
CSC 112: Computer Operating Systems
Lecture 4

Deadlocks

Department of Computer Science, 
Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming 



22

Deadlock
Resource

1

Resource
2

Wanted

Wanted

Held

Held

• Definition: A set of processes are said to be in a deadlock state 
when every process in the set is waiting for an event that can be 
caused only by another process in the set

• Conditions for Deadlock
• Mutual exclusion

– Only one process at a time can use a given resource
• Hold-and-wait

– processes hold resources allocated to them while waiting for
additional resources

• No preemption
– Resources cannot be forcibly removed from processes that are 

holding them; can be released only voluntarily by each holder
• Circular wait

– There exists a circle of processes such that each holds one or 
more resources that are being requested by next process in 
the circle Not a perfect analogy, just a fun image!

process 1 process 2
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Starvation vs Deadlock

• Starvation: process waits indefinitely
– Example, low-priority process waiting for resources constantly in use by 

high-priority process
• Deadlock: circular dependency waiting for resources

– Starvation can end (but doesn’t have to)
– Deadlock cannot end without external intervention
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Bridge Crossing Analogy
• Each segment of road can be viewed as a resource

– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves 
– Traffic only in one direction at a time 
– Problem occurs when two cars in opposite directions on bridge: each acquires one 

segment and needs next
• If a deadlock occurs, it can be resolved if one car backs up (preempt 

resources and rollback)
– Several cars may have to be backed up 

• Starvation is possible
– Heavy traffic going east ⇒ no car can go west

4
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Train Example (Wormhole-Routing for Network-on-Chip)
• Circular dependency (Deadlock!)

– Each train wants to turn right, but blocked by other trains
– Similar problems occur for Network-on-Chip

• One solution:
– Force ordering of channels (fixed global order on resource requests)

» Protocol: Always go horizontal (east-west) first, then vertical (north-south) 
– Called “dimension ordering” (X then Y)
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Handling Deadlocks

• Deadlock prevention
– Make sure one of the conditions necessary to create a deadlock cannot be 

present in the system
• Deadlock detection 

– Resource Allocation Graph (cannot handle multi-instance resources well)
– Banker’s algorithm for detecting (potential) deadlocks

• Deadlock recovery
– Let deadlock happen
– Monitor the system state periodically to detect when deadlock occurs
– Take action to break the deadlock
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Deadlock Prevention/Recovery Techniques
1) Break “mutual exclusion” by spooling resources
2) Break “hold and wait” condition: Make all processes request everything they’ll need at the 

beginning. 
1) Problem: Predicting future is hard, tend to over-estimate resources
2) Let each philosopher pick up both left and right forks atomically within a critical section (L3, 

“Semaphore-based Solution I”)
3) Break “circular wait” condition: 

1) Force all processes to request resources in a particular order. 
1) May not be practical, since runtime resource usage pattern is generally unknown

2) Let each philosopher pick up lower-numbered fork before higher-numbered fork (modulo N) (L3, 
“Semaphore-based Solution III”)

3) Banker’s algorithm can prevent future “circular wait” conditions by detecting potential deadlocks
4) Break “no preemption” condition:

1) Forcibly remove resources from process Condition Approach
Mutual exclusion Spooling
Hold and wait request all resources initially 
Circular wait Request resources in a 

particular order 
No preemption Take resources away
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(1) Spooling

• A single daemon process directly uses the resource; other processes 
send their requests to the daemon, e.g.:

• The resource is no longer directly shared by multiple processes

8

Proc 1

Proc 2

Printing 
Daemon Printer



9
9

(2) Request all resources initially

• Disallow hold-and-wait
– Make each process request all resources at the same time, and block until all 

resources are available to be granted simultaneously
– May be inefficient

» Process may have to wait a long time to get all its resources when it could have 
proceeded and completed a significant portion of it work with currently granted 
resources

» Resources allocated to a process may remain unused for long periods of time, blocking 
other processes

» processes may not know all resources they will require in advance. 
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(3) Order resources numerically
• Prevent circular wait

– Define a total order of 
resources; If a process holds  
certain resources, it can 
subsequently request only 
resources that follow the 
types of held resources in the 
total order.

