
CSC 112: Computer Operating Systems
Lecture 5

Scheduling

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming

2

CPU/IO Bursts

• A typical job alternates between bursts of CPU
and I/O

– It uses the CPU for some period of time, then does
I/O, then uses CPU again (A job may be pre-empted
and forced to give up CPU before finishing current
CPU burst)

A CPU bound job

An I/O bound job

3

The Scheduling Problem

• Scheduling: When multiple jobs are ready, the scheduling algorithm
decides which one is given access to the CPU

– We use the term “job” to refer to a runnable entity in the OS, which may be a
process or a thread

T1 T2 T3 T1 T2

Time

4

Preemptive vs. Non-Preemptive Scheduling

• With non-preemptive scheduling, once the CPU has been allocated to a
process, it keeps the CPU until it releases the CPU either by terminating or
by blocking for IO.

• With preemptive scheduling, the OS can forcibly remove a process from
the CPU without its cooperation

• Transition from “running” to “ready” only exists for preemptive scheduling

5

Performance Metrics
• Response time: the total time taken for a job to complete its execution, starting

from the moment it arrives until it finishes. It includes all phases of the process
lifecycle: waiting in queues, execution on the CPU, and any I/O operations. It can
be calculated as CompletionTime – ArrivalTime.

– Also called turn-around time
• Initial waiting time: the time a job spends waiting in the ready queue before it

gets its first chance to execute on the CPU
• CPU utilization: percent of time when CPU is busy
• Throughput: # of jobs that complete their execution per time unit
• Different systems may have different requirements

– Maximize CPU utilization
– Maximize Throughput
– Minimize Average Response time
– Minimize Average Waiting time
– Typically, these goals cannot be achieved simultaneously by a single scheduling

algorithm

6

Common Scheduling Algorithms

• First-Come-First-Served (FCFS) Scheduling
• Round-Robin (RR) Scheduling
• Shortest-Job-First (SJF) Scheduling
• Priority-Based Scheduling
• Multilevel Queue Scheduling
• Multilevel Feedback-Queue Scheduling

7

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
• Example: job Burst Time

 P1 24
 P2 3
 P3 3

– Suppose jobs arrive in the order: P1 , P2 , P3 at time 0, i.e., P1 arrives at
time 0, P2 arrives at time 𝜖𝜖, P3 arrives at time 2𝜖𝜖
The Gantt Chart for the schedule is:

– Initial waiting time for P1: 0; for P2 : 24; for P3 : 27
– Average initial waiting time: (0 + 24 + 27)/3 = 17
– Average response time: (24 + 27 + 30)/3 = 27

• Convoy effect: short job stuck behind long job

P1 P2 P3

24 27 300

8

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that jobs arrive in the order: P2 , P3 , P1 at time 0:

– Initial waiting time for P1: 6; for P2: 0; for P3: 3
– Average initial waiting time: (6 + 0 + 3)/3 = 3 (vs. 17 before)
– Average response time: (3 + 6 + 30)/3 = 13 (vs. 27 before)

P1P3P2

63 300

9

Convoy Effect

• With FCFS non-preemptive scheduling, convoys of small
tasks tend to build up when a large one is running.

time
Sc

he
du

lin
g

qu
eu

e

Scheduled Task (job, thread)

arrivals

Long job Short job Short job

10

• Round Robin Scheme:
– Each job gets a small unit of CPU time (time slice or time quantum), usually

10-100 milliseconds
– When quantum expires, the job is preempted and added to the end of the

ready queue
– If the current CPU burst finishes before quantum expires, the job blocks for

IO and is added to the end of the ready queue
– n jobs in ready queue and time quantum is q ⇒

» Each job gets (roughly) 1/n of the CPU time
» In chunks of at most q time units
» No job waits more than (n-1)q time units

• OS implementation:
– Use a periodic timer interrupt to preempt the running job every time

quantum, and send it to the back of the ready queue

Round Robin (RR) Scheduling

11

• Example: job Burst Time
 P1 53
 P2 8
 P3 68
 P4 24
– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
 P2=(20-0)=20
 P3=(28-0)+(88-48)+(125-108)=85
 P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average response time = (125+28+153+112)/4 = 104½

• Round-Robin scheduling
– Pro: Better for short jobs, Fair
– Con: Context-switching overhead adds up for long jobs

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153

Example of RR with Time Quantum = 20

12

• Choice of quantum size q:
– q must be large with respect to context-switching overhead,
– q too large: response time will be long. q very large ⇒ FCFS
– q too small: too many context-switches with high overhead

• Typical time slice in modern OS is between 10ms – 100ms
• Typical context-switching overhead is 0.1ms – 1ms

