
CSC 112: Computer Operating Systems
Lecture 2

Processes and Threads

Department of Computer Science,

Hofstra University

Acknowledgement: Lecture slides based on UC Berkeley CS 162: Operating Systems and System Programming

2

Overview

• Process concept

• Process state

• Process API (creation, wait)

• Process tree

3

Process

• Program is a static entity stored on disk (executable file), process is active

– Program becomes process when executable file loaded into memory

– Process is an abstraction of CPU

• Execution of program started via Graphic User Interface (GUI) mouse clicks, command
line entry of its name, etc

• A physical CPU is shared by many processes

– Time sharing: run one process for a little while, then run another one, and so forth.

– Processes believe they are using CPU alone

4

Process

• A program becomes a
process when it is
selected to execute
and loaded into
memory.

• A process has an
address space

code
static data

heap

stack

Process

Memory

code
static data

Program

Disk

Loading:
Takes on-disk

program
and reads it into the

address space of
process

CPU

Program
Counter (PC)

5

Process

• Consists of:

– Stack: Temporary data, e.g.,
function parameters, return
addresses, local variables

– Heap: Dynamically allocated
memory

– Static data: Global variables

– Code: Instructions

– Registers: SP (Stack Pointer), PC
(Program counter)

Process: a running program

0x00000000

0xFFFFFFFF

32-bit memory

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(temporary data)

PC (Program Counter)

SP (Stack Pointer)

6

Process

• A process is represented by a
process control block (PCB)

– Process ID (PID, unique)

– State

– Parent process pointer

– Opened files

– Many other fields

– PCB in XV6 does not include
pointers to child processes for
simplicity, but PCB in Linux
include them for convenient
references to its child
processes

struct proc {
 struct spinlock lock; // p->lock must be held when using these:
 enum procstate state; // Process state
 void *chan; // If non-zero, sleeping on chan
 int killed; // If non-zero, have been killed
 int xstate; // Exit status to be returned to parent's wait
 int pid; // Process ID
 // wait_lock must be held when using this:
 struct proc *parent; // Parent process
 // these are private to the process, so p->lock need not be
held.
 uint64 kstack; // Virtual address of kernel stack
 uint64 sz; // Size of process memory (bytes)
 pagetable_t pagetable; // User page table
 struct trapframe *trapframe; // data page for trampoline.S
 struct context context; // swtch() here to run process
 struct file *ofile[NOFILE]; // Open files
 struct inode *cwd; // Current directory
 char name[16]; // Process name (debugging)
};

XV6 (proc.h)

7

Process States

• Process has different states

– READY

» Ready to run and pending for
running

– RUNNING

» Being executed by OS

– BLOCKED

» Suspended due to some other
events, e.g., I/O requests

Scheduled

Descheduled
I/O request

I/O request
completion

Process 0 Process 1

Running Ready

I/O

Request

Block
I/O
processing

CPU switch

Running

I/O Done
Ready

DoneRunning

Done

What is a Process in an Operating System?
https://www.youtube.com/watch?v=vLwMl9qK4T8

https://www.youtube.com/watch?v=vLwMl9qK4T8

8

Process API

• Process API to manipulate processes

– CREATE

» Create a new process, e.g., double click, a command in terminal

– WAIT

» Wait for a process to stop

» Like I/O request

– DESTROY

» Kill the processes

– STATUS

» Obtain the information of a process

– OTHERS

» Suspend or resume a process

9

Process Creation

• A process is created by another process, parent process or calling process

• Process creation relies on two system calls

– fork()

» Create a new process and clone its parent process

– exec()

» Overwrite the created process with a new program

10

fork()
• A function without any arguments

– ret = fork()

• Both parent process and child process continue to
execute the instruction following the fork()

• The return value indicates which process it is (parent or
child)

