CSCllli
Final Review

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Data Representation

» Integers
» Binary in different bases: binary, octal, hex, decimal

» Signed Integers
Signed magnitude
One’s complement
Two’s complement

» Arithmetic Operations
N,V, C, Z flags
» Big Endian vs Little Endian

» ASCII values

» Null-terminated string
» Converting between numbers and ASCII
» Upper case, lower case

Signed Integers
Method 3: Two’s Complement

Two’s Complement (a):
a+a=2"

11111 00000 oo TC of a number can be obtained by
00010

its bitwise NOT plus one.

moto / 00110 Example 1: TC(3)
o ot 00011
10111 01001 Step 1: Invert 11100
- every bit
- Two’s complement 11101 -3

10010 01110
10001 10000 01111

Adding two integers

Hardware Adder

-9 + 6
9 fip 1 72
1(0(1|1|1 ©0|0/1|1|0 01001 — 10110 — 10111
23 6 Two’s

Complement

29
: 3
flip +1
1|11|11|{0(1 > 00010 — 00011
Two’s Complement
-3 Counterpart

Same bit patterns, different interpretation.
» Unsigned addition: 23+6=29
» Signed addition: -9+6=-3

correctly for adding signed numbers.

Basic Assembly Programming

» Load-modify-store sequence

» Accessing memory
» Memory addressing mode
Pre-index
Post-index
Pre-index with update
» Data processing
» Arithmetic, Logic, Comparison, Data Movement
» Barrel Shifter:
ADD rl,r0, rO, LSL 2
» Bit operations
Set a bit, Reset a bit, Toggle a bit, Check a bit

» LSL, LSR,ASR, ROR, RRX

» Flow control: if, if-then-else, for loop, while loop

» Unconditional Branch: B
» Conditional Branch: CMPTEQ,TST, BEQ, BNE, BMI, BLS, BHI, etc.
» Conditional Execution: MOVEQ, MOVNE

Barrel Shifter: Explanations

» LSL (logical shift left): shifts left, fills zeros on the right; C gets the
last bit shifted out of bit 31. This is multiply by 2™ for non-
overflowing values.

» LSR (logical shift right): shifts right, fills zeros on the left; C gets
the last bit shifted out of bit 0. This is unsigned division by 2™.

» ASR (arithmetic shift right): shifts right, fills the sign bit on the left
to preserving the sign; C gets the last bit shifted out of bit 0. This
is signed division by 2™ with sign extension

» ROR (rotate right): rotates bits right with wraparound; bits leaving
bit O re-enter at bit 31, and C receives the bit that wrapped. This
s a pure rotation without data loss.

» RRX (rotate right extended): rotates right by one through the
carry flag, treating C as a 33rd bit; new bit 31 comes from old C,
and C receives old bit O.

Load/Store a Byte, Haltword, Word

LDRxxx RO, [R1]
; Load data from memory into a 32-bit register

Load Word uint32_t/int32_t unsigned or signed int
Load Byte uint8_t unsigned char

Load Halfword uintlé_t unsigned short int
Load Signed Byte int8_t signed char

Load Signed Halfword inti16_t signed short int

STRxxx RO, [R1]
; Store data extracted from a 32-bit register into memory

5500 Store Word uint32 t/int32_t unsigned or signhed int
STRB Store Lower Byte uint8 t/int8 t unsigned or signed char

STRH Store Lower Halfword uintl16_t/intl6_t unsigned or signed short

ARM Load Store Summary

» Memory address is always in terms of bytes.

» How data is organized in memory!?

Most Least
Significant Bit Significant Bit
) A Word (32 bits) ————{
Byte 3 | Byte 2 | Byte 1 | Byte @

3, - "\.ﬂ
Base Address + 3 | Byte 3 o - Byte @ |Base Address +3
Base Address + 2 | Byte 2 e Byte 1 |Base Address + 2
Base Address + 1| Byte 1 |+~ : Byte 2 |Base Address + 1

Base Address | Byte @ [+ - Byte 3 |Base Address
Little Endian Big Endian

» How data is addressed?
Addressing Format

Example | Equivalent

) rl < memory[r@ + 4],
Pre-index LDR r1, [ro, #4] r@ is unchanged
.) rl < memory[r@ + 4]
: I
Pre-index with update LDR r1, [ro, #4]! "0 < 10 + 4
rl < memory[ro]
Post-Index LDR r1, [ro], #4 O« ro + 4

Character String

Memory Address Memory Content Letter

str + 12— 0x00 \o0
str+ | |—> 0x79 y
str + 10— 0x6C I
char str[13] = “ARM Assembly”; str + 9— 0x62 b
str + 8— 0x6D m
str + 7— 0x65 e
This diagram does not indicate big- str + 6— 0x73 s
endian or little-endian. Endianness is str + 5— 0x73 s
irrelevant for single-byte char arrays. str + 4 Ox41 A
If you want to detect endianness, you must str + 3 0x20 space
, . , str + 2— 0x4D M
inspect a multi-byte value in memory, e.g.:
) _ _ str + | > 0x52 R
int x = 0x12345678; str — 041 A
That will reveal the byte order.

