
Z. Gu

Fall 2025

CSC111

Final Review

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language 

and C, University of Maine https://web.eece.maine.edu/~zhu/book/ 

https://web.eece.maine.edu/~zhu/book/


Data Representation

 Integers

 Binary in different bases: binary, octal, hex, decimal

 Signed Integers

 Signed magnitude

 One’s complement

 Two’s complement

 Arithmetic Operations

 N, V, C, Z flags

 Big Endian vs Little Endian

 ASCII values

 Null-terminated string

 Converting between numbers and ASCII

 Upper case, lower case

2



3

Signed Integers

Method 3: Two’s Complement

Two’s Complement (ഥ𝜶):

𝜶 + ഥ𝜶 = 𝟐𝒏

TC of a number can be obtained by 

its bitwise NOT plus one. 

Binary Decimal

Original number 00011 3
Step 1: Invert 

every bit
11100

Step 2: Add 1 + 00001

Two’s complement 11101 -3

Example 1:  TC(3)



Adding two integers

4

-9 6

-3

01001 10110 10111
flip +19 -9

00010 00011
flip +1 3

Two’s 

Complement

1 0 1 1 1 0 0 1 1 0

1 1 1 0 1

Hardware Adder

23 6

29

+

Two’s Complement 

Counterpart

 Same bit patterns, different interpretation.

 Unsigned addition: 23+6=29

 Signed addition: -9+6=-3

 This example shows that the hardware adder for adding unsigned numbers, also works 
correctly for adding signed numbers.



Basic Assembly Programming
 Load-modify-store sequence

 Accessing memory
 Memory addressing mode

 Pre-index

 Post-index

 Pre-index with update

 Data processing
 Arithmetic, Logic, Comparison, Data Movement

 Barrel Shifter:  

 ADD r1, r0, r0, LSL 2

 Bit operations

 Set a bit, Reset a bit, Toggle a bit, Check a bit

 LSL, LSR, ASR, ROR, RRX

 Flow control: if, if-then-else, for loop, while loop
 Unconditional Branch: B

 Conditional Branch: CMP, TEQ,TST, BEQ, BNE, BMI, BLS, BHI, etc.

 Conditional Execution: MOVEQ, MOVNE

5



Barrel Shifter: Explanations

6

 LSL (logical shift left): shifts left, fills zeros on the right; C gets the 
last bit shifted out of bit 31. This is multiply by 2𝑛 for non-
overflowing values.

 LSR (logical shift right): shifts right, fills zeros on the left; C gets 
the last bit shifted out of bit 0. This is unsigned division by 2𝑛. 

 ASR (arithmetic shift right): shifts right, fills the sign bit on the left 
to preserving the sign; C gets the last bit shifted out of bit 0. This 
is signed division by 2𝑛 with sign extension

 ROR (rotate right): rotates bits right with wraparound; bits leaving 
bit 0 re-enter at bit 31, and C receives the bit that wrapped. This 
is a pure rotation without data loss.

 RRX (rotate right extended): rotates right by one through the 
carry flag, treating C as a 33rd bit; new bit 31 comes from old C, 
and C receives old bit 0.



Load/Store a Byte, Halfword, Word

7

LDR Load Word uint32_t/int32_t unsigned or signed int

LDRB Load Byte uint8_t unsigned char

LDRH Load Halfword uint16_t unsigned short int

LDRSB Load Signed Byte int8_t signed char

LDRSH Load Signed Halfword int16_t signed short int

STR Store Word uint32_t/int32_t unsigned or signed int
STRB Store Lower Byte uint8_t/int8_t unsigned or signed char
STRH Store Lower Halfword uint16_t/int16_t unsigned or signed short

LDRxxx R0, [R1]
; Load data from memory into a 32-bit register

STRxxx R0, [R1]
; Store data extracted from a 32-bit register into memory



ARM Load Store Summary

8

 Memory address is always in terms of bytes.

 How data is organized in memory?

