
CSC 112: Computer Operating Systems
Lecture 2

Processes and Threads Exercises

Department of Computer Science,
Hofstra University

2

Wait() I

• Due to the use of wait(NULL),
the parent waits for each child
to complete before creating
another child. This enforces
sequential execution, meaning
there is no interleaving
between outputs from different
iterations.

– Hello 0
– Hello 1
– Parent exiting

• “return 0” here is the same as
“exit()”

int main() {
 int i;

 for (i = 0; i < 2; i++) {
 pid_t pid = fork();

 if (pid == 0) {
 // Child process
 printf("Hello %d\n", i);
 return 0; // Exit child process
 } else if (pid > 0) {
 // Parent process
 wait(NULL); // Wait for immediate child to
terminate
 }
 }

 printf("Parent exiting\n");
 return 0;
}

3

Wait() I

59102

start
59101

parent
continues

child
process created

pid=fork()

wait(NULL) return 0

int main() {
 int i;

 for (i = 0; i < 2; i++) {
 pid_t pid = fork();

 if (pid == 0) {
 // Child process
 printf("Hello %d\n", i);
 return 0; // Exit child process
 } else if (pid > 0) {
 // Parent process
 wait(NULL); // Wait for immediate child to
terminate
 }
 }

 printf("Parent exiting\n");
 return 0;
}

“Hello 0”

59102

child
process created

pid=fork()

wait(NULL)

“Hello 1”

“Parent exiting”

return 0

4

Wait() I with exec()

• In Child process: exec() replaces the
current process image with a new
program called SOME_COMMAND.
The child process will execute the
command and terminate. The code
following it (e.g., printf("Child\n"))
will not be executed because it is
now running SOME_COMMAND, not
the code shown in the text box.

• Output:
– Hello 0
– Hello 1
– Parent exiting

int main() {
 int i;

 for (i = 0; i < 2; i++) {
 pid_t pid = fork();

 if (pid == 0) {
 // Child process
 printf("Hello %d\n", i);
 exec(SOME_COMMAND); //SOME_COMMAND is a
Linux command that does not print anything
 printf("Hello again %d\n", i);
 return 0; // Exit child process
 } else if (pid > 0) {
 // Parent process
 wait(NULL); // Wait for immediate child to
terminate
 }
 }

 printf("Parent exiting\n");
 return 0;
}

5

Wait() I with exec()

int main() {
 int i;

 for (i = 0; i < 2; i++) {
 pid_t pid = fork();

 if (pid == 0) {
 // Child process
 printf("Hello %d\n", i);
 exec(SOME_COMMAND); //SOME_COMMAND is a
Linux command that does not print anything
 printf("Hello again %d\n", i);
 return 0; // Exit child process
 } else if (pid > 0) {
 // Parent process
 wait(NULL); // Wait for immediate child to
terminate
 }
 }

 printf("Parent exiting\n");
 return 0;
}

59102

start
59101

parent
continues

child
process created

pid=fork()

wait(NULL)

“Hello 0”

59102

child
process created

pid=fork()

wait(NULL)

“Hello 1”

“Parent exiting”

exec()

exec()

return 0

return 0

6

Wait() II

• Since the parent does not wait
immediately after creating each
child, the outputs of "Hello"
messages from children can
interleave. However, due to the final
waiting loop (wait(NULL)), "Parent
exiting" is always printed last.

