
CSC 112: Computer Operating Systems

Review Questions

Department of Computer Science,

Hofstra University

2

Q. Fork

• For these questions, assume
there is no error, i.e., all fork
calls succeed, and the return
value of fork() is never
negative.

• 1. Will the parent and child
print the same value for a?

• ANS: Yes. Processes do not
share the same memory space,
so a is 2 for both.

• 2. Will they print the same
memory address &a?

• ANS: Yes. Fork copies the
address space of the parent to
the child.

• 3. Will they write to the same
STDOUT?

• ANS: Yes. File descriptors are
copied over to the new
process, so both STDOUTs will
reference the same ”file”.

1 int main(void) {

2 int a = 1;

3 pid_t fork_ret = fork();

4 if (fork_ret > 0) {

5 a++;

6 fprintf(stdout, "Parent: int a is %d at %p\n",

a, &a);

7 } else if (fork_ret == 0) {

8 a++;

9 fprintf(stdout, "Child: int a is %d at %p\n", a,

&a);

10 } else {

11 printf("Oedipus");

12 }

13 }

3

Q. Fork

• For these questions,
assume there is no error,
i.e., all fork calls succeed,
and the return value of
fork() is never negative.

• 1. What does this program
print?

• ANS: Currently, the
program stops after
printing 3, giving an
output of

– 0
– 1
– 2
– 3
– <output of ls>

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 execv("/bin/ls", argv);

10 }

11 }

12 return 0;

13 }

4

Q. Fork

• For these questions, assume
there is no error, i.e., all fork
calls succeed, and the return
value of fork() is never
negative.

• 1. What does this program
print?

• ANS: The parent process will
print from 0 to 9. The child
process will print <output of ls>
with any possible interleaving
with the parent’s printing of 0
to 9.

– 0
– 1
– 2
– …
– 9
– <output of ls>

1 int main(void) {

2 char** argv = (char**) malloc(3 * sizeof(char*));

3 argv[0] = "/bin/ls";

4 argv[1] = ".";

5 argv[2] = NULL;

6 for (int i = 0; i < 10; i++) {

7 printf("%d\n", i);

8 if (i == 3) {

9 pid_t fork_ret = fork();

10 if (fork_ret == 0)

11 execv("/bin/ls", argv);

12 }

12 return 0;

13 }

5

Q. Dining Lawyers

• Consider the Dining Lawyers problem. There are 3 lawyers P1 to P3,
each with a different number of arms. P1 has 1 arm and needs 1 fork
to eat; P2 has 2 arms and needs 2 forks to eat; P3 has 3 arms and
needs 3 forks to eat. There is a pile of 3 forks at center of the table.
Each lawyer picks up one fork at a time, and when he gets enough
forks, he eats and then puts down all his forks.

• Is it possible for the system to be deadlocked? If no, explain why. If
yes, show a (potential) deadlock state and run Banker’s algorithm to
check it. (You need to give the Max, Allocation, Need matrices, Total
and Available vectors, and Available resources after completion of
each process.)

6

Q. Dining Lawyers Solution: 3 Lawyers, each with 1,2,3 arms,
3 forks

Initially, all
forks are free.

1

2

3

Max Allocation Need

0

0

0

3

Total

3

Available

Max Allocation

3

Total

0

Available

P2 grabs 1 fork
and P3 grabs 2
forks

R1

Init 0

Deadlock

Available resources after
completion of each process

Current state is a
deadlock.

1

2

3

0

1

2

1

1

1

	Slide 1: CSC 112: Computer Operating Systems Review Questions
	Slide 2: Q. Fork
	Slide 3: Q. Fork
	Slide 4: Q. Fork
	Slide 5: Q. Dining Lawyers
	Slide 6: Q. Dining Lawyers Solution: 3 Lawyers, each with 1,2,3 arms, 3 forks

