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CPU/IO Bursts

• A typical job alternates between bursts of CPU 
and I/O

– It uses the CPU for some period of time, then does 
I/O, then uses CPU again (A job may be pre-empted 
and forced to give up CPU before finishing current 
CPU burst)

A CPU bound job

An I/O bound job
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The Scheduling Problem

• Scheduling: When multiple jobs are ready, the scheduling algorithm 
decides which one is given access to the CPU

– We use the term “job” to refer to a runnable entity  in the OS, which may be a 
process or a thread

T1 T2 T3 T1 T2

Time 
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Preemptive vs. Non-Preemptive Scheduling

• With non-preemptive scheduling, once the CPU has been allocated to a 
process, it keeps the CPU until it releases the CPU either by terminating or 
by blocking for IO.

• With preemptive scheduling, the OS can forcibly remove a process from 
the CPU without its cooperation 

• Transition from “running” to “ready” only exists for preemptive scheduling
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Performance Metrics
• Response time: the total time taken for a job to complete its execution, starting 

from the moment it arrives until it finishes. It includes all phases of the process 
lifecycle: waiting in queues, execution on the CPU, and any I/O operations. It can 
be calculated as CompletionTime – ArrivalTime.

– Also called turn-around time
• Initial waiting time: the time a job spends waiting in the ready queue before it 

gets its first chance to execute on the CPU
• CPU utilization: percent of time when CPU is busy
• Throughput: # of jobs that complete their execution per time unit
• Different systems may have different requirements

– Maximize CPU utilization
– Maximize Throughput
– Minimize Average Response time
– Minimize Average Waiting time
– Typically, these goals cannot be achieved simultaneously by a single scheduling 

algorithm
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Common Scheduling Algorithms

• First-Come-First-Served (FCFS) Scheduling 
• Round-Robin (RR) Scheduling 
• Shortest-Job-First (SJF) Scheduling 
• Priority-Based Scheduling 
• Multilevel Queue Scheduling 
• Multilevel Feedback-Queue Scheduling
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First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
• Example: job Burst Time

 P1 24
 P2 3
 P3  3 

– Suppose jobs arrive in the order: P1 , P2 , P3 at time 0, i.e., P1 arrives at 
time 0, P2 arrives at time 𝜖𝜖, P3 arrives at time 2𝜖𝜖
The Gantt Chart for the schedule is:

– Initial waiting time for P1: 0; for P2 : 24; for P3 : 27
– Average initial waiting time:  (0 + 24 + 27)/3 = 17
– Average response time: (24 + 27 + 30)/3 = 27

• Convoy effect: short job stuck behind long job

P1 P2 P3

24 27 300



8

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that jobs arrive in the order: P2 , P3 , P1 at time 0:

– Initial waiting time for P1: 6; for P2: 0; for P3: 3
– Average initial waiting time:   (6 + 0 + 3)/3 = 3 (vs. 17 before)
– Average response time: (3 + 6 + 30)/3 = 13 (vs. 27 before)

P1P3P2

63 300
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Convoy Effect

• With FCFS non-preemptive scheduling, convoys of small 
tasks tend to build up when a large one is running.
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arrivals

Long job Short job Short job
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• Round Robin Scheme:
– Each job gets a small unit of CPU time (time slice or time quantum), usually 

10-100 milliseconds
– When quantum expires, the job is preempted and added to the end of the 

ready queue
– If the current CPU burst finishes before quantum expires, the job blocks for 

IO and is added to the end of the ready queue
– n jobs in ready queue and time quantum is q ⇒

» Each job gets (roughly) 1/n of the CPU time 
» In chunks of at most q time units 
» No job waits more than (n-1)q time units

• OS implementation: 
– Use a periodic timer interrupt to preempt the running job every time 

quantum, and send it to the back of the ready queue

Round Robin (RR) Scheduling
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• Example: job  Burst Time
  P1   53
  P2   8
  P3  68
  P4  24
– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72     
  P2=(20-0)=20
  P3=(28-0)+(88-48)+(125-108)=85
  P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average response time = (125+28+153+112)/4 = 104½

• Round-Robin scheduling
– Pro: Better for short jobs, Fair
– Con: Context-switching overhead adds up for long jobs

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

Example of RR with Time Quantum = 20
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• Choice of quantum size q:
– q must be large with respect to context-switching overhead, 
– q too large: response time will be long. q very large ⇒ FCFS
– q too small: too many context-switches with high overhead 

• Typical time slice in modern OS is between 10ms – 100ms
• Typical context-switching overhead is 0.1ms – 1ms

– Roughly 1% overhead due to context-switching

Quantum size
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Decrease Response Time w. Decreasing Quantum