– This prevents a process from 
requesting a resource that 
might cause a circular wait. 

» Example; all processes 
requests sem1 before sem2

» Another solution to Dining 
Philosopher’s problem

– Introduces inefficiencies and 
can deny resources 
unnecessarily.  

semaphore sem1, sem2;

void t1( ) {

  sem1.wait();

  sem2.wait();

  //Critical Section

  sem2.post();

  sem1.post();

}

void t2( ) {

  sem1.wait();

  sem2.wait();

  //Critical Section

  sem2.post();

  sem1.post();

}

semaphore sem1, sem2;

void t1( ) {

  sem1.wait();

  sem2.wait();

  //Critical Section

  sem2.post();

  sem1.post();

}

void t2( ) {

  sem2.wait();

  sem1.wait();

  //Critical Section

  sem1.post();

  sem2.post();

}

Possible deadlock No deadlock
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(4) Take resources away

• Allow preemption. Can be implemented in different ways
– Abort all deadlocked processes: most common solution implemented in OSs.
– If a process holding a resource is denied another resource and forced to wait, it 

must relinquish the resource it is holding and request it again (if needed) when 
the blocked resource is available

– If a process requests a resource that is in use (usually by a lower priority 
process), the process using the resource will be preempted and the resource 
will be supplied to the requesting process.  

– Requires additional OS complexity

• Used for deadlock recovery, not prevention
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Ostrich algorithm
• Ignore the possibility of deadlock, maybe it won’t 

happen
– In some situations this may even be reasonable, but not in all
– If a deadlock in a process will happen only once in 100 years 

of continuous operation we may not want to make changes 
that will likely decrease efficiency to avoid that rare event.

• In mission critical applications, the ostrich algorithm 
approach is inappropriate if a catastrophic failure may 
result from a deadlock.
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Symbols

Resource-allocation graph (RAG)
• System Model    

– A set of processes P1, P2, . . ., Pn

– Resource types R1, R2, . . ., Rm

 CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each process utilizes a resource as follows:

» Request() / Use() / Release()

• Resource-Allocation Graph (RAG):
– V is partitioned into two types:

» P = {P1, P2, …, Pn}, set of processes in the system.
» R = {R1, R2, …, Rm}, set of resource types in system

– request edge – directed edge P1 → Rj

– assignment edge – directed edge Rj → Pi

R1
R2

P1 P2
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RAG for deadlock detection

• For any given sequence of requests for 
and releases of resources a RAG can be 
constructed

• We check the graph
– no cycle  no deadlock 
– Each resource has a single instance AND 

cycle  deadlock (necessary and sufficient) 
– Each resource has multiple instances AND 

cycle  maybe deadlock (but not sufficient 
condition) 

» Need Banker’s algorithm to detect deadlocks

P1 P2

R1

R2

Resource 1 held by 
process 2

Resource 2 requested 
by process 2

A RAG with a deadlock

Resource 1 requested 
by process 2

Resource 2 held by 
process 2
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A deadlock example

15
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Deadlock is avoided by delaying B’s request



17

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

No Cycle; 
No Deadlock

T1 T2 T3

R1 R2

R3
R4

Deadlock (cycle R3->T2->R2->T3
And cycle R3->T1->R1->T2->R2->T3

T1

T2

T3

R2

R1

T4

Cycle, 
but No Deadlock

(T2 or T4 may release
res later)
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Banker’s algorithm for deadlock detection

• To avoid deadlocks we need to be able to detect them, preferably before 
they occur. 

• RAG can only detect deadlocks reliably for the case of single-instance 
resources.

