assign higher priority to task with smaller relative

deadline
– For constrained deadline tasksets (D ≤ T), DM is

the optimal priority assignment
• Why do we want D < T?

– Some events happen infrequently, but need to be
handled urgently

• Example taskset: 𝜏𝜏1 = 10, 25, 25 , 𝜏𝜏2 =
10, 40, 40 or 10, 40, 15 , 𝜏𝜏3 = 20, 100, 100

0

500 10025 75

τ2

0

40 80

100
τ3

τ1

0

500 10025 75

τ2

0

40 80

100
τ3

τ1

RM Scheduling w/ 𝜏𝜏2 = (10, 40, 40)

DM Scheduling w/ 𝜏𝜏2 = (10, 40, 15)
(D2=15 indicated by red downward arrow for
𝜏𝜏2)

31

Two Schedulability Analysis Approaches

• Utilization bound test
– Calculate total CPU utilization and compare it to a known bound

– Polynomial time complexity

– Pessimistic: sufficient but not necessary condition for schedulability

• Response Time Analysis (RTA)
– Calculate Worst-Case Response Time Ri for each task Taui and compare it to its

deadline Di

– Pseudo-polynomial time complexity
» An algorithm runs in pseudo-polynomial time if its running time is polynomial in the numeric

value of the input (which is exponential in the length of the input – its number of digits).

– Accurate: necessary and sufficient condition for schedulability

IMPORTANT

32

Utilization Bound Test

CPU%
100
90
80
70
60
50
40
30
20
10

0
1 2 3 4 5 6 7 8 9 10

69%

tasks

RM UB Test

Tasks RM Util Bound
1 1.00
2 0.828
3 0.780
4 0.757
5 0.743
10 0.718
inf 0.693

• A taskset is schedulable under RM
scheduling if system utilization 𝑈𝑈 =
∑𝑖𝑖=1𝑁𝑁 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
≤ 𝑁𝑁(21/𝑁𝑁 − 1)

– 𝑈𝑈 → 0.69 as 𝑁𝑁 → ∞
– Assumptions: task period equal to

deadline (𝑃𝑃𝑖𝑖 = 𝐷𝐷𝑖𝑖); task with smaller
period 𝑃𝑃𝑖𝑖 is assigned higher priority (RM
priority assignment); tasks are
independent (no resource sharing)

• Sufficient but not necessary condition
– Guaranteed to be schedulable if test

succeeds
– May still be schedulable even if test fails

• Special case: if periods are harmonic
(larger periods divisible by smaller
periods), then utilization bound is 1
(necessary and sufficient condition)

IMPORTANT

33

Utilization Bound Test Examples

0 9 18

6 120 183

3 6

9 15

deadline miss
12 15

6 120 183 9 15

Taskset τ1 (3, 6, 6), τ2 (4, 9, 9)
 unschedulable

𝑈𝑈 =
3
6

+
4
9

= 0.944 > 0.828

Taskset τ1 (3, 6, 6), τ2 (3, 9, 9)
schedulable (UB test is sufficient but not
necessary condition)

𝑈𝑈 =
3
6 +

3
9 = 0.833 > 0.828

Taskset τ1 (2, 4, 4), τ2 (4, 8, 8)
schedulable (periods are harmonic)

𝑈𝑈 =
2
4 +

4
8 = 1.0 > 0.828

4 120 8 16

τ1

τ2

τ1

τ2

τ1

τ2

6 120 183 9 15

4 120 8 16

We use the notation τi (Ci, Ti, Di) to denote task τi with
WCET Ci Period Ti, Deadline Di

34

Response Time Analysis (RTA)
• Assumptions:

• Consider the synchronous taskset: all tasks are initially released at time 0 simultaneously,
called the critical instant. This is the worst-case when each task experiences maximum
amount of interference from higher priority tasks: if the taskset is schedulable with this
assumption, then it will be schedulable for any other release offset.