• T1: Burst Length 10
• T2: Burst Length 1

• Q = 10

– Average Response Time = (10 + 11)/2 = 10.5

• Q = 5

– Average Response Time = (11 + 6)/2 = 8.5

T1
0 10

T2
11

T1
0 6

T2
11

T1
5
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Same Response Time w. Decreasing Quantum

• T1: Burst Length 1
• T2: Burst Length 1

• Q = 10

– Average Response Time = (1 + 2)/2 = 1.5

• Q = 1

– Average Response Time = (1 + 2)/2 = 1.5

T1
0 1

T2
2

T1
0 1

T2
2
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• T1: Burst Length 1

• T2: Burst Length 1

• Q = 1

– Average Response Time = (1 + 2)/2 = 1.5

• Q = 0.5

– Average Response Time = (1.5 + 2)/2 = 1.75

T1
0 1

T2
2

0 2

Increase Response Time w. Decreasing Quantum
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FCFS vs. Round Robin
• Assuming zero-cost context-switching time, RR may not be better than 

FCFS, e.g., when all jobs have equal execution time
• Simple example: 10 jobs, each take 100s of CPU time

 RR scheduler quantum of 1s
 All jobs start at the same time

• response times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR than FCFS

• Frequent context switches under RR hurts cache locality and increases 
job execution time due to increased cache miss rate

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999

10 1000 1000
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Consider the Previous Example

• When jobs have uneven length, it seems to be a good idea to 
run short jobs first!

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 153
Worst FCFS:

68 121 145

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

RR q=20:

Job  Burst Time
 P1  53
 P2   8
 P3  68
 P4   24
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Earlier Example with Different Time Quantum
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SJF and SRTF
• If we know job execution times at arrival time (predict the 

future), then we can implement SJF and SRTF
• Shortest Job First (SJF):

– Non-preemptive scheduling: Run whatever job has least amount of 
computation to do

– Still suffers from convoy effect due to non-preemption
• Shortest Remaining Time First (SRTF):

– Preemptive scheduling: if a new job arrives with remaining time less 
than remaining time of currently-executing job, preempt the current 
job.

• Key idea: Give higher priority to short jobs and finish them 
quickly

– Big benefit for short jobs, only small delay effect on long ones
– Result is better average response time
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SJF and SRTF Example

• SRTF achieves 
shorter average 
response time (Avg 
RT) than SJF, thanks 
to preemptive 
scheduling

J
o
b

Arrival
time

Exec 
Time

SJF 
Finishing

Time

SJF 
Response 

Time

SRTF 
Finishing 

Time

SRTF 
Response 

Time
A 0 70 70 70 90 90
B 10 10 80 70 20 10
C 20 10 90 70 30 10

Avg RT 70 Avg RT 37

A B C

B arrives

0 70 80 90

A B C

0

10 20

90

A

30

10 20

C arrives
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Optimality of SJF and SRTF
• SJF is the optimal scheduling algorithm for minimizing the average response 

time under the following assumptions:
– All jobs only use the CPU (no I/O)
– All jobs arrive at the same time
– Job execution times are known in advance
– Non-preemptive scheduling

• SRTF is the optimal scheduling algorithm for minimizing the average 
response time under the following assumptions:

– All jobs only use the CPU (no I/O)
– Job execution times are known in advance
– Preemptive scheduling

• Comparison of SRTF with FCFS
– If all jobs have the same length (execution time)

» SRTF becomes the same as FCFS (i.e. FCFS is optimal if all jobs the same length)
– If jobs have varying length

» SRTF is better, since short jobs are not stuck behind long ones
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Example to illustrate benefits of SRTF

• Three jobs: 
– A, B: both CPU bound, run for a week

C: I/O bound, runs in a loop of 1ms CPU followed by 9ms disk I/O
– If each job runs alone without interference, then C uses 90% of disk, A 

or B uses 100% of CPU
• With FCFS:

– A and B may arrive and keep CPU busy for two weeks before C is 
scheduled

• What about RR or SRTF?

C

C’s 
I/O

C’s 
I/O

C’s 
I/O

A or B
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SRTF Example continued:

C’s 
I/O

CABAB… C

C’s 
I/O

RR 1ms time slice

C’s 
I/O

C’s 
I/O

C
A B

C

RR 100ms time slice

C’s 
I/O

AC

C’s 
I/O

AA

SRTF

C runs every 10ms
Disk Utilization:
9/10=90%, but frequent 
CPU context switches

C runs every 10ms
Disk Utilization:
9/10=90%, infrequent 
CPU context switches

C runs every 201ms
Disk Utilization:
9/201≈4.5%
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• How to predict job execution time?
– Runtime measurement and profiling for typical inputs
– Offline static analysis
– Difficult and error-prone in general

• Unfair
– SRTF can lead to starvation if many small jobs arrive so large jobs 

never get to run

• SRTF Pros & Cons
– Pros: Optimal in minimizing average response time)
– Cons: Hard to predict job execution time; Unfair

SRTF Discussions
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Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– Works because programs have predictable behavior
» If program was I/O bound in past, likely in future

• Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths. We need to 
estimate/predict next burst length τn = f(tn-1, tn-2, tn-3, …) based on 
previous burst lengths. 