 How data is addressed?
Addressing Format Example Equivalent

Pre-index LDR r1, [r0, #4]
r1  memory[r0 + 4], 
r0 is unchanged

Pre-index with update LDR r1, [r0, #4]!
r1  memory[r0 + 4]
r0  r0 + 4

Post-Index LDR r1, [r0], #4
r1  memory[r0]
r0  r0 + 4



Character String

9

Memory Address Memory Content Letter

str + 12→ 0x00 \0
str + 11→ 0x79 y

str + 10→ 0x6C l

str + 9→ 0x62 b

str + 8→ 0x6D m

str + 7→ 0x65 e

str + 6→ 0x73 s

str + 5→ 0x73 s

str + 4→ 0x41 A

str + 3→ 0x20 space

str + 2→ 0x4D M

str + 1→ 0x52 R

str → 0x41 A

char str[13] = “ARM Assembly”;

This diagram does not indicate big-

endian or little-endian. Endianness is 

irrelevant for single-byte char arrays.

If you want to detect endianness, you must 

inspect a multi-byte value in memory, e.g.:

int x = 0x12345678;

That will reveal the byte order.



Condition Flags

10

 Negative bit

 N = 1 if most significant bit of result is 1

 Zero bit

 Z = 1 if all bits of result are 0

 Carry bit

 For unsigned addition, C = 1 if carry takes place

 For unsigned subtraction, C = 0 (carry = not borrow) if borrow takes place

 For shift/rotation, C = last bit shifted out

 oVerflow bit

 V = 1 if adding 2 same-signed numbers produces a result with the opposite sign

 Positive + Positive = Negative, or 

 Negative + negative = Positive

 Non-arithmetic operations does not touch V bit, such as MOV,AND,LSL,MUL

Reserved ISR number

Program Status Register (PSR)

ICI/IT TN Z C V Q ICI/ITGEReserved



Carry and Overflow Flags w/ Arithmetic 

Instructions

11

Carry flag C = 1 (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true 

result > 2n-1)

Carry flag C = 0 (Borrow flag = 1) upon an unsigned subtraction if the answer is wrong 

(true result < 0)

Overflow flag V =1 upon a signed addition or subtraction if the answer is wrong (true result 

> 2n-1-1 or true result < -2n-1)

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands 

with different signs; Overflow cannot occur when adding 2 operands with different signs or 

when subtracting 2 operands with the same sign.

Tip: Convert subtraction to addition with Two’s complement. If two operands have same 

sign, and the result has opposite sign, then V = 1; else V = 0

Unsigned Addition Unsigned 

Subtraction

Signed Addition or 

Subtraction

Carry flag true result > 2n-1 ➔ 

Carry flag=1

Borrow flag=0

(Result incorrect)

true result < 0 ➔ 

Carry flag=0

Borrow flag=1

(Result incorrect)

N/A

Overflow flag N/A N/A true result > 2n-1-1 or 

true result < -2n-1

➔ Overflow flag=1

(Result incorrect)

11



void foo(void) ;

int main(void{

   ● ● ● 

   foo();

   ● ● ● 

}

Link Register (LR)

12

Compiler

● ● ● 

 BL foo
  ● ● ●

foo  PROC

     ● ● ●
        ● ● ●

     BX   LR

     ENDP

void foo (void) {

     ● ● ●
        ● ● ●

     return;
}

Transfer control to callee



Passing Arguments and Returning Value

13

R0 R1 R2 R3

32-bit 

Argument 1

32-bit 

Argument 2

32-bit 

Argument 3

32-bit 

Argument 4

R1(MSB32) R0(LSB32) R3(MSB32) R2(LSB32)

64-bit Argument 1 64-bit Argument 2

R3(MSB32) R2 R1 R0(LSB32)

128-bit Argument

Subroutine

Extra arguments are 

pushed to the stack by 

the caller. The caller is 

responsible to pop them 

out of the stack after the 

subroutine returns.