• No resource sharing (no critical sections)
• Figure shows task 𝜏𝜏2 has the worst-case response time 𝑅𝑅2 if it is initially released at time

0, simultaneously with higher priority task 𝜏𝜏1 (lower figure)

𝜏𝜏1, 𝜏𝜏2 initially released at time 0
simultaneously, the critical instant. 𝜏𝜏2
experiences 3 preemptions by 𝜏𝜏1 and
has longer response time

𝜏𝜏1, 𝜏𝜏2 initially released with a non-
zero offset, not all at time 0. 𝜏𝜏2
experiences 2 preemptions by 𝜏𝜏1
and has shorter response time

35

Response Time Analysis (RTA)
• For each task 𝜏𝜏𝑖𝑖 , compute its Worst-Case Response Time (WCRT) 𝑅𝑅𝑖𝑖

and compare to its deadline 𝐷𝐷𝑖𝑖 . 𝜏𝜏𝑖𝑖 is schedulable iff 𝑅𝑅𝑖𝑖 ≤ 𝐷𝐷𝑖𝑖 . The
taskset is schedulable if all tasks are schedulable (necessary and sufficient
condition. “iff” stands for “if and only if”).

• Task 𝜏𝜏𝑖𝑖 ‘s WCRT 𝑅𝑅𝑖𝑖 is computed by solving the following recursive
equation to find the minimum fixed-point solution:

• 𝑅𝑅𝑖𝑖 = 𝐶𝐶𝑖𝑖 + ∑∀𝑗𝑗∈ℎ𝑝𝑝(𝑖𝑖)
𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗
• where ℎ𝑝𝑝(𝑖𝑖) is the set of tasks with higher priority than task 𝜏𝜏𝑖𝑖 .
• ⌈⌉ is the ceiling operator, e.g., 1.1 = 2, 1.0 = 1

• 𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

 denotes the number of times HP task 𝜏𝜏𝑗𝑗 pre-empts 𝜏𝜏𝑖𝑖 during its one job

execution;
𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗 denotes the total preemption delay caused by HP task 𝜏𝜏𝑗𝑗 to
𝜏𝜏𝑖𝑖 during its one job execution

IMPORTANT

36

An Example Taskset

Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

• Consider a taskset of 3 task with (𝐶𝐶𝑖𝑖 ,𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖) of
10, 30, 30 , 10, 40, 40 , (12, 52, 52). Under RM, task priorities are assigned

to be High for T1, Medium for T2, and Low for T3

• System Utilization 𝑈𝑈 = ∑𝑖𝑖=13 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖

 =
10
30

 + 10
40

 + 12
52

= 0.81 > 0.78

• Utilization Bound 𝑁𝑁 = 3 = 3 ∗ 21/3 − 1 = 0.78
• Utilization bound test fails, but taskset is actually schedulable

37

Task T1

• T1 is the highest priority task, with no
interference from other tasks ℎ𝑝𝑝 1 = ∅

• 𝑅𝑅1 = 𝐶𝐶1 + 0 = 10
• 𝑅𝑅1 < 𝐷𝐷1, so T1 is schedulable

Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

0 10 20 30 40 50 Time

Task
T1 T1

38

Task T2
• T2 is the medium priority task, with interference
from higher priority Task 1 ℎ𝑝𝑝 2 = 1

• 𝑅𝑅2 = 𝐶𝐶2 + ⌈𝑅𝑅2
𝑇𝑇1
⌉ ∗ 𝐶𝐶1 = 10 + ⌈𝑅𝑅2

30
⌉ ∗ 10

• Solve for 𝑅𝑅𝑅 iteratively, starting with initial value 𝑅𝑅2 = 𝐶𝐶2 = 10:

– Iteration 1: 𝑅𝑅2 = 10 + 10
30

∗ 10 = 10 + 1 ∗ 10 = 20

– Iteration 2: 𝑅𝑅2 = 10 + 20
30

∗ 10 = 10 + 1 ∗ 10 = 20
• Hence 𝑅𝑅2 = 20 < 𝐷𝐷2 = 40, so T2 is schedulable

Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

0 10 20 30 40 50 Time

Task
T1 T1

T2 T2

39

Task T3
• T3 is the lowest priority task, with interference
from higher priority tasks ℎ𝑝𝑝 3 = {1,2}