– Roughly 1% overhead due to context-switching

Quantum size

13

Decrease Response Time w. Decreasing Quantum

• T1: Burst Length 10
• T2: Burst Length 1

• Q = 10

– Average Response Time = (10 + 11)/2 = 10.5

• Q = 5

– Average Response Time = (11 + 6)/2 = 8.5

T1
0 10

T2
11

T1
0 6

T2
11

T1
5

14

Same Response Time w. Decreasing Quantum

• T1: Burst Length 1
• T2: Burst Length 1

• Q = 10

– Average Response Time = (1 + 2)/2 = 1.5

• Q = 1

– Average Response Time = (1 + 2)/2 = 1.5

T1
0 1

T2
2

T1
0 1

T2
2

15

• T1: Burst Length 1

• T2: Burst Length 1

• Q = 1

– Average Response Time = (1 + 2)/2 = 1.5

• Q = 0.5

– Average Response Time = (1.5 + 2)/2 = 1.75

T1
0 1

T2
2

0 2

Increase Response Time w. Decreasing Quantum

16

FCFS vs. Round Robin
• Assuming zero-cost context-switching time, RR may not be better than

FCFS, e.g., when all jobs have equal execution time
• Simple example: 10 jobs, each take 100s of CPU time

 RR scheduler quantum of 1s
 All jobs start at the same time

• response times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR than FCFS

• Frequent context switches under RR hurts cache locality and increases
job execution time due to increased cache miss rate

Job # FIFO RR
1 100 991
2 200 992
… … …
9 900 999

10 1000 1000

17

Consider the Previous Example

• When jobs have uneven length, it seems to be a good idea to
run short jobs first!

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 153
Worst FCFS:

68 121 145

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 28 48 68 88 108 112 125 145 153

RR q=20:

Job Burst Time
 P1 53
 P2 8
 P3 68
 P4 24

18

Earlier Example with Different Time Quantum

19

SJF and SRTF
• If we know job execution times at arrival time (predict the

future), then we can implement SJF and SRTF
• Shortest Job First (SJF):

– Non-preemptive scheduling: Run whatever job has least amount of
computation to do

– Still suffers from convoy effect due to non-preemption
• Shortest Remaining Time First (SRTF):

– Preemptive scheduling: if a new job arrives with remaining time less
than remaining time of currently-executing job, preempt the current
job.

• Key idea: Give higher priority to short jobs and finish them
quickly

– Big benefit for short jobs, only small delay effect on long ones
– Result is better average response time

20

SJF and SRTF Example

• SRTF achieves
shorter average
response time (Avg
RT) than SJF, thanks
to preemptive
scheduling

J
o
b

Arrival
time

Exec
Time

SJF
Finishing

Time

SJF
Response

Time

SRTF
Finishing

Time

SRTF
Response

Time
A 0 70 70 70 90 90
B 10 10 80 70 20 10
C 20 10 90 70 30 10

Avg RT 70 Avg RT 37

A B C

B arrives

0 70 80 90

A B C

0

10 20

90

A

30

10 20

C arrives

21

Optimality of SJF and SRTF
• SJF is the optimal scheduling algorithm for minimizing the average response

time under the following assumptions:
– All jobs only use the CPU (no I/O)
– All jobs arrive at the same time
– Job execution times are known in advance
– Non-preemptive scheduling

• SRTF is the optimal scheduling algorithm for minimizing the average
response time under the following assumptions:

– All jobs only use the CPU (no I/O)
– Job execution times are known in advance
– Preemptive scheduling

• Comparison of SRTF with FCFS
– If all jobs have the same length (execution time)

» SRTF becomes the same as FCFS (i.e. FCFS is optimal if all jobs the same length)
– If jobs have varying length

» SRTF is better, since short jobs are not stuck behind long ones

22

Example to illustrate benefits of SRTF

• Three jobs:
– A, B: both CPU bound, run for a week

C: I/O bound, runs in a loop of 1ms CPU followed by 9ms disk I/O
– If each job runs alone without interference, then C uses 90% of disk, A

or B uses 100% of CPU
• With FCFS:

– A and B may arrive and keep CPU busy for two weeks before C is
scheduled

• What about RR or SRTF?

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

23

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

C
A B

C

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

C runs every 10ms
Disk Utilization:
9/10=90%, but frequent
CPU context switches

C runs every 10ms
Disk Utilization:
9/10=90%, infrequent
CPU context switches

C runs every 201ms
Disk Utilization:
9/201≈4.5%

24

• How to predict job execution time?
– Runtime measurement and profiling for typical inputs
– Offline static analysis
– Difficult and error-prone in general

• Unfair
– SRTF can lead to starvation if many small jobs arrive so large jobs

never get to run

• SRTF Pros & Cons
– Pros: Optimal in minimizing average response time)
– Cons: Hard to predict job execution time; Unfair

SRTF Discussions

25

Predicting the Length of the Next CPU Burst
• Adaptive: Changing policy based on past behavior

– Works because programs have predictable behavior
» If program was I/O bound in past, likely in future

• Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths. We need to
estimate/predict next burst length τn = f(tn-1, tn-2, tn-3, …) based on
previous burst lengths.

– Function f may be one of many different time series estimators
(Kalman filters, etc)

• We can use exponential averaging τn = αtn-1+(1-α)τn-1, where tn-1, tn-2,
tn-3, etc. are previous CPU burst lengths, and τn is the predicted next
CPU burst length.

