
CSC 112: Computer Operating Systems
Lecture 3

Synchronization

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming
And NTNU course on Operating Systems

2

Concurrency I

• Consider two concurrent threads T0, T1, which access a shared
variable x that has been initialized to 0. There is no mutex
protection.

• Q1: What are the minimum, maximum, and all possible values of
x after the two threads have completed execution?

• Q2: Suppose we protect statement ‘x = x+2’ in Thread B within a
critical section using a mutex lock. What are all the minimum,
maximum, and all possible final values of x?

//Thread T0

for (int i=0; i<5; i++) {

 x = x + 1;

}

//Thread T0

for (int j=0; j<5; j++) {

 x = x + 2;

}

int x = 0;

3

Concurrency II

• Consider three concurrent threads T1,
T2, T3, which access a shared variable D
that has been initialized to 100. There is
no mutex protection. What are the
minimum and maximum possible values
of D after the three threads have
completed execution?

• ANS:

//Initialization

int D=100;

//Thread T1

void main(){

D=D+20;

}

//Thread T2

void main(){

D=D-50;

}

//Thread T3

void main(){

D=D+10;

}

44

Recall: Locks: Loads/Stores
• This implementation does not ensure mutual exclusion, since both threads may grab

the lock:
• After Thread 1 reads flag==0 and exits the while loop, it is preempted/interrupted by

Thread 2, which also reads flag==0 and exits the while loop. Then both threads set
flag=1 and enter the critical section.

• Root cause: Lock is not an atomic operation!

flag = 0

5

Mutual Exclusion I

• Does it achieve one of more of the correctness properties of a concurrent program:
– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• Does it need the TestAndSet() instruction for atomic execution like the previous slide “Locks:
Loads/Stores”?

• What is its major flaw?
• ANS:

//Thread T0

while (true) {

 while (S0 == S1);

 //Critical section

 S0 = S1;

}

//Thread T1

while (true) {

 while (S0 != S1);

 //Critical section

 S1 = !S0;

}

Boolean S0, S1;

S0=false, S1=false;

6

Mutual Exclusion II

• Does it achieve one of more of the correctness properties of a concurrent
program:

– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• ANS:

//Thread T0

while (true) {

 flag[0] = true;

 while (flag[1]==true);

 /* Critical Section */

 flag[0] = false;

}

//Thread T1

while (true) {

 flag[1] = true;

 while (flag[0]==true);

 /* Critical Section */

 flag[1] = false;

}

Boolean flag[2];

flag[0]=false, flag[1]=false;

7

Mutual Exclusion III (Peterson’s Solution)

//Thread T0

while (true) {

 flag[0] = true;

 turn = 1;

 while (flag[1]==true && turn==1);

 /* Critical Section */

 flag[0] = false;

}

Boolean flag[2];

flag[0]=false, flag[1]=false;

int turn = 0;

//Thread T1

while (true) {

 flag[1] = true;

 turn = 0;

 while (flag[0]==true && turn==0);

 /* Critical Section */

 flag[1] = false;

}

• Does it achieve one of more of the correctness properties of a concurrent
program:

– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• ANS:

8

Mutual Exclusion III (Peterson’s Solution Variation)

//Thread T0

while (true) {

 flag[0] = true;

 turn = 0;

 while (flag[1]==true && turn==1);

 /* Critical Section */

 flag[0] = false;

}

Boolean flag[2];

flag[0]=false, flag[1]=false;

int turn = 0;

//Thread T1

while (true) {

 flag[1] = true;

 turn = 1;

 while (flag[0]==true && turn==0);

 /* Critical Section */

 flag[1] = false;

}

• Does it achieve one of more of the correctness properties of a concurrent
program:

– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• ANS:

9

Reader() {
 mutex_lock(&mutex);
 while ((AW + WW) > 0) {//Is it safe to read?
 WR++; //No. Writers exist
 cond_wait(&okToRead,&mutex);
 WR--; //No longer waiting
 }
 AR++; //Reader active!
 mutex_unlock(&mutex);
 AccessDatabase(ReadOnly);
 mutex_lock(&mutex);
 AR--; //No longer active
 if (AR == 0 && WW > 0)//No other active
readers
 cond_signal(&okToWrite);//Wake up one
writer
 mutex_unlock(&mutex);
}

Writer() {
 mutex_lock(&mutex);
 while ((AW + AR) > 0) {//Is it safe to
write?
 WW++; //No. Active users exist
 cond_wait(&okToWrite,&mutex);
 WW--; //No longer waiting
 }
 AW++; //Writer active!
 mutex_unlock(&mutex);
 AccessDatabase(ReadWrite);
 mutex_lock(&mutex);
 AW--; //No longer active
 if (WW > 0){//Give priority to writers
 cond_signal(&okToWrite);//Wake up one
writer
 } else if (WR > 0) {//Otherwise, wake reader
 cond_broadcast(&okToRead);//Wake all
readers
 }
 mutex_unlock(&mutex);
}

int AR=0: Number of active readers;
int WR=0: Number of waiting readers;
int AW=0: Number of active writers;
int WW=0: Number of waiting writers;
Condition okToRead, okToWrite;
mutex_t mutex = 1;