• 𝑅𝑅3 = 𝐶𝐶3 + ⌈𝑅𝑅3
𝑇𝑇1
⌉ ∗ 𝐶𝐶1 + ⌈𝑅𝑅3

𝑇𝑇2
⌉ ∗ 𝐶𝐶2 = 12 + ⌈𝑅𝑅3

30
⌉ ∗ 10 + ⌈𝑅𝑅3

40
⌉ ∗ 10

• Solve for 𝑅𝑅3 iteratively, starting with initial value 𝑅𝑅3 = 𝐶𝐶3 = 12:
– Iteration 1: 𝑅𝑅3 = 12 + ⌈12/30⌉ ∗ 10 + ⌈12/40⌉ ∗ 10 = 32
– Iteration 2: 𝑅𝑅3 = 12 + ⌈32/30⌉ ∗ 10 + ⌈32/40⌉ ∗ 10 = 42
– Iteration 3: 𝑅𝑅3 = 12 + ⌈42/30⌉ ∗ 10 + ⌈42/40⌉ ∗ 10 = 52
– Iteration 4: 𝑅𝑅3 = 12 + ⌈52/30⌉ ∗ 10 + ⌈52/40⌉ ∗ 10 = 52

• Hence 𝑅𝑅3 = 52 ≤ 𝐷𝐷3 = 52, so T3 is schedulable

Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

0

0 10 20 30 40 50 Time
T3 T3

Task
T1 T1

T2 T2

40

RTA for T3: Initial Condition

• Initially 𝑅𝑅3 = 12
• We have not taken into account any preemption

delays from higher priority tasks T1 and T2 yet

T2

Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

0 10 20 30 40 50 Time

Task
T1 T1

T2 T2

T3

12

41

RTA for Task 3: Iteration 1

• 𝑅𝑅3 = 12 + 12
30

∗ 10 + 12
40

∗ 10
• = 12 + 1 ∗ 10 + 1 ∗ 10 = 32
• T1 preempts T3 once, and T2 preempts T3 once

– since all 3 tasks are released at time 0 (synchronous release
time assumption), and T1 and T2 have higher priority than
T3

Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

320 10 20 30 40 50 Time

Task
T1 T1

T2 T2

T3

42

• 𝑅𝑅3 = 12 + 32
30

∗ 10 + 32
40

∗ 10
• = 12 + 2 ∗ 10 + 1 ∗ 10 = 42
• T1 preempts T3 twice, and T2 preempts T3 once

– Since T3 has not finished execution at time 30, and
another job of higher priority task T1 is released at time
30 and preempts T3

RTA for Task 3: Iteration 2 Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

0 10 20 30 40 50 Time

Task
T1 T1

T2 T2

T3 T3
42

43

• 𝑅𝑅3 = 12 + 42
30

∗ 10 + 42
40

∗ 10
• = 12 + 2 ∗ 10 + 2 ∗ 10 = 52
• T1 preempts T3 twice, and T2 preempts T3 twice

– Since T3 has not finished execution at time 40, and
another job of higher priority task T2 is released at time
40 and preempts T3

RTA for Task 3: Iteration 3 Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

0 10 20 30 40 50 Time
T3 T3

Task
T1 T1

T2 T2

52

44

• 𝑅𝑅3 = 12 + 52
30

∗ 10 + 52
40

∗ 10 = 12 + 2 ∗ 10 + 2 ∗
10 = 52

• T1 preempts T3 twice, and T2 preempts T3 twice
– Since T3 has finished execution at time 52, and the next arrivals of

T1 and T2 are at time 60 and 80, respectively, so T3 will not
experience additional preemptions from T1 and T2

• Now the recursive equation has converged, and we have
obtained the WCRT of T3 𝑅𝑅3 = 52 ≤ 𝐷𝐷3 = 52

RTA for Task 3: Iteration 4 Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 52 12 L

0 10 20 30 40 50 Time
T3 T3

Task
T1 T1

T2 T2

52

45

When T3 is Unschedulable
• The recursive equation may not converge, i.e., a task’s WCRT may

be infinity, e.g., suppose we change T2’s WCET to be 20, then:

• 𝑅𝑅3 = 𝐶𝐶3 + ⌈𝑅𝑅3
𝑇𝑇1
⌉ ∗ 𝐶𝐶1 + ⌈𝑅𝑅3

𝑇𝑇2
⌉ ∗ 𝐶𝐶2 = 12 + ⌈𝑅𝑅3

30
⌉ ∗ 10 + ⌈𝑅𝑅3

40
⌉ ∗ 20

• Solve for 𝑅𝑅3 iteratively, starting with initial value 𝑅𝑅3 = 𝐶𝐶3 = 12:
– Iteration 1: 𝑅𝑅3 = 12 + ⌈12/30⌉ ∗ 10 + ⌈12/40⌉ ∗ 20 = 42
– Iteration 1: 𝑅𝑅3 = 12 + ⌈42/30⌉ ∗ 10 + ⌈42/40⌉ ∗ 20 = 72
– Iteration 3: 𝑅𝑅3 = 12 + ⌈72/30⌉ ∗ 10 + ⌈72/40⌉ ∗ 20 = 82
– Iteration 4: 𝑅𝑅3 = 12 + ⌈82/30⌉ ∗ 10 + ⌈82/40⌉ ∗ 20 = 102
– …

• Hence 𝑅𝑅3 → ∞. This means that T3’s first job never finishes
execution due to interferences by higher priority tasks, hence T3 is
unschedulable

• It is also possible for T3 to be unschedulable if 𝑅𝑅3 converges but it
exceeds its deadline 𝐷𝐷3, e.g., if we set 𝐷𝐷3 = 50, then 𝑅𝑅3 = 52 >
 𝐷𝐷3 = 50 (another job of T3 is released at time 50, but RTA for
the current job is not affected by the newly-released job.)

Task T=D C Prio
T1 30 10 H
T2 40 20 M
T3 52 12 L

0

Task T=D C Prio
T1 30 10 H
T2 40 10 M
T3 50 12 L

46

DM for Constrained Deadline Tasksets (D ≤ T)
• Deadline monotonic (Fixed Priority):

– A task with smaller relative deadline gets higher priority 𝑃𝑃𝑖𝑖 ∝ 1/𝐷𝐷𝑖𝑖
– For constrained deadline tasksets (D ≤ T), DM is the optimal priority assignment

– No Utilization Bound test for RM or DM, for tasksets with D ≤ T; must use Response
Time Analysis (RTA)

– Consider a taskset with two tasks both with (𝐶𝐶𝑖𝑖 ,𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖) = (1, 2, 1). Using RTA,
assuming 𝜏𝜏1 has higher priority (since task periods are equal, we can assign either
task higher priority), we can determine 𝑅𝑅1 = 1 ≤ 𝐷𝐷2 = 1,𝑅𝑅2 = 2 > 𝐷𝐷2 = 1,
hence it is unschedulable

47

RM vs. DM Example

• Three tasks: 𝜏𝜏1 =
0.5, 3, 3 , 𝜏𝜏2 =
1, 4, 4 , 𝜏𝜏3 = (2, 6, 6)

• Under RM (or DM),
priority ordering 𝜏𝜏1 >
𝜏𝜏2 > 𝜏𝜏3

• Three tasks with
𝜏𝜏2 assigned a smaller
deadline of 𝐷𝐷2 = 2: 𝜏𝜏1 =
0.5, 3, 3 , 𝜏𝜏2 =
1, 4, 2 , 𝜏𝜏3 = (2, 6, 6)

• Under DM, priority
ordering 𝜏𝜏2 > 𝜏𝜏1 > 𝜏𝜏3

𝜏𝜏1

𝜏𝜏𝟐𝟐

𝜏𝜏𝟑𝟑

𝜏𝜏𝟐𝟐

𝜏𝜏𝟏𝟏

𝜏𝜏𝟑𝟑

0 3 6 9 12

0 3 6 9 12

48

Earliest Deadline First (EDF) Scheduling

49

Earliest Deadline First (EDF)
• As each jon enters the system, it is assigned a deadline, and its priority is determined

by its absolute deadline 𝑑𝑑𝑖𝑖
– The job with the earlier deadline is assigned the higher priority

– This priority assignment is dynamic because a periodic task’s priority changes for each job
released by the task (vs. fixed-priority scheduling, where a periodic task is assigned a fixed
priority for all its jobs)

