
CSC 112: Computer Operating Systems
Lecture 3

Synchronization

Department of Computer Science,
Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming
And NTNU course on Operating Systems

2

Concurrency I

• Consider two concurrent threads T0, T1, which access a shared
variable x that has been initialized to 0. There is no mutex
protection.

• Q1: What are the minimum, maximum, and all possible values of
x after the two threads have completed execution?

• Q2: Suppose we protect statement ‘x = x+2’ in Thread B within a
critical section using a mutex lock. What are all the minimum,
maximum, and all possible final values of x?

//Thread T0

for (int i=0; i<5; i++) {

 x = x + 1;

}

//Thread T1

for (int j=0; j<5; j++) {

 x = x + 2;

}

int x = 0;

3

Concurrency I Answer

• ANS1: Possible values of x after the two threads have completed execution: 5,…15. Min: 5.
Max: 15.

– The x=x+2 statements can be “erased” by “sneaking in between” the load and store of an x=x+1
statement, and vice versa. Each x=x+1 statement can either do nothing (if erased by Thread T1)
or increase x by 1. Each x=x+2 statement can either do nothing (if erased by Thread T0) or
increase x by 2. Since there are 5 of each type, and since x starts at 0, x has min 5 and max
(5*1)+(5*2)=15. Possible values are 5, 6, 7,…15, e.g., If three increments from Thread T0 and two
increments from Thread T1 are applied, then x=(3×1)+(2×2)=7.

• ANS2: Possible final values of x are 5, 7, 9, 11, 13, or 15. Min: 5. Max: 15.
– Since the x=x+2 statements are atomic, the x=x+1 statements can never be “erased” because the

load and store phases of x=x+2 cannot be separated. Thus, our final value is at least 5 (from
Thread T0) with from 0 to 5 successful updates of x=x+1. When one x=x+2 is not erased, x has
value 5+2=7. When two x=x+2 is not erased, x has value 5+4=9, and so on.

//Thread T0

for (int i=0; i<5; i++) {

 x = x + 1;

}

//Thread T1

for (int j=0; j<5; j++) {

 x = x + 2;

}

int x = 0;

4

Concurrency II

• Consider three concurrent threads T1,
T2, T3, which access a shared variable D
that has been initialized to 100. There is
no mutex protection. What are the
minimum and maximum possible values
of D after the three threads have
completed execution?

• ANS:

//Initialization

int D=100;

//Thread T1

void main(){

D=D+20;

}

//Thread T2

void main(){

D=D-50;

}

//Thread T3

void main(){

D=D+10;

}

5

Concurrency II Answer

• Min 50, max 130
• Since each thread may read the value of int D, then write

them in arbitrary order, overwriting each other’s updates.
Other possible results include 110, 120, 70…

66

Recall: Locks: Loads/Stores
• This implementation does not ensure mutual exclusion, since both threads may grab

the lock:
• After Thread 1 reads flag==0 and exits the while loop, it is preempted/interrupted by

Thread 2, which also reads flag==0 and exits the while loop. Then both threads set
flag=1 and enter the critical section.

• Root cause: Lock is not an atomic operation!

flag = 0

7

Mutual Exclusion I

• Does it achieve one of more of the correctness properties of a concurrent program:
– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• Does it need the TestAndSet() instruction for atomic execution like the previous slide “Locks:
Loads/Stores”?

• What is its major flaw?
• ANS:

//Thread T0

while (true) {

 //Spin-waits if S0 == S1

 while (S0 == S1);

 //Critical section

 S0 = S1;

}

//Thread T1

while (true) {

 //Spin-waits if S0 != S1

 while (S0 != S1);

 //Critical section

 S1 = !S0;

}

Boolean S0, S1;

S0=false, S1=false;

8

Mutual Exclusion I: Sample Execution

• T0 and T1 take turns to enter the critical section in
strict alternation order .