Readers/Writers Solution
using Monitors, Prefers Writers

9

Q: Rewrite it to prefer readers
(See lecture slides)

10

Race Conditions
Consider the two threads each executing t1 and t2. Values of shared variables y and
z are initialized to 0

Q. Give all possible final values for x and the corresponding order of execution of
instructions in t1 and t2.
1) t1 runs to the end first; then t2 runs to the end: x = 0+0 = 0
2) t2 to line 2; then t1 to the end; then t2 to the end: x = 1+0 = 1
3) t2 to the end; then t1 to the end: x = 1+2 = 3

Are there other possibilities giving additional values?

1 t1(){ 1 t2(){
2 int x; 2 y = 1;
3 x = y + z; 3 z = 2;
4 } 4 }

int y=0, z=0;

10

11

• Addition operation x=y+z consist of multiple machine instructions in assembly language:
A. fetch operand y into register r1
B. fetch operand z into register r2
C. add r1 + r2, store result in r3
D. store r3 in memory location of x

• If a task switch to t2 occurs between machine instructions A and B; then t2 runs to completion
before switching back to t1, then:

• y is read as 0 (t2 didn’t set y yet)
• z is read as 2 (t2 sets z before execution instruction B of add. in t1)
• the sum is then x = 0 + 2 = 2

Race Conditions

1 t1(){ 1 t2(){
2 int x; 2 y = 1;
3 x = y + z; 3 z = 2;
4 } 4 }

int y=0, z=0;

11

12

Q. Give a solution using semaphores.
Solution: we protect the addition x = y + z within a critical section, using a
binary semaphore (mutex). This code guarantees that x can never have the
value 1 or 2, possible values are x = 0, 3
(Line “int x” can be outside or inside the critical section with no difference. We use
a slightly different notation of s.wait()/s.signal() to denote sem_wait(&s) and
sem_post(&s).

1 t1(){ 1 t2(){
2 int x; 2 s.wait();
3 s.wait(); 3 y = 1;
4 x = y + z; 4 z = 2;
5 s.signal(); 5 s.signal();
6 } 6 }

Race Conditions

12

int y=0, z=0;

semaphore s = 1;

13

Q. Use semaphores and insert wait/signal calls into the two threads so that
only “wordle” is printed.

1 int t1() { t2: 1 int t2() {
2 printf("w"); 2 printf("o");
3 printf("d"); 3 printf("r");
4 } 4 printf("l");

5

6 }
printf("e");

t1:

Semaphores I

• t1 has to run first to print "w", so s1 should be
initialized to 1.

• t2 has to wait until the "w" has been printed by t1,
then it is woken up by t1 calling s2.signal(), so s2
should be initialized to 0.

1 int t1(){
s1.wait();
printf("w");
s2.signal();
s1.wait();
printf("d");
s2.signal();

2

3

4

5

6

7

8 }

1 int t2(){
s2.wait();
printf("o");
printf("r");
s1.signal();
s2.wait();
printf("l");
printf("e");

2

3

4

5

6

7

8

9 }

13

semaphore s1=1, s2=0

14

Semaphores II

• The following three functions of a
program f1(), f2(), f3() run in separate
threads each and print some prime
numbers. All three threads are ready to
run at the same time. Use
synchronization using the semaphores
S1, S2 and S3 and wait/signal operations
on the semaphores to ensure that the
program outputs the prime numbers in
increasing order (2, 3, 5, 7, 11, 13).

Semaphore S1=0;
Semaphore S2=0;
Semaphore S3=0;
f1() {

printf("3");
printf("5");

}

f2() {
printf("2");
printf("13");

}

f3() {
printf(“7");
printf("11");

}

15

Semaphores II Solution
• Solution 1 (left): With initial

values of all semaphores = 0,
only f2 can run, prints 2, signals
S1 and then waits for S2.
S1.signal() starts f1, which was
waiting for S1 and can now print
3 and 5 and then signal S3.
S3.signal() now starts f3, which
prints 7 and 11 and signals S2.
This returns execution to f2,
which can then finally print 13.

• Solution 2(right): s2 has initial
value 1, so f2 calls S2.wait() and
runs first. The rest of the same as
Solution 1. You can see that
initializing s2=0 has the same
effect as initializing s2=1 and let
f2 call S2.wait() first. So Solution
1 is better with one less call to
wait().

semaphore S1=0;
semaphore S2=1;
semaphore S3=0;
f1() {

S1.wait();
printf("3");
printf("5");
S3.signal();

}

f2() {
S2.wait();
printf("2");
S1.signal();
S2.wait();
printf("13");

}

f3() {
S3.wait();
printf("7");
printf("11");
S2.signal();
}

semaphore S1=0;
semaphore S2=0;
semaphore S3=0;
f1() {

S1.wait();
printf("3");
printf("5");
S3.signal();