• Pros:
– Optimal: can achieve 100% CPU utilization

• Cons:
– Poor temporal isolation during overload

– c.f. RM vs. EDF: Robustness under Overload

50

EDF Scheduling Example
• Say you have two tasks, both released at time 0

– T1 has WCET 5 ms, with deadline of 20 ms

– T2 has WCET 10 ms, with deadline of 12 ms

• Non-EDF scheduling: T1 before T2, T2 misses its deadline at 12

• EDF scheduling: T2 before T1, both tasks meet their deadlines

T1 T2
0 5 15

T2 Deadline

T2 T1
0 5 15

T1 Deadline

20

20

T1 before T2

T2 before T1

Convention: Upwards arrows indicate arrival
time; Downwards arrows indicate deadline

51

Schedulable Utilization Bound: EDF vs. RM

CPU%
100
90
80
70
60
50
40
30
20
10

0

69%

RM EDF

100%

1 2 3 4 5 6 7 8 9 10 # tasks

• The schedulable utilization bound for EDF
Scheduling is 1 (necessary and sufficient
condition):

– A taskset is schedulable under EDF scheduling
iff system utilization does not exceed 1 𝑈𝑈 =
∑𝑖𝑖=1𝑁𝑁 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
 ≤ 1

» “iff” stands for “if and only if”
– Assumptions: task period equal to deadline

(𝑃𝑃𝑖𝑖 = 𝐷𝐷𝑖𝑖); tasks are independent (no
resource sharing)

• Recall: schedulable utilization bound for
Fixed-Priority scheduling (sufficient but not
necessary condition):

– A taskset is schedulable under RM scheduling
if system utilization 𝑈𝑈 = ∑𝑖𝑖=1𝑁𝑁 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
≤ 𝑁𝑁(21/𝑁𝑁 −

1)
– 𝑈𝑈 → 0.69 as 𝑁𝑁 → ∞

IMPORTANT

52

RM vs. EDF Example

0 9 18

6 120 183

3 6

9 15

deadline miss
12 15

Under RM (Fixed-Priority scheduling), all
jobs of 𝜏𝜏1 (with smaller period T=6) have
higher priority than all jobs of 𝜏𝜏2 (with
larger period T=9). Taskset unschedulable
with RM

𝑈𝑈 =
3
6 +

4
9 = 0.944 > 0.828

τ1

τ2

0 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

Under EDF (Dynamic Priority scheduling),
different jobs of 𝜏𝜏1 and 𝜏𝜏2 may have
different priorities, depending on their
absolute deadlines 𝑑𝑑𝑖𝑖 , which is different for
each newly-released job every period.
Taskset schedulable with EDF

𝑈𝑈 =
3
6 +

4
9 = 0.944 < 1.0

Task T=D C
𝜏𝜏1 6 3
𝜏𝜏2 9 4

> > >
priority

priority

When two jobs have equal priority, the newly arrived
job does not preempt the running job

53

RM vs. EDF: Robustness under Overload
• Under permanent overload, with CPU utilization U > 1

– Under EDF, all tasks execute at a slower rate with “period rescaling”, i. e., all tasks are delayed evenly
– Under RM, higher priority tasks are protected while lower priority tasks are delayed or complete blocked
– Recall Slide 25 Example Lateless

• Under transient overload, when some job overruns (executes longer than expected temporarily)
– Under EDF, task overruns can cause deadline miss of arbitrary task
– Under RM: task overruns only affect lower priority tasks

• Conclusion: RM offers better temporal isolation for higher priority tasks, at the expense of lower priority tasks

54

EDF Period Rescaling

• Theorem on Period Rescaling [Cervin et al. 2003]:
– If system utilization 𝑈𝑈 > 1, tasks are executed with an average period
𝑇𝑇𝑖𝑖′ = 𝑇𝑇𝑖𝑖𝑈𝑈 under EDF scheduling

55

EDF for Constrained Deadline Tasksets (D ≤ T)
• Earliest Deadline First (Dynamic-Priority):

– A task with smaller absolute deadline gets higher priority 𝑃𝑃𝑖𝑖 ∝ 1/𝑑𝑑𝑖𝑖
– EDF is still optimal, but instead of Utilization Bound, we use Density Bound to determine

schedulability

– Density of task 𝜏𝜏𝑖𝑖 is defined as 𝛿𝛿𝑖𝑖 = 𝐶𝐶𝑖𝑖
min(𝐷𝐷𝑖𝑖,𝑇𝑇𝑖𝑖)