//Thread T0

while (true) {

 while (S0 == S1);

 //Critical section

 S0 = S1;

}

//Thread T1

while (true) {

 while (S0 != S1);

 //Critical section

 S1 = !S0;

}

Boolean S0, S1;

S0=false, S1=false; S0 S1
Init F F

T1 in CS
F T

T0 in CS
T T

T1 in CS
T F

T0 in CS
F F

9

Mutual Exclusion I Answer
• Mutual Exclusion: Achieved. Only one thread can enter its critical section at a time because

the conditions S0 == S1 and S0 != S1 ensure that only one thread can proceed.

• Progress (Deadlock-Free): Achieved. It is not possible for each thread to be blocked forever
waiting for each other.

• Bounded Waiting (Starvation-Free): Achieved. Both threads enter each one’s critical section in
strict alternation order, i.e., T0, T1, T0, T1…

• TestAndSet Instruction: Not required. The solution uses simple Boolean variables and logical
operations. In the previous slide “Locks: Loads/Stores”, all threads read and update a single
global shared flag variable, so CPU atomic instructions like TestAndSet is needed to ensure
atomicity of (read+modify+write) of the shared flag variable. But in this solution, each thread
reads both S0 and S1, but T0 only updates S0 and T1 only updates S1, so no mutual exclusion
is needed.

• Major Flaw: The algorithm relies on both threads actively participating in strict alternation
order, i.e., T0, T1, T0, T1… If one thread stops due to some program bug or crashing, or is
delayed indefinitely, the other thread might be blocked forever, leading to a potential
deadlock. This may not happen for the example of two simple while loops, but it is just for
illustration, whereas in reality each thread may run a large program with complex control
flow, and use these instructions as lock/unlock instructions.

10

Mutual Exclusion II

• Does it achieve one of more of the correctness properties of a concurrent
program:

– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• ANS:

//Thread T0

while (true) {

 flag[0] = true;

 while (flag[1]==true);

 /* Critical Section */

 flag[0] = false;

}

//Thread T1

while (true) {

 flag[1] = true;

 while (flag[0]==true);

 /* Critical Section */

 flag[1] = false;

}

Boolean flag[2];

flag[0]=false, flag[1]=false;

11

Mutual Exclusion II: Sample Execution & Answer

//Thread T0

while (true) {

 flag[0] = true;

 while (flag[1]==true);

 /* Critical Section */

 flag[0] = false;

}

//Thread T1

while (true) {

 flag[1] = true;

 while (flag[0]==true);

 /* Critical Section */

 flag[1] = false;

}

Boolean flag[2];

flag[0]=false, flag[1]=false;
Flag[0] Flag[1]

Init F F
T0 tries T F
T0 in CS

F F
T1 tries F T
T1 in CS

F F
T0 tries T F
T1 tries T T

Deadlock

• Mutual Exclusion: Achieved. The use of flags ensures that only one
thread can enter its critical section at a time.

• Progress (Deadlock-Free): Not satisfied. If both threads set their flags
simultaneously, they will block each other indefinitely, resulting in
deadlock.

• Bounded Waiting (Starvation-Free): Achieved. One thread cannot
repeatedly enter the CS and starve the other thread, if the other
thread is waiting.

12

Mutual Exclusion III (Peterson’s Solution)

//Thread T0

while (true) {

 flag[0] = true;

 turn = 1;

 while (flag[1]==true && turn==1);

 /* Critical Section */

 flag[0] = false;

}

Boolean flag[2];

flag[0]=false, flag[1]=false;

int turn = 0;

//Thread T1

while (true) {

 flag[1] = true;

 turn = 0;

 while (flag[0]==true && turn==0);

 /* Critical Section */

 flag[1] = false;

}

• Does it achieve one of more of the correctness properties of a concurrent
program:

– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• ANS:

13

Mutual Exclusion III (Peterson’s Solution): Sample Execution
& Answer

• Mutual Exclusion: Achieved. The combination of flag
and turn ensures that only one thread can enter its
critical section at a time.

• Progress (Deadlock-Free): Achieved. The turn
variable ensures that if both threads want to enter
their critical sections, one will eventually proceed. It
is not possible for each thread to be blocked forever
waiting for each other.

• Bounded Waiting (Starvation-Free): Achieved. Each
thread gets a fair chance to enter its critical section
due to the alternation enforced by the turn variable.