– ret > 0 (pid of child process): code running in the parent
process,

– ret == 0: code running in the newly-created child process
– ret == -1: an error or failure occurred when creating new

process

• Fun analogy: imaging you are a process after fork, but you
don’t know if you are the child or parent process, as if you
are running inside of a Matrix. But you can identify which
process you are running, by looking up to the sky and see
the ret value from fork()

• Child process is a duplicate of its parent process and has
same

– instructions, data, stack

• Child and parents have different
– PIDs, memory spaces

11

fork()

int main(int argc, char *argv[])

{

printf("hello world (pid:%d)\n", (int) getpid());

int ret = fork();

if (ret < 0) {

 // fork failed; exit

 fprintf(stderr, "fork failed\n"); exit(1);

} else if (pid == 0) {

 // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

} else {

 // parent goes down this path (original process)

 printf("hello, I am parent of %d (pid:%d)\n", ret, (int) getpid());

}

return 0;

}

Child Process

Parent Process

Output

• Assuming no error (ret
>= 0):

• Code inside if(ret == 0){}
block is executed by
Child process

• Code inside if(ret > 0){}
block is executed by
Parent process

• Code outside of if-then-
else blocks is executed
by both Child and Parent

12

wait()
• Let the parent process wait for the completion of the

child process
– pid = wait()

• wait() suspends the execution of the calling process until
one of its child processes terminates.

– When a child process terminates, wait() retrieves its
termination status and allows the system to clean up the
resources associated with that child. If the parent does not
call wait() to collect the child's exit status, the child
becomes a zombie process, which means its PCB persists
in the process table, even though it is no longer running.

» While zombie processes do not consume processor or
memory resources, they occupy entries in the process
table. The process table is of finite size, and if too many
zombie processes accumulate, it can prevent new
processes from being created.

– If there are multiple child processes, wait() does not allow
the parent to specify which child process to wait for.
waitpid(pid) is an advanced version of wait. It allows the
parent process to specify which child process (or group of
processes) it wants to wait for.

Parent

fork()

Parent

Childwait()

13

wait()

int main(int argc, char *argv[])

{

 printf("hello world (ret:%d)\n", (int) getpid());

 int pid = fork();

 if (pid < 0) {

 // fork failed; exit

 fprintf(stderr, "fork failed\n");

 exit(1);

 } else if (pid == 0) {

 // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 sleep(1);

 } else {

 // parent goes down this path (original process). wc (wait child) stores pid of the child process waited by parent

 int wc = wait(NULL); //wc contains pid of the child process being waited for by parent process

 printf("hello, I am parent of %d (wc:%d) (pid:%d)\n", pid, wc, (int) getpid());

 }

 return 0;

}

Child Process

Parent Process

Child process sleeps for 1 second

Parent process waits for the child process

to finish sleeping

14

wait()

• Without wait(): it is nondeterministic which process (parent or child) runs first

• With wait(): child runs first, and parents waits for child to finish

Fork() system call tutorial
https://www.youtube.com/watch?v=xVSPv-9x3gk

https://www.youtube.com/watch?v=xVSPv-9x3gk

15

exec()
• exec(cmd, argv) replaces the current process image with a new

process image specified by the path to an executable file.
– It does not return. It starts to execute the new program.

• There is a family of exec(), e.g., execl(), execvp()
– execl() takes a variable number of arguments that represent the

program name and its arguments.
» int execl(const char *path, const char *arg, ..., NULL);

– execvp() takes an array of arguments instead of a variable-length
argument list

» int execvp(const char *file, char *const argv[]);

16

exec() Example
int main(int argc, char *argv[])

{

printf("hello world (pid:%d)\n", (int) getpid());

int pid = fork();

if (pid < 0) {

 // fork failed; exit

 fprintf(stderr, "fork failed\n"); exit(1);