. Taskset is schedulable if system density does not
exceed 1: ∆ = ∑𝑖𝑖 𝛿𝛿𝑖𝑖 ≤ 1 (sufficient but not necessary condition)

» (Demand Bound Function can be used as necessary and sufficient condition (not covered))
– Consider a taskset with two tasks both with (𝐶𝐶𝑖𝑖,𝑇𝑇𝑖𝑖 ,𝐷𝐷𝑖𝑖) = (1, 2, 1). It is obviously unschedulable

under any scheduling algo. System utilization is 𝑈𝑈 = 1
2

+ 1
2

= 1; System density Δ = 1
1

+ 1
1

= 2. But
we cannot determine schedulabiity based on Δ > 1.

– Consider a taskset with two tasks 𝜏𝜏1 = 0.6, 2, 1 , 𝜏𝜏2 = (2.3, 5, 5). ∆ = 0.6
1

+ 2.3
5

= 1.06. Yet
the taskset is schedulable under EDF:

IMPORTANT

56

Summary of Schedulability Analysis Algorithms
Fixed-Priority Scheduling Dynamic Priority Scheduling

Optimal
Scheduling
Algorithm

Rate Monotonic (RM)
Scheduling for implicit
deadline taskset (D=T)

Deadline Monotonic
(DM) Scheduling for
constrained deadline
taskset (D≤T)

Earliest Deadline First
(EDF) Scheduling for
implicit deadline taskset
(D=T)

Earliest Deadline First
(EDF) Scheduling for
constrained deadline
taskset (D≤T)

Schedulability
Analysis
Algorithm

Utilization Bound (UB)

test 𝑈𝑈 = ∑𝑖𝑖=1𝑁𝑁 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤

𝑁𝑁(21/𝑁𝑁 − 1) (sufficient
condition) or
Response Time Analysis
(RTA) (necessary and
sufficient)
𝑅𝑅𝑖𝑖

= 𝐶𝐶𝑖𝑖 + �
∀𝑗𝑗∈ℎ𝑝𝑝(𝑖𝑖)

𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗

≤ 𝐷𝐷𝑖𝑖

RTA
Response Time Analysis
(RTA) (necessary and
sufficient)
𝑅𝑅𝑖𝑖

= 𝐶𝐶𝑖𝑖 + �
∀𝑗𝑗∈ℎ𝑝𝑝(𝑖𝑖)

𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗

≤ 𝐷𝐷𝑖𝑖

Utilization Bound (UB)

test 𝑈𝑈 = ∑𝑖𝑖=1𝑁𝑁 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ 1

(necessary and
sufficient)

Density Bound test

∆ = ∑𝑖𝑖
𝐶𝐶𝑖𝑖

min(𝐷𝐷𝑖𝑖,𝑇𝑇𝑖𝑖)
≤ 1

(sufficient condition)
or
Demand Bound
Function (not covered)

IMPORTANT

57

Least Laxity First (LLF) Scheduling

58

Least Laxity First (LLF) Scheduling
• LLF assigns priority to jobs dynamically based on their current laxity (slack)

– With absolute deadline 𝑑𝑑𝑖𝑖 and remaining execution time 𝑒𝑒𝑖𝑖, laxity of 𝜏𝜏𝑖𝑖’s job at time 𝑡𝑡 is 𝑙𝑙𝑖𝑖 = 𝑑𝑑𝑖𝑖 – 𝑡𝑡 – 𝑒𝑒𝑖𝑖. Job
with the smallest laxity has the highest priority

– While an active job waits and does not run, its laxity decreases and its priority increases until it becomes
the highest priority job and starts to run

– If an active job runs in the previous time slot, then its laxity remains the same, as 𝑡𝑡 is incremented by 1, and
𝑒𝑒𝑖𝑖 is decremented by 1

– If an active job does not run in the previous time slot, then its laxity is decremented by 1, as 𝑡𝑡 is
incremented by 1, and 𝑒𝑒𝑖𝑖 remains the same

• Analogy: suppose you have an assignment that is due in 5 hours at 12:00, and it takes 𝑒𝑒𝑖𝑖=3 hours to
complete. Current time is 𝑡𝑡=7:00, so the current laxity is 𝑙𝑙𝑖𝑖 = 𝑑𝑑𝑖𝑖 – 𝑡𝑡 – 𝑒𝑒𝑖𝑖=12−7−3=2.