Flag[0] Flag[1] turn
Init F F 0

T0 tries T F 1
T0 in CS

F F 1
T1 tries F T 0
T1 in CS

F F 0
T0 tries T F 1
T1 tries T T 0
T0 in CS (T1 cannot enter CS)

F T 0
T0 tries T T 1
T1 in CS (T0 cannot enter CS)

T F 1

14

Mutual Exclusion III (Peterson’s Solution Variation)

//Thread T0

while (true) {

 flag[0] = true;

 turn = 0;

 while (flag[1]==true && turn==1);

 /* Critical Section */

 flag[0] = false;

}

Boolean flag[2];

flag[0]=false, flag[1]=false;

int turn = 0;

//Thread T1

while (true) {

 flag[1] = true;

 turn = 1;

 while (flag[0]==true && turn==0);

 /* Critical Section */

 flag[1] = false;

}

• Does it achieve one of more of the correctness properties of a concurrent
program:

– Mutual exclusion: Only one thread in critical section at a time
– Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
– Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter

• ANS:

15

Mutual Exclusion III (Peterson’s Solution Variation)
Sample Execution & Answer

• This variation is similar to Peterson's Solution but with an incorrect
implementation of the turn variable:

• Mutual Exclusion: Achieved. Only one thread can enter its critical section
at a time due to the conditions on flag and turn.

• Progress (Deadlock-Free): Achieved. It is not possible for each thread to
be blocked forever waiting for each other.

• Bounded Waiting (Starvation-Free): Not satisfied. A thread may be
indefinitely delayed if the other repeatedly sets its flag and does not
allow alternation via the turn variable, i.e., one thread can repeatedly
enter the CS and starve the other thread.

• TestAndSet Instruction: Not required.

• Major Flaw: Incorrect handling of the turn variable leads to potential
livelock or starvation.

Flag[0] Flag[1] turn
Init F F 0

T0 tries T F 0
T0 in CS

F F 0
T1 tries F T 1
T1 in CS

F F 1
T0 tries T F 0
T1 tries T T 1
T1 in CS

T F 1
T1 tries T T 1
T1 in CS

T F 1
T0 experiences starvation

16

Race Conditions
Consider the two threads each executing t1 and t2. Values of shared variables y and
z are initialized to 0

Q. Give all possible final values for x and the corresponding order of execution of
instructions in t1 and t2.
1) t1 runs to the end first; then t2 runs to the end: x = 0+0 = 0
2) t2 to line 2; then t1 to the end; then t2 to the end: x = 1+0 = 1
3) t2 to the end; then t1 to the end: x = 1+2 = 3

Are there other possibilities giving additional values?

1 t1(){ 1 t2(){
2 int x; 2 y = 1;
3 x = y + z; 3 z = 2;
4 } 4 }

int y=0, z=0;

16

17

• Addition operation x=y+z consist of multiple machine instructions in assembly language:
A. fetch operand y into register r1
B. fetch operand z into register r2
C. add r1 + r2, store result in r3
D. store r3 in memory location of x

• If a task switch to t2 occurs between machine instructions A and B; then t2 runs to completion
before switching back to t1, then:

• y is read as 0 (t2 didn’t set y yet)
• z is read as 2 (t2 sets z before execution instruction B of add. in t1)
• the sum is then x = 0 + 2 = 2

Race Conditions

1 t1(){ 1 t2(){
2 int x; 2 y = 1;
3 x = y + z; 3 z = 2;
4 } 4 }

int y=0, z=0;

17

18

Q. Give a solution using semaphores.
Solution: we protect the addition x = y + z within a critical section, using a
binary semaphore (mutex). This code guarantees that x can never have the
value 1 or 2, possible values are x = 0, 3
(Line “int x” can be outside or inside the critical section with no difference. We use
a slightly different notation of s.wait()/s.signal() to denote sem_wait(&s) and
sem_post(&s).