R0

32-bit Return Value

R1(MSB32) R0(LSB32)

64-bit Return Value

R3(MSB32) R2 R1 R0(LSB32)

128-bit Return Value

 Each argument with size ≤ 32 bits, e.g., 8-bit 
char, or 16-bit short, or 32-bit int, is passed in 
a 32-bit register.

 Cannot pack multiple arguments into one register.

 The subroutine can take arguments larger than 
32 bits. For example, a double-word variable, 
such as 64-bit long, is passed in two 
consecutive registers (e.g. R0 and R1, or R2 
and R3). A 128-bit variable is passed in four 
consecutive registers. 

 int64_t add_64(int64_t a, int64_t b)

 R0 and R1 are used to store the variable a

 The return result is stored in registers (R0-
R3), depending on the size of the return 
variable. If it is less than 32 bits, it is stored in 
R0. If it is a double-word sized variable, such as 
long long or double variables in C, it is stored in 
R0 and R1. 

 int128_t multiply_64(int64_t a, int64_t b)

 R0, R1, R2, and R3 are used to store the 
result



Callee Saved Registers vs 

Caller Saved Registers

14

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low 

Registers

High 

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

• Callee can freely modify R0, R1, R2, and R3

• If caller expects their values are retained, 

caller should push them onto the stack 

before calling the callee

• Caller expects these values are retained . 

• If Callee modifies them, callee must 

restore their values upon leaving the 

function. 

Caller 

Saved 

Register

s

Callee 

Saved 

Register

s



Full Descending Stack

15

Stack base

Top of Stack
Stack 

Pointer 

(SP)

High Memory Addresses

Low Memory Addresses

Stack grows toward 

low memory 

addresses.

POP  {register_list} 

equivalent to: 

LDMIA SP!, {register_list}

PUSH {register_list} 

equivalent to: 

STMDB SP!, {register_list}

DB: Decrement Before

IA: Increment After



Stack Recap

16

PUSH {r3, r1, r7, r2} POP {r3, r1, r7, r2}

Pop to the smallest-

numbered register 

first.

Largest-numbered register is  

pushed first but popped last.



Calling a Subroutine

17

Caller Program Subroutine/Callee
...

   BL  foo
   ...

foo PROC
    ...
    BX    LR
EDP

foo PROC
    PUSH {LR}
    ...
    POP  {PC} ; pops LR into 
PC (returns)
EDP

Caller:  BL label (Branch and Link)

 Step 1: LR = PC + 4

 Step 2: PC = label

 label is name of subroutine

 Compiler translates label to 

memory address

 After call, LR holds return address 

(the instruction following the call)

Callee:  BX LR (Branch and Exchange) 
at end of procedure 

 PC = LR
 Return to caller by setting PC to 

LR

 Equivalently:

 PUSH {LR} at start of procedure 

 POP {PC} at end of procedure 



Caller-saved Registers vs 

Callee-saved Registers

18

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low 

Registers

High 

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

• Not saved by subroutine 

• Hold arguments/result

• Caller expects their values are retained

• Callee must save and store it if callee modifies it

Register Bank Special Registers

Caller-saved 

registers

Callee-saved 

registers

Callee-saved registers



Chapter 8 Subroutines Summary I

19

 How to call a subroutine?

 Branch with link:  BL subroutine

 How to return the control back to the caller?

 Branch and exchange:  BX LR

 How to pass arguments into a subroutine?

 Each 8-, 16- or 32-bit variables is passed via r0, r1, r2, r3

 Extra parameters are passed via stack

 How to return a value in a subroutine?

 Value is returned in r0

 How to preserve the running environment for the caller?

 On the stack



Chapter 8 Subroutines Summary II

20

 ARM Cortex-M uses full descending stack

 How to pass arguments into a subroutine?

 Each 8-, 16- or 32-bit parameter is passed via r0, r1, r2, r3

 Extra parameters are passed via the stack

 What registers should be preserved?

 Caller-saved registers vs callee-saved registers

 How to preserve the running environment for the caller?