– If you work for an hour until 𝑡𝑡=8:00, then the laxity remains the same: 𝑙𝑙𝑖𝑖 = 𝑑𝑑𝑖𝑖 – 𝑡𝑡 – 𝑒𝑒𝑖𝑖=12−8−2=2, since the
remaining execution time is decremented by 1: 𝑒𝑒𝑖𝑖=3-1=2

– If you sleep for an hour until 𝑡𝑡=8:00, then the laxity is decremented by 1: 𝑙𝑙𝑖𝑖 = 𝑑𝑑𝑖𝑖 – 𝑡𝑡 – 𝑒𝑒𝑖𝑖=12−8−3=1, since
the remaining execution time does not change: 𝑒𝑒𝑖𝑖=3

– If you sleep for 2 hours until 𝑡𝑡=9:00, then the laxity is now 0: 𝑙𝑙𝑖𝑖 = 𝑑𝑑𝑖𝑖 – 𝑡𝑡 – 𝑒𝑒𝑖𝑖=12−9−3=0. Your must give the
assignment the highest priority and start working on it right away, otherwise you will miss the deadline

• EDF and LLF are both optimal scheduling algorithms, i.e., they both have schedulable utilization
bound of 1

– LLF incurs frequent context switches, hence is less practical than EDF

𝑒𝑒𝑖𝑖
t 𝑑𝑑𝑖𝑖

𝑙𝑙𝑖𝑖

59

RM, EDF, LLF Example

0 1 2 3 4 5 6 7 8 9 10 11 12 Time

Task

T1

T2

Task T=D C
T1 5 2
T2 6 3

T1

T2

T1

Time τ₁ Laxity τ₂ Laxity Running
Task

t=0 5-0-2=3 6-0-3=3 𝜏𝜏𝜏 (tie)
t=1 5-1-1=3 6-1-3=2 𝜏𝜏𝜏

t=2 5-2-1=2 6-2-2=2 𝜏𝜏𝜏 (tie)
t=3 5-3-1=1 6-3-1=2 𝜏𝜏𝜏

t=4 𝜏𝜏𝜏 done 6-4-1=1 𝜏𝜏𝜏

t=5 10-5-2=3 𝜏𝜏𝜏 done 𝜏𝜏𝜏

t=6 10-6-1=3 12-6-3=3 𝜏𝜏𝜏 (tie)
t=7 𝜏𝜏𝜏 done 12-7-3=2 𝜏𝜏𝜏T2

T1

0 1 2 3 4 5 6 7 8 9 10 11 12 Time

Task

T1

T2

T1T1

T2

EDF and RM have the same schedule

LLF has more frequent context switches

60

Preemptive vs. Non-Preemptive Scheduling

61

Preemptive vs. Non-Preemptive Scheduling
• Non-preemptive scheduling pros:

• It reduces runtime overhead
• Less context switches
• No mutex locks needed for critical

sections

• It preserves program locality, improving
the effectiveness of CPU cache

• As a result, task WCET becomes smaller
and execution time distribution becomes
more predictable (shown on right)

• Sometimes NP scheduling can improve
schedulability

• Cons:
– Reduced schedulability

– Scheduling anomalies

• Preemptive scheduling pros:
• Better schedulability (higher CPU utilization)

• Cons:
• Runtime overhead due to frequent context-

switches
• Destroys program locality so task WCET becomes

larger

62

Sometimes NP Scheduling Improves Schedulability

• An example where NP scheduling improves schedulability (for fixed-priority
scheduling)

63

Disadvantage of NP Scheduling: Reduced Schedulability

• In general, NP scheduling reduces schedulability. The utilization bound
under NP scheduling drops to zero due to blocking time

• An example with with two tasks T1 and T2, CPU utilization of nearly 0,
yet unschedulable.