• Two possible outputs:
– Hello 0
– Hello 1
– Parent exiting

• Or
– Hello 1
– Hello 0
– Parent exiting

int main() {
 int i;

 for (i = 0; i < 2; i++) {
 pid_t pid = fork(); // Create a child process

 if (pid == 0) {
 // Child process
 printf("Hello %d\n", i);
 return 0; // Exit child process
 } else if (pid > 0) {
 // Parent process continues to next
iteration
 continue;
 }
 }

 // Parent process waits for all child processes to
terminate
 if (pid > 0) {
 for (i = 0; i < 2; i++) {
 wait(NULL); // Wait for a child process to
terminate
 }
 }
 printf("Parent exiting\n");
 return 0;
}

7

Wait() II
int main() {
 int i;

 for (i = 0; i < 2; i++) {
 pid_t pid = fork(); // Create a child process

 if (pid == 0) {
 // Child process
 printf("Hello %d\n", i);
 return 0; // Exit child process
 } else if (pid > 0) {
 // Parent process continues to next
iteration
 continue;
 }
 }

 // Parent process waits for all child processes to
terminate
 if (pid > 0) {
 for (i = 0; i < 2; i++) {
 wait(NULL); // Wait for a child process to
terminate
 }
 }
 printf("Parent exiting\n");
 return 0;
}

59102

start
59101

parent
continues

child
process created

pid=fork()

“Hello 0”
59103

child
process created

pid=fork()

“Hello 1”

“Parent exiting”

return 0

return 0
wait(NULL)

wait(NULL)

Either child process may finish first, and Parent uses
wait(NULL) to wait for ANY child process to finish.

8

Quiz: Fork
• Since we do not check for return value

of fork(), both child process and
parent process run the same code
after fork, and print out its own pid.
(The pids 32, 33 shown are just
examples.)

• Since parent process and child
process run concurrently without
wait(), two output interleavings are
possible.

• In the following examples, we omit
the check for p<0 and assume
fork() calls are always successful.

Output: parent before child
Hello world!, process_id(pid) = 32
Hello world!, process_id(pid) = 33
or child before parent
Hello world!, process_id(pid) = 33
Hello world!, process_id(pid) = 32

https://www.geeksforgeeks.org/fork-system-call/

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
int main()
{
 pid_t pid = fork();
 if(pid<0){
 perror("fork fail");
 exit(1);
 }
 printf("Hello world!, process_id(pid) =
%d\n", getpid());
 return 0;
}

https://www.geeksforgeeks.org/fork-system-call/

9

Quiz: Fork
a = 5;
if (pid=fork()==0) {
 a = a + 5;
 printf(“In child, a=%d, a memory
address=%d\n", a, &a);
}
else {
 a = a – 5;
 printf(“In parent, a=%d, a memory
address=%d\n", a, &a);
}

• In Child (x), a = a + 5 = 10; In Parent (u), a
= a – 5 = 0.

• The physical addresses of ‘a’ in parent
and child must be different. But our
program accesses virtual addresses
(assuming we are running on an OS that
uses virtual memory). The child process
gets an exact copy of parent process and
virtual address of ‘a’ doesn’t change in
child process. Therefore, we get same
addresses in both parent and child.
(0x1234 is just an example address.)

Output:
In parent, a = 0, a memory address=0x1234
In child, a=10, a memory address=0x1234
Or,
In child, a=10, a memory address=0x1234
In parent, a = 0, a memory address=0x1234

10

Quiz: Fork
int main() {
int i;

for (i = 0; i < 3; i++)
{fork();}
printf("Hello\n"); //outside for loop
return 0;

}

Output:
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

• In general, “for (i = 0; i < n; i++) fork();” creates
1+2+…+2^(n-1)=(2^n)-1 child processes. Plus the
main process P0, we have a total of 2^n
processes, hence “Hello” is printed 2^n times.
Here n = 3, 2^3 = 8.

– Main process: P0
– P0 creates 1 child process by the 1st fork: P1
– P0, P1 create 2 child processes by the 2nd fork:

P2, P3
– P0, P1, P2, P3 create 4 child processes by the 3rd

fork: P4, P5, P6, P7
– Each of the 8 processes P0 to P7 prints a ”Hello”.

• Order of process execution may vary depending
on how OS schedules these processes, so it is
non-deterministic which process gets which
process ID, and which Hello is printed by which
process.