1 t1(){ 1 t2(){
2 int x; 2 s.wait();
3 s.wait(); 3 y = 1;
4 x = y + z; 4 z = 2;
5 s.signal(); 5 s.signal();
6 } 6 }

Race Conditions

18

int y=0, z=0;

semaphore s = 1;

19

Q. Use semaphores and insert wait/signal calls into the two threads so that
only “wordle” is printed.

1 int t1() { t2: 1 int t2() {
2 printf("w"); 2 printf("o");
3 printf("d"); 3 printf("r");
4 } 4 printf("l");

5

6 }
printf("e");

t1:

Semaphores I

• t1 has to run first to print "w", so s1 should be
initialized to 1.

• t2 has to wait until the "w" has been printed by t1,
then it is woken up by t1 calling s2.signal(), so s2
should be initialized to 0.

1 int t1(){
s1.wait();
printf("w");
s2.signal();
s1.wait();
printf("d");
s2.signal();

2

3

4

5

6

7

8 }

1 int t2(){
s2.wait();
printf("o");
printf("r");
s1.signal();
s2.wait();
printf("l");
printf("e");

2

3

4

5

6

7

8

9 }

19

semaphore s1=1, s2=0

20

Semaphores II

• The following three functions of a
program f1(), f2(), f3() run in separate
threads each and print some prime
numbers. All three threads are ready to
run at the same time. Use
synchronization using the semaphores
S1, S2 and S3 and wait/signal operations
on the semaphores to ensure that the
program outputs the prime numbers in
increasing order (2, 3, 5, 7, 11, 13).

Semaphore S1=0;
Semaphore S2=0;
Semaphore S3=0;
f1() {

printf("3");
printf("5");

}

f2() {
printf("2");
printf("13");

}

f3() {
printf(“7");
printf("11");

}

21

Semaphores II Solution
• Solution 1 (left): With initial

values of all semaphores = 0,
only f2 can run, prints 2, signals
S1 and then waits for S2.
S1.signal() starts f1, which was
waiting for S1 and can now print
3 and 5 and then signal S3.
S3.signal() now starts f3, which
prints 7 and 11 and signals S2.
This returns execution to f2,
which can then finally print 13.

• Solution 2 (right): s2 has initial
value 1, so f2 calls S2.wait() and
runs first. The rest of the same as
Solution 1. You can see that
initializing s2=0 has the same
effect as initializing s2=1 and let
f2 call S2.wait() first. So Solution
1 is better with one less call to
wait().

semaphore S1=0;
semaphore S2=1;
semaphore S3=0;
f1() {

S1.wait();
printf("3");
printf("5");
S3.signal();

}

f2() {
S2.wait();
printf("2");
S1.signal();
S2.wait();
printf("13");

}

f3() {
S3.wait();
printf("7");
printf("11");
S2.signal();
}

semaphore S1=0;
semaphore S2=0;
semaphore S3=0;
f1() {

S1.wait();
printf("3");
printf("5");
S3.signal();

}

f2() {
printf("2");
S1.signal();
S2.wait();
printf("13");

}

f3() {
S3.wait();
printf("7");
printf("11");
S2.signal();
}

22

Q. Which strings can be output when running the 3 threads in parallel?
• Either t1 or t2 could start first, so the first letter can be A or B
• Then both t1 and t2 signal s_c, only after both have signalled s_c, t3 can start and print C
• t3 signals s_a and s_b, which start in arbitrary order again
• Accordingly, the output is a regular expression ((AB|BA)C)+

• Print A or B in arbitrary order, then print C, then the process repeats

1 int t1() {
2 while(1) {
3 printf("A");
4 s_c.signal();
5 s_a.wait();
6 }
7 }

1 int t2() {
2 while(1) {
3 printf("B");
4 s_c.signal();
5 s_b.wait();
6 }
7 }

1 int t3() {
2 while(1) {
3 s_c.wait();
4 s_c.wait();
5 printf("C");
6 s_a.signal();
7 s_b.signal();
8 }
9 }

semaphore s_a=0, s_b=0, s_c=0;

Semaphores III

22

23

Deadlock scenario 1:
• t2 runs first until line 2 (so lock2=0, lock1=1); switch to t1
• t1 starts and runs until line 3 (so lock1=0, lock2=0); back

to t2
• t2 waits for lock2 in line 4; switch to t1, waits for lock1 in

line 5
• This results in a circular waiting condition, where each thread

grabs one lock and requests the other.