Condition Flags

Program Status Register (PSR)

N(Z[C|V|Q|ICT|T| Reserved GE Reserved IcnT ISR number
Negative ----------------- signed result is negative
» Negative bit
» N = 1 if most significant bit of result is 1 Zero -—------eemeeeeeee- resultis 0

» Zero bit add op =» overflow

» Z = 1 ifall bits of result are @ Carry """"""" sub op doesn’t borrow
last bit shifted out when shifting
» Carry bit

» For unsigned addition,C = 1 if carry takes place oVerflow -- add/sub op = signed overfiow
» For unsigned subtraction,C = @ (carry = not borrow) if borrow takes place
» For shift/rotation, C = last bit shifted out
» oVerflow bit
» V = 1 ifadding 2 same-signed numbers produces a result with the opposite sign
Positive + Positive = Negative, or
Negative + negative = Positive

» Non-arithmetic operations does not touchV bit, such as MOV, AND, LSL , MUL

Carry and Overflow Flags w/ Arithmetic
Instructions

Carry flag C = | (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true
result > 2"-1)

Carry flag C = 0 (Borrow flag = |) upon an unsigned subtraction if the answer is wrong
(true result < 0)

Overflow flagV =I upon a signed addition or subtraction if the answer is wrong (true result
> 2™1-| or true result < -2™)

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands
with different signs; Overflow cannot occur when adding 2 operands with different signs or
when subtracting 2 operands with the same sign.

Tip: Convert subtraction to addition with Two’s complement. If two operands have same
sign, and the result has opposite sign, thenV = |;elseV =0

I e M
Subtraction Subtraction

Carry flag true result > 2"-1 =» trueresult<0=> N/A

Carry flag=1 - Carry flag=0

Borrow flag=0 Borrow flag=1

(Result incorrect) (Result incorrect)

Overflow flag N/A N/A true result > 2™'-1 or

true result < -2/

=> Overflow flag=1

(Result incorrect)

Link Register (LR)

Mee_sr void foo (void) {
“O\V
co®

int main(void{ canste ...
o 0o 0 \ler — °
foo(); Resume suspendgd €@ return;
3
&

}
o o o0
} _
iLCompiIer

e Transfef control to callee
BL foo @ oo PROC
o o0 Re m e
esusPended calley PRI
ENDP

Passing Arguments and Returning Value

m “ m » Each argument with size < 32 bits, e.g., 8-bit

char, or 16-bit short, or 32-bit int, is passed in
32-bit 32-bit 32-bit 32-bit

Argument 1 Argument 2 Argument 3 Argument 4 Eeradatrgttjlr]nentts akrg a 32-bit register.
pushed to the stack by ; ; ;
R1(MsB32) RO(LSB32) R3(MsB32) R2(LSB32) the caller. The caller is > Cannot PZ.le multiple arguments into one register.
64-bit Argument 1 64-bit Argument 2 responsible to pop them » The subroutine can take arguments larger than
out of the stack after the 32 bits. For example, a double-word variable,
R3(MSB32) R2 R RO(LSB32) subroutine returns. such as 64-bit long, is passed in two
: consecutive registers (e.g. RO and RI, or R2
128-bit Argument and R3).A 128-bit variable is passed in four

consecutive registers.
» int64_t add_64(int64_t a, int64_t b)
» RO and RI are used to store the variable a

» The return result is stored in registers (RO-
R3), depending on the size of the return
variable. If it is less than 32 bits, it is stored in
RO. If it is a double-word sized variable, such as
long long or double variables in C, it is stored in
RO and R1I.

» intl28_t multiply_64(int64_t a, int64_t b)

R1(MsB32) RO(LSB32 R3(MsB32 R2 R1 RO(LSB32
“ {) () {) () » RO,RI,R2,and R3 are used to store the

32-bit Return Value 64-bit Return Value 128-bit Return Value

result

Caller Saved Registers

I 32 bits I
[Caller T ro 1) °* Callee can freely modify RO, RI, R2,and R3
Saved =1 * If caller expects their values are retained,
Register = caller shou.ld push them onto the stack
before calling the callee
R3
egisters R4
R5
Callee R6 > pomece | * Caller expects these values are retained .
Saved R7 Register 1« |f Callee modifies them, callee must
Register > R8 restore their values upon leaving the
s .
" R9 function. 39 bits
Regist:g's R10 I<_>I
/ xPSR_ |)
BASEPRI Special
R13 (SP) R13 (MSP) R13 (PSP) PRIMASK | - Purpose
egister
{ R14 (LR FAULTMASK °
R15 (PC) CONTROL P

Full Descending Stack

High Memory Addresses

PUSH {register_list}
equivalent to:
Stack base STMDB SP!, {register_list}

DB: Decrement Before

Stack POP {reqister_list}
Pointer Top of Stack equivalent to:
(SP)

LDMIA SP!, {register_list}

Stack grows toward
low memory
addresses.

IA: Increment After

Low Memory Addresses

Stack Recap

Largest-numbered register is

pushed first but popped last.