– Function f may be one of many different time series estimators
(Kalman filters, etc)

• We can use exponential averaging τn = αtn-1+(1-α)τn-1, where tn-1, tn-2, 
tn-3, etc. are previous CPU burst lengths, and τn is the predicted next 
CPU burst length. 

• ti = actual burst time of process Pi, i = n, n-1, n-2, …
• τn = predicted burst time for process Pn
• α is the smoothing factor (0 <= α <=1)

• α large: fast update of τn based on new input.
• α small: slow update of τn based on new input.



26

Predicting the Length of the Next CPU Burst: Example

• Computing τn = αtn-1+(1-α)τn-1 with 
initial guess τ0 = 10. Assume α=0.5.

• τ1 = αt0+(1-α)τ0=0.5*6 + 0.5*10 = 8
• τ2 = αt1+(1-α)τ1=0.5*4 + 0.5*8 = 6
• τ3 = αt2+(1-α)τ2=0.5*6 + 0.5*6 = 6
• τ4 = αt3+(1-α)τ3=0.5*4 + 0.5*6 = 5
• τ5 = αt4+(1-α)τ4=0.5*13 + 0.5*5 = 9
• τ6 = αt5+(1-α)τ5=0.5*13 + 0.5*9 = 11
• τ7 = αt6+(1-α)τ6=0.5*13 + 0.5*11 = 12
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Comparison Chart

Property FCFS SJF SRTF RR
Optimize 
Average 

Response Time
Prevent 

Starvation

Prevent
Convoy Effect

No Need to 
Predict Exec 

Time
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• Fixed-Priority Scheduling
– Each job is assigned a fixed priority
– Run the highest-priority job in the ready queue at any given time (may be preemptive 

or non-preemptive)
– Jobs of equal priority are scheduled with RR

• SJF/SRTF are special cases of priority-based scheduling where priority is the 
predicted (remaining) job execution time

• Problem: starvation – low priority jobs may never execute
– Sometimes this is the desired behavior!

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Fixed-Priority Scheduling
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Multi-Level Queue Scheduling
• Ready queue is partitioned into 

multiple queues, each with 
different priority

– Higher priority queues often 
considered “foreground” tasks

• Each queue has its own scheduling 
algorithm

– e.g., foreground queue (interactive 
jobs/processes) with RR scheduling;  
background queue (batch 
jobs/processes) with FCFS scheduling

– Sometimes multiple RR priorities with 
quantum increasing exponentially 
(highest:1ms, next: 2ms, next: 4ms, 
etc)

• Scheduling between the queues
– Fixed priority, e.g., serve all from 

foreground queue, then from 
background queue
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Multi-Level Feedback Queue Scheduling
• Based on Multi-Level Queue Scheduling, but dynamically adjust each job’s 

priority as follows:
– It starts in highest-priority queue
– If quantum expires before the CPU burst finishes, drop down one level
– If it blocks for I/O before quantum expires, push up one level (or to top, depending 

on implementation)
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Multi-Level Feedback Queue Scheduling Discussions

• MLFQ approximates SRTF:
– Long-running CPU-bound jobs/processes are punished and drop 

down like a rock
– Short-running I/O-bound processes are rewarded and stay near 

top
– No need for prediction of job éxecution time; rely on past behavior 

to make decision

• User can game the scheduler:
– e.g., put in a bunch of meaningless I/O like printf() to keep process 

in the high-priority queue
– Of course, if everyone did this, this trick wouldn’t work!
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Conclusion
• FCFS Scheduling:

– Run jobs in the order of arrival
– Cons: Short jobs can get stuck behind long ones

• Round-Robin Scheduling: 
– Give each thread a small amount of CPU time when it executes; cycle between all 

ready threads
– Pros: Better for short jobs 

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least execution time/least remaining execution time
– Pros: Optimal (in terms of average response time) 
– Cons: Hard to predict execution time, Unfair

• Priority-Based Scheduling
– Each job is assigned a fixed priority

• Multi-Level Queue Scheduling
– Multiple queues of different priorities and scheduling algorithms

• Multi-Level Feedback Queue Scheduling:
– Automatic promotion/demotion of jobs between queues to approximate SJF/SRTF
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