– None of the processes include a wait() call to
handle terminated child processes. When any of
these child processes terminate, their PCBs
remain in the process table as no parent process
is waiting on them, resulting in zombie processes.

59102i=0

start

i=1 59101 59103

i=2

59102

59101 59104 59103 59107 59102 59106 59105 59108

59101
parent
continues

59101

child
process created

P0

P0

P0

P0

P1

P1

P1

P2

P4 P2 P5
“Hello” “Hello” “Hello” “Hello” “Hello”

59105

P6 P7P3

P3

“Hello” “Hello” “Hello”

11

Quiz: Fork
int main() {
int i;

for (i = 0; i < 3; i++)
{fork();
printf("Hello i\n"); } //inside for loop
return 0;

}

• This program will print 14 lines.
– Main process: P0
– P0 creates 1 child process by the 1st fork: P1. Then

P0 and P1 each prints “Hello 0”
– P0, P1 create 2 child processes by the 2nd fork: P2,

P3. Then P0, P1, P2, P3 each prints “Hello 1”
– P0, P1, P2, P3 create 4 child processes by the 3rd

fork: P4, P5, P6, P7. Then P0 to P7 each prints “Hello
2”

• Order of process execution may vary depending
on how OS schedules these processes, so it is non-
deterministic which process gets which process ID.
The order in which “Hello i” is printed will respect
the dependencies in the process creation tree, but
parallel branches in the tree may execute in any
order

– e.g., “Hello 1” printed by P1 or P3 must appear after
“Hello 0” printed by P1, but it may appear before or
after “Hello 0” printed by P0

59102i=0

start

i=1 59101 59103

i=2

5910559102

59101 59104 59103 59107 59102 59106 59105 59108

59101
parent
continues

59101

child
process created

P0

P0

P0

P0

P1

P1

P1

P2

P4 P2 P5 P6 P7P3

P3

“Hello 2” “Hello 2” “Hello 2” “Hello 2” “Hello 2” “Hello 2” “Hello 2” “Hello 2”

“Hello 0” “Hello 0”

“Hello 1” “Hello 1”“Hello 1” “Hello 1”

12

Quiz: Fork
int main() {
While(true) fork();
return 0;

}

• A fork bomb is a type of denial-of-service
(DoS) attack designed to exhaust system
resources by creating an exponential
number of processes. This is achieved
through self-replicating code that
repeatedly calls the fork() system call. The
result is resource starvation, which can
slow down or crash the system.

• Prevention countermeasures:
– Limit User Processes: Use ulimit in Linux to

restrict the number of processes a user can
create:

» ulimit -u 30 # Limits user to 30 processes
– Configure /etc/security/limits.conf for

persistent limits:
» username hard nproc 30

13

1 #include <unistd.h>
2 int main (void) {
3 pid_t pid1 = fork();
4 pid_t pid2 = fork() ;
5 if (pid1>0 && pid2==0){
6 if (pid3=fork()>0){
7 pid4=fork();}
8 } // end if
9 return 0;
10} // end main

• Q: How many processes are generated in
total?

• A: There are 6 processes in total.
• The initial process P0 calls pid1=fork() to

generate one child process P1. P0 and P1
each calls pid2=fork() to generate child
processes P2 and P3.

• The if condition (pid1 > 0 && pid2 == 0) is
checked in all four processes P0 to P3, and it
is true only in P2 created by the pid2=fork()
in P0, so P2 calls pid3=fork() to generate
child process P4.

• The if condition (pid3> 0) is checked in both
P2 and P4. It is true in P2, so P2 calls
pid4=fork() to generate child process P5. It is
false in P4, so P4 stops here and does not call
any more fork().

