CSC 112: Computer Operating Systems

Review Questions

Department of Computer Science,
Hofstra University

Q. Fork

For these questions, assume
there is no error, i.e., all fork
calls succeed, and the return
value of fork() is never
negative.

1. Will the parent and child
print the same value for a?

ANS: Yes. Processes do not
share the same memory space,
so a is 2 for both.

2. Will they print the same
memory address &a?

ANS: Yes. Fork copies the

address space of the parent to
the child.

3. Will they write to the same
STDOUT?

ANS: Yes. File descriptors are
copied over to the new
process, so both STDOUTSs will
reference the same "file”.

1 int main(void) {

2 int a = 1;

3 pid t fork ret = fork();
4 1f (fork ret > 0) {

5 a++;

6 fprintf (stdout, "Parent:
a, é&a);

7 } else 1f (fork ret == 0)
8 at++;

9 fprintf (stdout, "Child:
&a) ;

10 } else {

11 printf ("Oedipus") ;

12 }

13 }

int a is %d at %p\n",
{

int a is %d at %p\n", a,

Q. Fork

e For these questions,
assume there is no error,
i.e., all fork calls succeed,
and the return value of
fork() is never negative.

e 1. What does this program
print?

e ANS: Currently, the
program stops after
printing 3, giving an
output of

— <output of Is>

O J o Ul i W DN

11
12
13

int main (void) {

char** argv = (char**) malloc (3 * sizeof (char*));
argv[0] = "/bin/1ls";

argv[l] = ".";

argv[2] = NULL;

for (int 1 = 0; 1 < 10; 1i++) {

printf ("%d\n", 1i);
if (1 == 3) {
execv ("/bin/1s", argv);
}
}

return 0;

}

Q. Fork

e For these questions, assume 1 int main(void) ({
there is no error, i_e_’ all fork 2 char** argv = (char**) malloc (3 * sizeof (char*));
calls succeed, and the return 3 argv[0] = "/bin/ls";
value.offork() is never 4 argv[l] = ".";
negative. 5 argv[2] = NULL;
. o for (int 1 = 0; 1 < 10; 1i++) {
o
I[1).ri\r/]\{cf?1at does this program 7 printf("ed\n". i)
' _ 8 if (i == 3) f{
* ANS: The parent process will 9 pid t fork ret = fork();
print from O to 9. The child 10 if (fork ret == 0)
process will print <output of Is> | 15 execy ("/bin/1s", argv);
with any possible interleaving 12 1
Wlt9h the parent’s printing of O 12 return 0;
-0
-1
-2
-9

— <output of Is>

Q. Dining Lawyers

e Consider the Dining Lawyers problem. There are 3 lawyers P1 to P3,
each with a different number of arms. P1 has 1 arm and needs 1 fork
to eat; P2 has 2 arms and needs 2 forks to eat; P3 has 3 arms and
needs 3 forks to eat. There is a pile of 3 forks at center of the table.
Each lawyer picks up one fork at a time, and when he gets enough
forks, he eats and then puts down all his forks.

e |s it possible for the system to be deadlocked? If no, explain why. If
yes, show a (potential) deadlock state and run Banker’s algorithm to
check it. (You need to give the Max, Allocation, Need matrices, Total
and Available vectors, and Available resources after completion of
each process.)

Q. Dining Lawyers Solution: 3 Lawyers, each with 1,2,3 arms,

3 forks
Max Allocation Max Allocation Need
nitiallv. all ! 0 P2 grabs 1 fork |1 0 1
f”' Ila Y, af 2 0 and P3 grabs 2 2 1 1
orks are free. 3 0 forks 3 > 7
Total Available Total Available Available resources after
3 3 3 0 completion of each process
R1
C t state | Init| O
urrent state is a
deadlock. Deadlock

	Slide 1: CSC 112: Computer Operating Systems Review Questions
	Slide 2: Q. Fork
	Slide 3: Q. Fork
	Slide 4: Q. Fork
	Slide 5: Q. Dining Lawyers
	Slide 6: Q. Dining Lawyers Solution: 3 Lawyers, each with 1,2,3 arms, 3 forks