• ti = actual burst time of process Pi, i = n, n-1, n-2, …
• τn = predicted burst time for process Pn
• α is the smoothing factor (0 <= α <=1)

• α large: fast update of τn based on new input.
• α small: slow update of τn based on new input.

26

Predicting the Length of the Next CPU Burst: Example

• Computing τn = αtn-1+(1-α)τn-1 with
initial guess τ0 = 10. Assume α=0.5.

• τ1 = αt0+(1-α)τ0=0.5*6 + 0.5*10 = 8
• τ2 = αt1+(1-α)τ1=0.5*4 + 0.5*8 = 6
• τ3 = αt2+(1-α)τ2=0.5*6 + 0.5*6 = 6
• τ4 = αt3+(1-α)τ3=0.5*4 + 0.5*6 = 5
• τ5 = αt4+(1-α)τ4=0.5*13 + 0.5*5 = 9
• τ6 = αt5+(1-α)τ5=0.5*13 + 0.5*9 = 11
• τ7 = αt6+(1-α)τ6=0.5*13 + 0.5*11 = 12

27

Comparison Chart

Property FCFS SJF SRTF RR
Optimize
Average

Response Time
Prevent

Starvation

Prevent
Convoy Effect

No Need to
Predict Exec

Time

28

• Fixed-Priority Scheduling
– Each job is assigned a fixed priority
– Run the highest-priority job in the ready queue at any given time (may be preemptive

or non-preemptive)
– Jobs of equal priority are scheduled with RR

• SJF/SRTF are special cases of priority-based scheduling where priority is the
predicted (remaining) job execution time

• Problem: starvation – low priority jobs may never execute
– Sometimes this is the desired behavior!

Priority 3
Priority 2
Priority 1
Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

Fixed-Priority Scheduling

29

Multi-Level Queue Scheduling
• Ready queue is partitioned into

multiple queues, each with
different priority

– Higher priority queues often
considered “foreground” tasks

• Each queue has its own scheduling
algorithm

– e.g., foreground queue (interactive
jobs/processes) with RR scheduling;
background queue (batch
jobs/processes) with FCFS scheduling

– Sometimes multiple RR priorities with
quantum increasing exponentially
(highest:1ms, next: 2ms, next: 4ms,
etc)

• Scheduling between the queues
– Fixed priority, e.g., serve all from

foreground queue, then from
background queue

30

Multi-Level Feedback Queue Scheduling
• Based on Multi-Level Queue Scheduling, but dynamically adjust each job’s

priority as follows:
– It starts in highest-priority queue
– If quantum expires before the CPU burst finishes, drop down one level
– If it blocks for I/O before quantum expires, push up one level (or to top, depending

on implementation)

31

Multi-Level Feedback Queue Scheduling Discussions

• MLFQ approximates SRTF:
– Long-running CPU-bound jobs/processes are punished and drop

down like a rock
– Short-running I/O-bound processes are rewarded and stay near

top
– No need for prediction of job éxecution time; rely on past behavior

to make decision

• User can game the scheduler:
– e.g., put in a bunch of meaningless I/O like printf() to keep process

in the high-priority queue
– Of course, if everyone did this, this trick wouldn’t work!

32

Conclusion
• FCFS Scheduling:

– Run jobs in the order of arrival
– Cons: Short jobs can get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle between all

ready threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least execution time/least remaining execution time
– Pros: Optimal (in terms of average response time)
– Cons: Hard to predict execution time, Unfair

• Priority-Based Scheduling
– Each job is assigned a fixed priority

• Multi-Level Queue Scheduling
– Multiple queues of different priorities and scheduling algorithms

• Multi-Level Feedback Queue Scheduling:
– Automatic promotion/demotion of jobs between queues to approximate SJF/SRTF

	CSC 112: Computer Operating Systems�Lecture 5���Scheduling
	CPU/IO Bursts
	The Scheduling Problem
	Preemptive vs. Non-Preemptive Scheduling
	Performance Metrics
	Common Scheduling Algorithms
	First-Come, First-Served (FCFS) Scheduling
	FCFS Scheduling (Cont.)
	Convoy Effect
	Round Robin (RR) Scheduling
	Example of RR with Time Quantum = 20
	Quantum size
	Decrease Response Time w. Decreasing Quantum
	Same Response Time w. Decreasing Quantum
	Increase Response Time w. Decreasing Quantum
	FCFS vs. Round Robin
	Consider the Previous Example
	Earlier Example with Different Time Quantum
	SJF and SRTF
	SJF and SRTF Example
	Optimality of SJF and SRTF
	Example to illustrate benefits of SRTF
	SRTF Example continued:
	SRTF Discussions
	Predicting the Length of the Next CPU Burst
	Predicting the Length of the Next CPU Burst: Example
	Comparison Chart
	Fixed-Priority Scheduling
	Multi-Level Queue Scheduling
	Multi-Level Feedback Queue Scheduling
	Multi-Level Feedback Queue Scheduling Discussions
	Conclusion