PUSH {r3, rli, r7, r2} POP {r3, ri, r7, r2}
High Memory /\/\ /\/\ High Memory /\/\ /\/\
Addresses Addresses

16 sp—» 16
12 12
8 8
4
sp —P — sp—P 0O — 9 0
r7 -4 -4
r3 -8 -8
r2 -12 -12
sp— rl -16 -16
Low Memory Low Memory \/\/ \/\/
Addresses Addresses
\/\/ \?\"/ rli =9
u - r2 = 4
Descending Pop to the sma.llest g
numbered register "7 = 12

first.

Calling a Subroutine

Caller: BL label (Branch and Link) Callee: BX LR (Branch and Exchange)
. at end of procedure
» Step I:LR = PC + 4 pC - LR
» Step 2:PC = label » Return to caller by setting PC to
» label is name of subroutine LR

» Compiler translates label to > Equivalently:
memory address » PUSH {LR} at start of procedure

» After call, LR holds return address > POP {PC} at end of procedure

(the instruction following the call)

ce foo PROC foo PROC
BL foo ... PUSH {LR}
BX LR
EDP POP {PC} ; pops LR into
PC (returns)
EDP

Caller-saved Registers vs
Callee-saved Registers

I 32 bits I
4 7| =5 1\ N
Caller-saved =1 * Not saved by subroutine
registers R2 * Hold arguments/result
\ —~ R3 y
Call d i
- General
rea .:tee::ve R6 > Purpose * Caller expects their values are retained
i egister . .
g \ R7 « Callee must save and store it if callee modifies it
R8
. RY 32 bits
High R10 |<—>|
Registers
S —
k R12 p BASEPRI)
Special
R13 (SP R13 (MSP) R13 (PSP) PRIMASK | 3 Purpose
. egister
Callee-saved registers | R14 (LR FAULTMASK
R15 (PC) CONTROL y
Register Bank Special Registers

Chapter 8 Subroutines Summary I

» How to call a subroutine?
» Branch with link: BL subroutine

» How to return the control back to the caller?
» Branch and exchange: BX LR

» How to pass arguments into a subroutine!?
» Each 8-, |6- or 32-bit variables is passed via r9,rl,r2,r3
» Extra parameters are passed via stack
» How to return a value in a subroutine!?
» Value is returned in ro
» How to preserve the running environment for the caller?
» On the stack

Chapter 8 Subroutines Summary II

» ARM Cortex-M uses full descending stack

» How to pass arguments into a subroutine!?
» Each 8-, 16- or 32-bit parameter is passed via ro,r1,r2,r3

» Extra parameters are passed via the stack

» What registers should be preserved!?
» Caller-saved registers vs callee-saved registers

» How to preserve the running environment for the caller?

» Via stack

Timer’s Clock

Reload
f CL PSC
clock Prescaler
Current Count
. f CL PSC
f CK CNT —

Prescaler + 1

PWM Duty Cycle = Ton/Time Period

Counter

Output Average

Vi e g —— e — e — e — —— — Tu — —

pulse on time T,
— — X 100% = — X 100%
pulse switching period T,

duty cycle =

Summary of Equations

>

v

Timer clock frequency f-x oy vs. CPU Clock Frequency fsource (fCL_pSC)

f _ fSOURCE
CKCNT ™ psc + 1

Timer interrupt frequency f ;... with up-counting or down-
counting mode:

ARR +1
f Timer = M; Timer Period = —— = (ARR + 1) = Clock Period
ARR + 1 fCK_CNT
Timer interrupt frequency f ... with center-aligned counting
mode: _ fek.ent

frimer = >+ ARR’ Timer Period = (2 * ARR) = Clock Period

PWM duty cycle for Mode | (Low-True):

CCR
Duty Cycle = ARR £ 1
PWM duty cycle for Mode 2 (High-True):
CCR
Duty Cycle =1 — ARRF 1

	Slide 1: Z. Gu
	Slide 2: Data Representation
	Slide 3: Signed Integers Method 3: Two’s Complement
	Slide 4: Adding two integers
	Slide 5: Basic Assembly Programming
	Slide 6: Barrel Shifter: Explanations
	Slide 7: Load/Store a Byte, Halfword, Word
	Slide 8: ARM Load Store Summary
	Slide 9: Character String
	Slide 10: Condition Flags
	Slide 11: Carry and Overflow Flags w/ Arithmetic Instructions
	Slide 12: Link Register (LR)
	Slide 13: Passing Arguments and Returning Value
	Slide 14: Callee Saved Registers vs Caller Saved Registers
	Slide 15: Full Descending Stack
	Slide 16: Stack Recap
	Slide 17: Calling a Subroutine
	Slide 18: Caller-saved Registers vs Callee-saved Registers
	Slide 19: Chapter 8 Subroutines Summary I
	Slide 20: Chapter 8 Subroutines Summary II
	Slide 21: Timer’s Clock
	Slide 22: PWM Duty Cycle = Ton/Time Period
	Slide 23: Summary of Equations