1 int t1() {
2 z = z + 2;
3 lock1.wait();
4 x = x + 2;
5 lock2.wait();
6 lock1.signal();
7 y = y + 2;
8 lock2.signal();
9 }

1 int t2() {
lock2.wait();2

3 y = y + 1;
lock1.wait();
x = x + 1;
lock1.signal();
lock2.signal();
z = z + 1;

4

5

6

7

8

9 }

Deadlocks I

23

//Initialization
int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

z = z + 2;
lock1.wait();
x = x + 2;
lock2.wait();
lock1.signal();
y = y + 2;
lock2.signal();

2

3

4

5

6

7

8

9 }

//Initialization
int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

1 int t1() { 1 int t2() {
lock2.wait();
y = y + 1;
lock1.wait();
x = x + 1;
lock1.signal();
lock2.signal();
z = z + 1;

2

3

4

5

6

7

8

9 }

Deadlock scenario 2:
• t1 runs first until line 4 (so lock1=0, lock2=1); switch to t2

• t2 starts and runs until line 3 (so lock1=0, lock2=0); back to t1

• t1 waits for lock2 in line 5; switch to t2, waits for lock1 in line 4

• (Other interleavings are possible, e.g., t1 grabs lock1, t2 grabs lock2
requests lock 1, t1 requests lock 2)

• To prevent deadlocks, every thread should acquire locks in the same
order, e.g. both acquire lock1 before lock2, or both acquire lock2 before
lock1

24

• Q. What are the possible values of x, y and z in
the deadlock state?

• t1 runs until Line 5 lock2.wait() and t2 runs until Line 4
lock1.wait(), so x = 2, y = 1, z = 2

• Q. What are the possible values of x, y and z if
the program finishes successfully without a
deadlock?

• t1 runs first to the end, then t2 (or vice versa): x=3, y=3, z=3
• In t1, lock1.signal() sets lock1=1, lock2.signal() sets lock2=1,

this exiting the critical sections protected by lock1 and lock2.
• Since Line 2 of t1 “z=z+2”, and Line 8 of t2 “z=z+1” are not

protected within a critical section, a thread switch may occur
in the middle of each line, e.g.,

– t2 Line 8 reads z=0; before z is written back; switch to t1 Line 2,
run t1 to the end; switch to t2 Line 8, write back z=0+1=1.

– Or, t1 Line 2 reads z=0; before z is written back; switch to t2
Line 2, run t2 to the end; switch to t1 Line 2, write back
z=0+2=2.

1 int t1() { 1 int t2() {
2 z = z + 2; 2 lock2.wait();
3 lock1.wait(); 3 y = y + 1;
4 x = x + 2; 4 lock1.wait();
5 lock2.wait(); 5 x = x + 1;
6 lock1.signal(); 6 lock1.signal();
7 y = y + 2; 7 lock2.signal();
8 lock2.signal(); 8 z = z + 1;
9 } 9 }

int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

Deadlocks II

24

	CSC 112: Computer Operating Systems�Lecture 3��Synchronization
	Concurrency I
	Concurrency I Answer
	Concurrency II
	 Concurrency II Answer
	Recall: Locks: Loads/Stores
	Mutual Exclusion I
	Mutual Exclusion I: Sample Execution
	Mutual Exclusion I Answer
	Mutual Exclusion II
	Mutual Exclusion II: Sample Execution & Answer
	Mutual Exclusion III (Peterson’s Solution)
	Mutual Exclusion III (Peterson’s Solution): Sample Execution & Answer
	Mutual Exclusion III (Peterson’s Solution Variation)
	Mutual Exclusion III (Peterson’s Solution Variation) Sample Execution & Answer
	Race Conditions
	Race Conditions
	Race Conditions
	Semaphores I
	Semaphores II
	Semaphores II Solution
	Semaphores III
	Deadlocks I
	Deadlocks II