– If 𝐶𝐶2 (WCET of T2) ≥ 𝑇𝑇1 (period of T1), then the taskset is unschedulable with
arbitrarily small system CPU utilization

𝐶𝐶1
𝑇𝑇1

+ 𝐶𝐶2
𝑇𝑇2
→ 0

𝑇𝑇1
+ 𝐶𝐶2

∞
 (when 𝐶𝐶1 goes to 0 and

𝑇𝑇2 goes to infinity)
– This example is valid whether 𝜏𝜏1 or 𝜏𝜏2 has higher priority: even if 𝜏𝜏1 has higher

priority, it may be released very shortly after 𝜏𝜏2 is released at time 0, and it has to
wait for 𝜏𝜏2 to finish due to NP scheduling

T1

T2

64

Disadvantage of NP Scheduling: Scheduling Anomalies
• Scheduling anomaly: three tasks under NP fixed-priority scheduling witjh priority ordering 𝜏𝜏1> 𝜏𝜏2 > 𝜏𝜏3 and NP
• Doubling the processor speed (reducing task execution times by half) makes task 𝜏𝜏1 miss its

deadline, since 𝜏𝜏3 starts earlier before 𝜏𝜏1 is released, causing a long delay to it due to NP
scheduling (this anomaly does not occur for preemptive scheduling)

65

Online Resources

• Priority-Driven Scheduling, Marilyn Wolf
– https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo

1iPeGmG9M&index=4

• RMS and EDF, Marilyn Wolf
– https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVv

To1iPeGmG9M&index=5

• Real-Time Scheduling Models, Marilyn Wolf (long)
– https://www.youtube.com/watch?v=WloSQ7ZEKXk

https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=zSgr_oFmjqI&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=4
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=oHMC2aO8GII&list=PLzwefUCNStZsmz5fWPVwVvTo1iPeGmG9M&index=5
https://www.youtube.com/watch?v=WloSQ7ZEKXk

	CSC 112: Computer Operating Systems�Lecture 6���Real-Time Scheduling I
	Outline
	Slide Number 3
	Embedded Control Systems
	Requirements
	A Robot Control Example
	Real-Time Systems
	RTOS Requirements
	Sources of Nondeterminism
	Task
	Schedule
	Preemptive vs. Nonpreemptive Scheduling
	Definitions
	Real-Time Task
	Tasks and Jobs
	Estimating WCET is Not Easy
	Predictability/Safety vs. Efficiency
	Jitter
	Periodic Task
	Aperiodic & Sporadic Task
	Types of Constraints
	Precedence Constraints
	Resource Constraints
	Scheduling Metrics
	Example: Lateness
	Scheduling Algorithms
	Static Cyclic Scheduling
	Slide Number 28
	Fixed Priority Scheduling
	Rate Monotonic & Deadline Monotonic Scheduling
	Two Schedulability Analysis Approaches
	Utilization Bound Test
	Utilization Bound Test Examples
	Response Time Analysis (RTA)
	Response Time Analysis (RTA)
	An Example Taskset
	Task T1
	Task T2
	Task T3
	RTA for T3: Initial Condition
	RTA for Task 3: Iteration 1
	RTA for Task 3: Iteration 2
	RTA for Task 3: Iteration 3
	RTA for Task 3: Iteration 4
	When T3 is Unschedulable
	DM for Constrained Deadline Tasksets (D ≤ T)
	RM vs. DM Example
	Slide Number 48
	Earliest Deadline First (EDF)
	EDF Scheduling Example
	Schedulable Utilization Bound: EDF vs. RM
	RM vs. EDF Example
	RM vs. EDF: Robustness under Overload
	EDF Period Rescaling
	EDF for Constrained Deadline Tasksets (D ≤ T)
	Summary of Schedulability Analysis Algorithms
	Slide Number 57
	Least Laxity First (LLF) Scheduling
	RM, EDF, LLF Example
	Slide Number 60
	Preemptive vs. Non-Preemptive Scheduling
	Sometimes NP Scheduling Improves Schedulability
	Disadvantage of NP Scheduling: Reduced Schedulability
	Disadvantage of NP Scheduling: Scheduling Anomalies
	Online Resources