 Via stack



Timer’s Clock

21

Current Count

Reload Value

TIMx_CNT

fCL_PSC
ISR Resume

Interrupt

Reload

TIMx_PSC

TIMx_ARR

𝑓𝐶𝐾_𝐶𝑁𝑇 =
𝑓𝐶𝐿_𝑃𝑆𝐶

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟 + 1

Prescaler

fCL_CNT

clock



PWM Duty Cycle = Ton/Time Period

22

𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 =
𝑝𝑢𝑙𝑠𝑒 𝑜𝑛 𝑡𝑖𝑚𝑒

𝑝𝑢𝑙𝑠𝑒 𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑
× 100% =

𝑇𝑜𝑛

𝑇𝑠
× 100%



23

 Timer clock frequency 𝑓𝐶𝐾_𝐶𝑁𝑇 vs. CPU Clock Frequency 𝑓𝑆𝑂𝑈𝑅𝐶𝐸 (𝑓𝐶𝐿_𝑃𝑆𝐶)

Summary of Equations

𝑓𝐶𝐾_𝐶𝑁𝑇 =
𝑓𝑆𝑂𝑈𝑅𝐶𝐸

𝑃𝑆𝐶 + 1

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 =
CCR

ARR + 1

 Timer interrupt frequency 𝑓𝑇𝑖𝑚𝑒𝑟 with up-counting or down-

counting mode:

𝑓𝑇𝑖𝑚𝑒𝑟 =
𝑓𝐶𝐾_𝐶𝑁𝑇

𝐴𝑅𝑅 + 1
;  𝑇𝑖𝑚𝑒𝑟 𝑃𝑒𝑟𝑖𝑜𝑑 =

𝐴𝑅𝑅 + 1

𝑓𝐶𝐾_𝐶𝑁𝑇
= 𝐴𝑅𝑅 + 1 ∗ 𝐶𝑙𝑜𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑

 PWM duty cycle for Mode 1 (Low-True):

 Timer interrupt frequency 𝑓𝑇𝑖𝑚𝑒𝑟 with center-aligned counting 

mode:

 PWM duty cycle for Mode 2 (High-True):

𝐷𝑢𝑡𝑦 𝐶𝑦𝑐𝑙𝑒 = 1 −
CCR

ARR + 1

𝑓𝑇𝑖𝑚𝑒𝑟 =
𝑓𝐶𝐾_𝐶𝑁𝑇

2 ∗ 𝐴𝑅𝑅
; 𝑇𝑖𝑚𝑒𝑟 𝑃𝑒𝑟𝑖𝑜𝑑 = 2 ∗ 𝐴𝑅𝑅 ∗ 𝐶𝑙𝑜𝑐𝑘 𝑃𝑒𝑟𝑖𝑜𝑑


	Slide 1: Z. Gu
	Slide 2: Data Representation
	Slide 3: Signed Integers Method 3: Two’s Complement
	Slide 4: Adding two integers
	Slide 5: Basic Assembly Programming
	Slide 6: Barrel Shifter: Explanations
	Slide 7: Load/Store a Byte, Halfword, Word
	Slide 8: ARM Load Store Summary
	Slide 9: Character String
	Slide 10: Condition Flags
	Slide 11: Carry and Overflow Flags w/ Arithmetic Instructions
	Slide 12: Link Register (LR)
	Slide 13: Passing Arguments and Returning Value
	Slide 14: Callee Saved Registers vs  Caller Saved Registers
	Slide 15: Full Descending Stack
	Slide 16: Stack Recap
	Slide 17: Calling a Subroutine
	Slide 18: Caller-saved Registers vs  Callee-saved Registers
	Slide 19: Chapter 8 Subroutines Summary I
	Slide 20: Chapter 8 Subroutines Summary II
	Slide 21: Timer’s Clock
	Slide 22: PWM Duty Cycle = Ton/Time Period
	Slide 23: Summary of Equations