} else if (pid == 0) { // child (new process)

 printf("hello, I am child (pid:%d)\n", (int) getpid());

 char *myargs[3];

 myargs[0] = strdup(“wc”); // program: ”wc“ (word count)

 myargs[1] = strdup(“p3.c”); // argument: file to count

 myargs[2] = NULL; // marks end of array

 execvp(myargs[0], myargs); // run word count

 printf(“This line will never be executed.");

} else { // parent

 int rc_wait = wait(NULL);

 printf(“hello, I am parent of %d (rc_wait:%d) (pid:%d)\n”, rc, rc_wait, (int)
getpid());}

return 0;

}

Output:

• In the child process (rc == 0), the execvp() function
replaces the current process image with the
program named “wc“, a program that counts Lines,
Words, and Bytes in a file, with output
format: [lines] [words] [bytes] [filename].

• The arguments for the program are passed as an
array (args[]), where the first element is the
program name “wc” and subsequent elements are
its arguments. The array must end with NULL.

• After call to execvp(), the whole child process
address space is overwritten and replaced by the
wc program, so the line “printf(“This line will never
be executed.");“ will never be executed.

• Minor point: strdup() allocates memory on the
heap and stores a copy of the string there. This is
done to ensure that the strings are stored in
memory that can be safely modified or freed later
if needed. In this program, strdup() is not strictly
necessary, and you can pass strings directly to
myargs without using `strdup`, since the strings are
read only and not modified later.

17

IO redirection and pipe

• By separating fork() and exec(), we can manipulate various settings just before
executing a new program and make the IO redirection and pipe possible. (details
omitted.)

– IO redirection: output of the left command redirected to be written to the file on the right

– Pipe: output of the left command passed as input to the right command

% cat w3.c > newfile.txt

% echo hello world | wc

18

pipe

• A communication method between two processes

Child Process
(left)

Child Process
(right)

Write Read

Command “cat” prints out content of hello.c file

Output of “cat” command passed through the pipe

to command “grep” to search for any lines that

contain “printf”

19

Process Tree
init

pid = 1

sshd

pid = 3028

login

pid = 8415
kthreadd

pid = 2

sshd

pid = 3610

pdflush

pid = 200

khelper

pid = 6

tcsch

pid = 4005
emacs

pid = 9204

bash

pid = 8416

ps

pid = 9298

20

Process Tree

• % pstree (to show the process tree in a hierarchy)

• % ps (to show all processes as a flat list)

21

User/Kernel Mode Separation

• User mode: restricted, limited operations

– Processes start in user mode

• Kernel mode: privileged, not restricted

– OS starts in kernel mode

• What if a process wants to perform some restricted operations?

– System calls: Allow the kernel services to provide some functionalities to user programs

22

User/Kernel Mode Separation

• A process starts in user mode

• If it needs to perform a restricted operation, it calls a system call by executing a trap instruction.

• The state and registers of the calling process are stored, the system enters kernel mode, OS completes
the syscall work.

• Return from syscall, restore the states and registers of the process, and resume the execution of the
process

23

Process Scheduling

• Switching Between Processes

• Cooperative approach

– Trust process to relinquish processor time to OS through yield()

• Non-cooperative approach

– The OS takes control periodically, e.g., timer interrupter

24

Process Summary

• In OS, process is a running program and has an address space

• We use process API to create and manage processes

• Fork() to duplicate a process, exec() to replace the command

• Process scheduling

25

What’s in a process?

• A process consists of:

– an address space

– the code for the running program

– the data for the running program

– at least one thread

» Registers, IP

» Floating point state

» Stack and stack pointer

– a set of OS resources

» open files, network connections, sound channels, …

• Today: decompose process from threads of control

26

Concurrency
• Imagine a web server that handles multiple requests concurrently

– Multiple worker threads: while waiting for the credit card server to approve a purchase for one client, it
could be retrieving the data requested by another client from disk, and assembling the response for a
third client from cached information

• Imagine a web client (browser), which might like to initiate multiple requests concurrently

• Imagine a parallel program running on a multiprocessor, which might like to employ parallelism =
“true concurrency”

– For example, multiplying a large matrix – split the output matrix into k regions and compute the entries
in each region concurrently using k processors

Thread for

keyboard input

Thread for

disk IO

Thread for Displaying

Web Server Web Browser

27

What’s needed?