}

f2() {
printf("2");
S1.signal();
S2.wait();
printf("13");

}

f3() {
S3.wait();
printf("7");
printf("11");
S2.signal();
}

16

Q. Which strings can be output when running the 3 threads in parallel?
• Either t1 or t2 could start first, so the first letter can be A or B
• Then both t1 and t2 signal s_c, only after both have signalled s_c, t3 can start and print C
• t3 signals s_a and s_b, which start in arbitrary order again
• Accordingly, the output is a regular expression ((AB|BA)C)+

• Print A or B in arbitrary order, then print C, then the process repeats

1 int t1() {
2 while(1) {
3 printf("A");
4 s_c.signal();
5 s_a.wait();
6 }
7 }

1 int t2() {
2 while(1) {
3 printf("B");
4 s_c.signal();
5 s_b.wait();
6 }
7 }

1 int t3() {
2 while(1) {
3 s_c.wait();
4 s_c.wait();
5 printf("C");
6 s_a.signal();
7 s_b.signal();
8 }
9 }

semaphore s_a=0, s_b=0, s_c=0;

Semaphores III

16

17

Deadlock scenario 1:
• t2 runs first until line 2 (so lock2=0, lock1=1); switch to t1
• t1 starts and runs until line 3 (so lock1=0, lock2=0); back

to t2
• t2 waits for lock2 in line 4; switch to t1, waits for lock1 in

line 5
• This results in a circular waiting condition, where each thread

grabs one lock and requests the other.

1 int t1() {
2 z = z + 2;
3 lock1.wait();
4 x = x + 2;
5 lock2.wait();
6 lock1.signal();
7 y = y + 2;
8 lock2.signal();
9 }

1 int t2() {
lock2.wait();2

3 y = y + 1;
lock1.wait();
x = x + 1;
lock1.signal();
lock2.signal();
z = z + 1;

4

5

6

7

8

9 }

Deadlocks I

17

//Initialization
int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

z = z + 2;
lock1.wait();
x = x + 2;
lock2.wait();
lock1.signal();
y = y + 2;
lock2.signal();

2

3

4

5

6

7

8

9 }

//Initialization
int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

1 int t1() { 1 int t2() {
lock2.wait();
y = y + 1;
lock1.wait();
x = x + 1;
lock1.signal();
lock2.signal();
z = z + 1;

2

3

4

5

6

7

8

9 }

Deadlock scenario 2:
• t1 runs first until line 4 (so lock1=0, lock2=1); switch to t2

• t2 starts and runs until line 3 (so lock1=0, lock2=0); back to t1

• t1 waits for lock2 in line 5; switch to t2, waits for lock1 in line 4

• (Other interleavings are possible, e.g., t1 grabs lock1, t2 grabs lock2
requests lock 1, t1 requests lock 2)

• To prevent deadlocks, every thread should acquire locks in the same
order, e.g. both acquire lock1 before lock2, or both acquire lock2 before
lock1

18

• Q. What are the possible values of x, y and z in
the deadlock state?

• t1 runs until Line 5 lock2.wait() and t2 runs until Line 4
lock1.wait(), so x = 2, y = 1, z = 2

• Q. What are the possible values of x, y and z if
the program finishes successfully without a
deadlock?

• t1 runs first to the end, then t2 (or vice versa): x=3, y=3, z=3
• In t1, lock1.signal() sets lock1=1, lock2.signal() sets lock2=1,

this exiting the critical sections protected by lock1 and lock2.
• Since Line 2 of t1 “z=z+2”, and Line 8 of t2 “z=z+1” are not

protected within a critical section, a thread switch may occur
in the middle of each line, e.g.,

– t2 Line 8 reads z=0; before z is written back; switch to t1 Line 2,
run t1 to the end; switch to t2 Line 8, write back z=0+1=1.

– Or, t1 Line 2 reads z=0; before z is written back; switch to t2
Line 2, run t2 to the end; switch to t1 Line 2, write back
z=0+2=2.

1 int t1() { 1 int t2() {
2 z = z + 2; 2 lock2.wait();
3 lock1.wait(); 3 y = y + 1;
4 x = x + 2; 4 lock1.wait();
5 lock2.wait(); 5 x = x + 1;
6 lock1.signal(); 6 lock1.signal();
7 y = y + 2; 7 lock2.signal();
8 lock2.signal(); 8 z = z + 1;
9 } 9 }

int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

Deadlocks II

18

	CSC 112: Computer Operating Systems�Lecture 3��Synchronization
	Concurrency I
	Concurrency II
	Recall: Locks: Loads/Stores
	Mutual Exclusion I
	Mutual Exclusion II
	Mutual Exclusion III (Peterson’s Solution)
	Mutual Exclusion III (Peterson’s Solution Variation)
	Readers/Writers Solution�using Monitors, Prefers Writers
	Race Conditions
	Race Conditions
	Race Conditions
	Semaphores I
	Semaphores II
	Semaphores II Solution
	Semaphores III
	Deadlocks I
	Deadlocks II