• Banker’s algorithm is more general and can deal with multiple-instance 
resources. It is used to recognize when it is safe to allocate resources

– Analyze the state of the system; If the state is unsafe, take actions to break actual or 
potential deadlocks and bring the system back to a safe state

– Do not grant additional resources to a process if this allocation might lead to a 
deadlock

• Banker's Algorithm was developed by Edsger Dijkstra, inspired by the way 
banks manage loans to ensure they do not run out of resources. 

– It ensures that loans are only granted if the bank can still meet the withdrawal needs 
of all its account holders, even in the worst-case scenario where everyone withdraws 
their funds simultaneously. Similarly, in computing, the algorithm ensures that 
resources are allocated to processes in a way that avoids unsafe states or deadlocks
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Problem Definition

• Consider a system with n processes and m different types of resources.
• Total resource vector 𝐸𝐸 = 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑚𝑚

– Each resource type may have multiple instances, so the value of Ei is the number of instances of 
resource type i.

• Available resource vector 𝐴𝐴 = (𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑚𝑚)
– It keeps track of how many instances of each resource type are currently available (not in-

use).
• Allocation matrix C denotes which processes are using which resources. 

– e.g., if process i is using 2 resources of type j then Cij = 2.

• Max matrix R denotes the maximum number of instances of each resource that each 
process needs during its execution.

– e.g., if process i needs maximum 4 instances of resource type j during its execution, then Rij = 4.
• Need = Max – Allocation: denotes the additional number of instances of each resource that each 

process needs to finish its execution.

• For each process i and resource j: 𝐶𝐶𝑖𝑖𝑖𝑖 ≤ 𝑅𝑅𝑖𝑖𝑖𝑖 ≤ 𝐸𝐸𝑖𝑖 ,∀𝑖𝑖, 𝑗𝑗
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Four data structures encode current state of the system

MaxAllocation

AvailableTotal
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Safe states and unsafe states

• The state of the system can be either safe or unsafe
– A safe state is a state in which there exists at least one sequence of resource 

allocations that will allow all processes in the system to complete without 
deadlock, i.e., there exists a sequence of process executions {Pi, Pj, … Pk} with 
Pi requesting all remaining resources, finishing, then Pj requesting all 
remaining resources, ..., until all processes complete successfully.

– An unsafe state is a state in which there exists no sequence of resource 
allocations that will allow all processes in the system to complete without 
deadlock.
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• Look one step ahead: upon receiving a request from a process, assume 
the request is granted hypothetically, run deadlock detection algorithm 
to evaluate if the system is in a safe state. 

• Grant the request if next state is safe.
• Algorithm allocates resources dynamically, and allows the sum of 

maximum resource needs of all current processes to be greater than total 
resources

• It is a conservative algorithm, since each process must declare the 
maximum resource requests, which may be a pessimistic estimate of the 
actual resource requests at runtime.

Banker’s algorithm
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Banker's algorithm: preliminaries
• Compute Need = Max – Allocation
• To determine if a process i can run to completion, compare two 

vectors:
– (Need)i: row i in the Need Matrix of unmet resource needs
– A: available resources vector A
– (Need)i <= A if Needij <= Aj   for all resource types j
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Banker’s algorithm

Algorithm CheckSafety() for checking to see if a state is safe:
1. Compute Need = Max – Allocation
2. Look for a process i that can run to completion by finding an 

unmarked row i with (Need)i ≤ A. If no such row exists, system will 
eventually deadlock since no process can run to completion

3. Assume process i requests all resources it needs and finishes. Mark 
process i as completed, free all its resources and add the i-th row of 
Allocation to the Available vector

4. Repeat steps 1 and 2 until either all processes are marked as 
completed (initial state is safe), or no process is left whose resource 
needs can be met (there is a deadlock, so initial state is unsafe).
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Banker’s algorithm cont’
• When a process makes a request for one or more resources:

– Update the state of the system assuming the requests are granted.
– Determine if the resulting state is a safe state by calling CheckSafety()

» If so, grant the request for resources.
» Otherwise, deny the process request until it is safe to grant it.
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An example system: starting state



















=

1224
0413
1317
1223

R



















=

0200
0112
1115
0001

C

[ ]56510=E [ ]4232=A
Available is obtained by 
subtracting each column sum of 
C from E
10-(1+5+2+0)=2, 5-(0+1+1+0)=3
6-(0+1+1+2)=2, 5-(0+1+0+0)=4

• 4 processes P1 through P4; 4 
resource types with 10, 5, 6, 5 
instances each.