• In each of these examples of concurrency (web server, web client,
parallel program):

– Everybody wants to run the same code

– Everybody wants to access the same data

– Everybody has the same privileges

– Everybody uses the same resources (open files, network connections, etc.)

• But you’d like to have multiple hardware execution states:

– an execution stack and stack pointer (SP)

» traces state of procedure calls made

– program counter (PC), indicating the next instruction

– a set of general-purpose processor registers and their values

• Creating multiple processes is inefficient

• Key idea: separate the concept of a process (address space, etc.) from
that of a minimal “thread of control” (execution state: PC, etc.)

28

Processes and Threads

• Modern OSes support two entities:

– the process, which defines the address space and general process attributes
(such as open files, etc.)

– the thread, which defines a sequential execution stream within a process

• A thread is bound to a single process / address space

– address spaces, however, can have multiple threads executing within them

– threads in the same process share the same address space, making it easy to
share data among them

• Threads become the unit of scheduling

– processes / address spaces are just containers in which threads execute

29

Processes and Threads

• Multiple threads within a process will share

– Process ID

– The address space: code, most data (heap)

– Open files (file descriptors)

– Current working directory

– Other resources

• Each thread has its own:

– Thread ID (TID)

– Set of registers, including Program Counter and Stack
Pointer

– Stack for local variables and return addresses

• Advantages

– Efficient and fast resource sharing

– Efficient utilization of many CPU cores with only one
process

– Less context switching overheads

30

(old) Process address space

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC (Program Counter)

SP (Stack Pointer)

31

(new) Process address space with threads

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

32

Process/thread separation

• Concurrency (multithreading) is useful for:

– handling concurrent events (e.g., web servers and clients)

– building parallel programs (e.g., matrix multiply, ray tracing)

– improving program structure

• Multithreading is useful even on a uniprocessor

– even though only one thread can run at a time, multiple threads may be
executed in a time-sharing schedule, so they appear to run concurrently

• Supporting multithreading – that is, separating the concept of a
process (address space, files, etc.) from that of a minimal thread of
control (execution state), is a big win

– creating concurrency does not require creating new processes

– faster / better / cheaper

33

POSIX pthreads API

• POSIX thread -> pthread

• A Portable Operating System
Interface (POSIX) library (IEEE
1003.1c), written in C
language

• Pthread library: 60+
functions, API specifies
behavior of the thread
library

API Functionality

pthread_create Create a new thread in the
caller’s address space

pthread_exit Terminate the calling thread

pthread_join Wait for a thread to terminate

pthread_mutex_lock Lock a mutex

pthread_mutex_unlock Unlock a mutex

sem_wait Wait on a semaphore

sem_post Signal or post on a semaphore

pthread_cond_wait Wait on a condition variable

pthread_cond_signal Wake up one thread waiting
on a condition variable

pthread_cond_broadcast Wake up all threads waiting
on a condition variable

34

Pthread Fork-Join Pattern

void *mythread(void *arg) {

printf("%s\n", (char *) arg);

 return NULL;

 }

 int main(int argc, char *argv[]) {

 pthread_t p1, p2;

 printf("main: begin\n");

 pthread_create(&p1, NULL, mythread, "A");

 pthread_create(&p2, NULL, mythread, "B");

 // join waits for the threads to finish

 pthread_join(p1, NULL);

 pthread_join(p2, NULL);

 printf("main: end\n");

}

create

exit

join

Main thread creates multiple sub-threads,
passing them args to work on… then joins with
them to collect results.

35

“Where do threads come from?”