59102

start

59101 59103 5910459102

59101
parent
continues

59101

child
process created

P0

P0 P1

P3P0 P1P2

59103 59105
P2

59103 59106P2 P5

P4

L3

L4

L6

L7

pid1>0,
pid2==0,
call pid3=fork()

pid1>0,
pid2>0,
stop

pid1==0,
pid2>0,stop

pid1==0,
pid2==0,stop

Call pid2=fork()

pid3>0,
call pid4=fork()

pid3==0.
stop

Call pid1=fork()

Call pid2=fork()

14

Quiz: Fork
1 #include <unistd.h>
2 int main (void) {
3 if(pid1=fork()>0||pid2=fork()>0)
4 {pid3=fork();}
5 return 0:
5 }

• Q: How many processes are generated in total? In
C, the logical OR operator (||) employs short-
circuit evaluation, meaning it evaluates
expressions from left to right and stops as soon as
the result of the entire expression is determined.
Specifically for (cond1||cond2): If cond1 evaluates
to true (non-zero), the overall result of the ||
operation is already known to be true, so cond2 is
not evaluated. If cond1 evaluates to false (zero),
the evaluation proceeds to the next operand
cond2.

• A: There are 5 processes in total.
• The initial process P0 calls pid1=fork() to create

child process P1. In P0, the if condition
(pid1>0||?) = (true&&?)=true, so P0 skips the call
pid2=fork() and calls pid3=fork() to create child
process P2.

• P1 has pid1==0, so it calls pid2=fork() and creates
child process P3. The if condition (pid1>0||
pid2>0) is checked in both P1 and P3. In P1, it is
(false||true)=true, so P1 calls pid3=fork() to
create child process P4. In P3, it is
(false||false)=false, so it stops here and does not
call any more fork().

59102

59101 59103 5910459102

59101
parent
continues

59101

child
process created

P0

P0 P1

P3P0 P1

59102 59105
P1 P4

pid1==0,
pid2==0,stop

pid1==0,
call pid2=fork()

pid1>0, call
pid3=fork()

P2
pid1==0,
pid2>0, call
pid3=fork()

Call pid1=fork()

15

TODO Quiz: Fork
1 #include <unistd.h>
2 int main (void) {
3 if(pid1=fork()>0||pid2=fork()>0)
4 {pid3=fork();}
5 }

• Q: How many processes are generated in total? In
C, the logical OR operator (||) employs short-
circuit evaluation, meaning it evaluates
expressions from left to right and stops as soon as
the result of the entire expression is determined.
Specifically for (cond1||cond2): If cond1 evaluates
to true (non-zero), the overall result of the ||
operation is already known to be true, so cond2 is
not evaluated. If cond1 evaluates to false (zero),
the evaluation proceeds to the next operand
cond2.

• A: There are 5 processes in total.
• The initial process P0 calls pid1=fork() to create

child process P1. In P0, the if condition
(pid1>0||?) = (true&&?)=true, so P0 skips the call
pid2=fork() and calls pid3=fork() to create child
process P2.

• P1 has pid1==0, so it calls pid2=fork() and creates
child process P3. The if condition (pid1>0||
pid2>0) is checked in both P1 and P3. In P1, it is
(false||true)=true, so P1 calls pid3=fork() to
create child process P4. In P3, it is
(false||false)=false, so it stops here and does not
call any more fork().

59102

59101 59103 5910459102

59101
parent
continues

59101

child
process created

P0

P0 P1

P3P0 P1

59102 59105
P1 P4

pid1==0,
pid2==0,stop

pid1==0,
call pid2=fork()

pid1>0, call
pid3=fork()

P2
pid1==0,
pid2>0, call
pid3=fork()

Call pid1=fork()

	CSC 112: Computer Operating Systems�Lecture 2��Processes and Threads Exercises
	Wait() I
	Wait() I
	Wait() I with exec()
	Wait() I with exec()
	Wait() II
	Wait() II
	Quiz: Fork
	Quiz: Fork
	Quiz: Fork
	Quiz: Fork
	Quiz: Fork
	Slide Number 13
	Quiz: Fork
	TODO Quiz: Fork