• Current system state  encoded 
in matrices R, C and vectors E, A.

Total

Allocation

Available

Max
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Request to check for safety

• Assume the starting state is a safe state (can be checked with 
Banker’s algorithm)

• P2 is now requesting 2 more instances of Resource 1 and 1 more 
instance of Resource 3

• Do we grant this request? Might this request cause deadlock?
– Step 1: Calculate the state of the system if this request is fulfilled
– Step 2: Determine if the new state is a safe state with Banker’s algorithm
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An example: new state



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]4130=A



















=−

1024
0301
0100
1222

CR

A is obtained by subtracting 
each column sum of C from E
10-(1+7+2+0)=0, 5-(0+1+1+0)=3
6-(0+2+1+2)=1, 5-(0+1+0+0)=4

Max Allocation

Total Available

Need = Max – Allocation
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• Check row 1 of Need matrix

• (Need)1 = [2, 2, 2, 1] not <= A
• P1 cannot run to completion

An example: is new state safe



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]4130=A



















=−

1024
0301
0100
1222

CR

NeedMax Allocation

Total Available
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• Check row 2 of Need matrix

• (Need)2 = [0, 0, 1, 0] <= A
• Allocate resources and run P2 to completion; 
• Free all its resources and add them to A: 
• A=[0 3 1 4]+[7 1 2 1] = [7 4 3 5]

An example: is new state safe



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]4130=A



















=−

1024
0301
0100
1222

CR

NeedMax Allocation

Total Available
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• Check row 1 of Need matrix again

• (Need)1 = [2, 2, 2, 1] <= A
• Allocate resources and run P1 to completion; 
• Free all its resources and add them to A: 
• A = [7 4 3 5] + [1 0 0 0]=[8 4 3 5]

An example: is new state safe



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]5347=A



















=−

1024
0301
0100
1222

CR

Process 2 marked as completed
NeedMax Allocation

Total Available
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• Check row 3 of Need Matrix

• (Need)3 = [1, 0, 3, 0] <= A
• Allocate resources and run P3 to completion; 
• Free all its resources and add them to A: 
• A = [8 4 3 5] + [2 1 1 0] = [10 5 4 5]

An example: is new state safe



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]5348=A



















=−

1024
0301
0100
1222

CR

NeedMax Allocation

Total Available
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• Check row 4 of Need Matrix

• (Need)4 = [4, 2, 0, 1] <= A
• Allocate resources and run P4 to completion
• Free all its resources and add them to A: 
• A = [10 5 4 5] + [0 0 2 0] = [10 5 6 5]

An example: is new state safe



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]54510=A



















=−

1024
0301
0100
1222

CR

NeedMax Allocation

Total Available
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• Now:

• All process can complete successfully. Therefore, the starting state is a 
safe state

• Allocate the requested resources (2 more instances of resource 1 and 1 
more instance of resource 3) to P2, and proceed with execution of all 
processes

An example: is new state safe



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]56510=A



















=−

1024
0301
0100
1222

CR

NeedMax Allocation

Total Available
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Next Request to Check for Safety
• Now start from this new safe state, and consider the next request for 

resources: Process 1 is now requesting 1 more instance of resource 3.
• Do we grant this request? Might this request cause deadlock?