• The kernel is responsible for creating/managing threads

– for example, the kernel call to create a new thread would

» allocate an execution stack within the process address space

» create and initialize a Thread Control Block

•stack pointer, program counter, register values

» stick it on the ready queue

– we call these kernel threads

36

• Threads can also be managed at the user level (that is, entirely from
within the process)

– a library linked into the program manages the threads

» because threads share the same address space, the thread manager
doesn’t need to manipulate address spaces (which only the kernel can do)

» threads differ (roughly) only in hardware contexts (PC, SP, registers),
which can be manipulated by user-level code

» the Linux thread package multiplexes user-level threads on top of kernel
thread(s), which it treats as “virtual processors”

– we call these user-level threads

“Where do threads come from?” (2)

37

Kernel threads

• OS now manages threads and processes

– all thread operations are implemented in the kernel

– OS schedules all of the threads in a system

» if one thread in a process blocks (e.g., on I/O), the OS knows about it,
and can run other threads from that process

» possible to overlap I/O and computation inside a process

• Kernel threads are cheaper than processes

– less state to allocate and initialize

• But, they’re still expensive for fine-grained use (e.g., orders of
magnitude more expensive than a procedure call)

– thread operations are all system calls

» context switch

» argument checks

– must maintain kernel state for each thread

38

User-level threads

• To make threads cheap and fast, they may be implemented at the user
level

– managed entirely by user-level library, e.g., libpthreads.a

• User-level threads are small and fast
– each thread is represented simply by a PC, registers, a stack, and a small thread control

block (user-space TCB)
– creating a thread, switching between threads, and synchronizing threads are done via

procedure calls
» no kernel involvement is necessary!

– user-level thread operations can be 10-100x faster than kernel threads as a result

• The OS kernel scheduler schedules the kernel threads; the user-level thread
scheduler within each process schedules the user-level threads within the
time intervals that the underlying kernel thread runs.

– it uses queues to keep track of the thread states: run, ready, wait. Just like the OS
kernel scheduler, but implemented as a user-level library

Example implementations of user-level threads
– Fibers, co-routines

FANG Interview Question | Process vs Thread
https://www.youtube.com/watch?v=4rLW7zg21gI

https://www.youtube.com/watch?v=4rLW7zg21gI

39

Summary

• Processes

– In OS, process is a running program and has an address space

– We use process API to create and manage processes

– Fork() to duplicate a process, exec() to replace the command

• Threads:

– Multiple threads per process / address space

– Kernel threads are much more efficient than processes, but they’re still not
cheap

» all operations require a kernel call and parameter verification

– User-level threads are very efficient

	Default Section
	Slide 1: CSC 112: Computer Operating Systems Lecture 2 Processes and Threads
	Slide 2: Overview
	Slide 3: Process
	Slide 4: Process
	Slide 5: Process
	Slide 6: Process
	Slide 7: Process States
	Slide 8: Process API
	Slide 9: Process Creation
	Slide 10: fork()
	Slide 11: fork()
	Slide 12: wait()
	Slide 13: wait()
	Slide 14: wait()
	Slide 15: exec()
	Slide 16: exec() Example
	Slide 17: IO redirection and pipe
	Slide 18: pipe
	Slide 19: Process Tree
	Slide 20: Process Tree
	Slide 21: User/Kernel Mode Separation
	Slide 22: User/Kernel Mode Separation
	Slide 23: Process Scheduling
	Slide 24: Process Summary
	Slide 25: What’s in a process?
	Slide 26: Concurrency
	Slide 27: What’s needed?
	Slide 28: Processes and Threads
	Slide 29: Processes and Threads
	Slide 30: (old) Process address space
	Slide 31: (new) Process address space with threads
	Slide 32: Process/thread separation
	Slide 33: POSIX pthreads API
	Slide 34: Pthread Fork-Join Pattern
	Slide 35: “Where do threads come from?”
	Slide 36: “Where do threads come from?” (2)
	Slide 37: Kernel threads
	Slide 38: User-level threads
	Slide 39: Summary