– Step 1: Calculate the state of the system if this request is filled
– Step 2: Determine if the new state is a safe state, use Banker's algorithm



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0001

C

[ ]56510=E [ ]4130=A



















=−

1024
0301
0100
1222

CR

NeedMax Allocation

Total Available
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• Check all rows

• (Need)1 = [2, 2, 1, 1] not <= A
• (Need)2 = [0, 0, 1, 0] not <= A
• (Need)3 = [1, 0, 3, 0] not <= A
• (Need)4 = [4, 2, 1, 0] not <= A

New starting state: next request, is this state safe?



















=

1224
0413
1317
1223

R



















=

0200
0112
1217
0101

C

[ ]56510=E [ ]4030=A



















=−

1024
0301
0100
1122

CR

No process can run to completion. The 
state is unsafe, so we deny Process 1’s 
request for 1 more instance of resource 
3.

NeedMax Allocation

Total Available
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Video tutorial of Banker's algorithm I

• Deadlock avoidance https://www.youtube.com/watch?v=AvPjOyeJbBM
• Total resources: [8, 5, 9, 8]

https://www.youtube.com/watch?v=AvPjOyeJbBM
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Video tutorial of Banker's algorithm II
• Banker's Algorithm explained https://www.youtube.com/watch?v=T0FXvTHcYi4
• Total resources: [3, 14, 12, 12]

https://www.youtube.com/watch?v=T0FXvTHcYi4
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Banker’s algo applied to Dining Philosophers

• Consider N philosophers and N forks.
– (1) If each of the N-1 philosophers holds his left fork, then the Nth philosopher 

will be prevented from taking the last fork.
– (2) If a philosopher is holding one fork, he can safely pick up the other fork.
– (3) If one or more philosophers are holding 2 forks and eating, then any 

remaining forks can be picked up safely by any other philosopher.

• Banker’s algorithm can be used to verify each of these scenarios. Let’s 
focus on scenario (1) next.
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Banker’s algo applied to Dinning Philosophers cont’

• Model each fork as a separate 
resource, since each philosopher can 
only pick up his left and right forks.

• Suppose we have 5 philosophers 
numbered 1-5, and 5 forks numbered 
1-5; philosopher i has left fork 
numbered i, and right fork (i+1)%5. 
(Here indices start from 1 instead of 0 
in Lecture 3.)

1

2

3

45

1 2

3

4

5



41

Four philosophers each holding his left fork

11111=E 10000=A

Philosophers 1-4 each is holding his left fork. We can use Banker’s algorithm to check 
that the current state is safe, e.g., with execution sequence of P4, P3, P2, P1, P5.
 Now, if philosopher 5 makes a request for his left fork, should we grant it?

Need

Total Available

00000
01000
00100
00010
00001

=C

0 1

0 1

0 1

0 1

1

𝑅𝑅 − 𝐶𝐶

10001
11000
01100
00110
00011

=R

00000
01000
00100
00010
00001

=C

Max Allocation

1
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Five philosophers each holding his left fork

11111=E

10001
11000
01100
00110
00011

=R

10000
01000
00100
00010
00001

=C

00000=A

No. Here is the deadlock state reached if the request is granted.

Max Allocation

Total Available

Need

00000
01000
00100
00010
00001

=C

0 1

0 1

0 1

0 1

1
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Minimum Resource Constraint

• In all our problem formulations, we have assumed there are a 
minimum number of resources to allow at least one process to finish. 
Without this constraint, the system cannot even start execution, 
hence the problem is ill-defined.

– Consider the dining philosophers problem with a single fork, or no fork 
available. 
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When to run Banker’s algorithm?

• Run it each time a resource allocation request is made. This can be 
expensive.

• Run it periodically driven by a timer interrupt. A longer period 
between checks gives:

– Higher efficiency due to less calculation involved in the checking.
– Undetected deadlocks can persist for longer times.
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Communication deadlocks

• process A sends a request message to process B, and then blocks 
until B sends back a reply message. 

• Suppose that the request message gets lost. A is blocked waiting for 
the reply. B is blocked waiting for a request asking it to do something. 
Deadlocked.

• Deadlock not due to shared resources but due to message 
communication.
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