
Z. Gu

Fall 2025

Why Learn Assembly Languages

1 Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

2

IEEE Spectrum’s Top

Programming

Languages 2022

https://spectrum.ieee.org/top-

programming-languages-2022

https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022

Assembly: Not just another language

3

 Assembly vs high level languages (HLLs).

 Most embedded systems are programmed in HLLs

 Assembly disadvantages

 difficult to develop, read, and maintain

 bug prone

 not portable

 However, assembly isn’t “just another

language”.

 Interface between hardware and software

 Implements high-level languages

Hardware

Machine Language

Assembly Language

High-Level Language

Assembly: Learn how processors work

4

 Learn about the inner workings of a processor

 Data representation

 Registers

 Computer arithmetic

 Memory addressing

 Instruction set

 I/O

 Provide background knowledge for later courses

 computer architecture,

 operating systems,

 compiler

Assembly: Faster and smaller

 Assembly program runs faster than HLLs.

 Performance critical codes must be written in
assembly.

 Use profiling tools to find the performance bottleneck
and rewrite that code section in assembly

 Latency-sensitive applications, such as aircraft controller

 Some C compilers do not use some special Thumb
instructions, such as ROR (Rotate Right) and RRX (Rotate
Right Extended).

 Cost-sensitive applications
 Assembly consumes little memory

 Embedded devices, where the size of code is limited,
wash machine controller, automobile controllers

5

brilliant.org

Assembly: The only choice sometimes

6

 Hardware/processor specific code,
 Special instructions not supported by a compiler

 CPSID I ; Disable IRQ by setting PRIMASK

 CPSIE I ; Enable IRQ by clearing PRIMASK

 MSR/MSR ; Read/write to special registers

 WFI ; Enter low-power & wait for interrupt

// Enable Interrupts
__attribute__((always_inline))
static inline void __enable_irq(void)
{
 __asm("cpsie i");
}

// Disable Interrupts
__attribute__((always_inline))
static inline void __disable_irq(void)
{
 __asm("cpsid i");
}

cmsis_armcc.h

Assembly: The only choice sometimes

7

 Hardware/processor specific code,
 Special instructions not supported by a compiler

 CPSID I ; Disable IRQ by setting PRIMASK

 CPSIE I ; Enable IRQ by clearing PRIMASK

 MSR/MSR ; Read/write to special registers

 WFI ; Enter low-power & wait for interrupt

 Startup Code

 the stack and heap areas

 interrupt vector table

 default implementation of ISRs

 written in assembly, and possible in C with inline
assembly

 C version is toolchain dependent

...
Stack_Size EQU 0x400;
 AREA STACK,NOINIT,READWRITE,ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp

Heap_Size EQU 0x200;
 AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit

__Vectors
 DCD __initial_sp ; Top of Stack
 DCD Reset_Handler ; Reset Handler
 DCD NMI_Handler ; NMI Handler
 DCD HardFault_Handler ; Hard Fault Handler
 DCD MemManage_Handler ; MPU Fault Handler
 DCD BusFault_Handler ; Bus Fault Handler
 DCD UsageFault_Handler ; Usage Fault Handler
 ...

startup_stm32l476xx.s

Assembly: The only choice sometimes

8

 Hardware/processor specific code,
 Special instructions not supported by a compiler

 CPSID I ; Disable IRQ by setting PRIMASK

 CPSIE I ; Enable IRQ by clearing PRIMASK

 MSR/MRS ; Read/write to special registers
 WFI ; Enter low-power & wait for interrupt

 Startup code
 the stack and heap areas

 interrupt vector table

 default implementation of ISRs

 written in assembly, and possible in C with inline
assembly

 C version is toolchain dependent

 Device driver
 access machine-dependent registers and I/O

 control exact code behavior in critical sections

static inline u8 __raw_readb(const volatile
void __iomem *addr) {
 u8 val;
 asm volatile("ldrb %0, %1"
 : "=r" (val)
 : "Qo" (*(volatile u8 __force *)addr));
 return val;
}

static inline void __raw_writeb(u8 val,
volatile void __iomem *addr) {
 asm volatile("strb %1, %0"
 : : "Qo" (*(volatile u8 __force *)addr),
 "r" (val));
}

Linux 5.6, /arch/arm/include/asm/io.h

Assembly: Help you write better HLLs

9

 Help you understand and write HLLs better

 Low-level data representation

 C Pointers

 Reference & dereference

 Passing parameters to functions:

 Pass by reference

 Pass by value

 Variables declared as volatile or static

 Inefficiency of recursive function: stack operations

*p += 100

LDR r0, =p
LDR r1, [r0]
ADD r1, r1, #100
STR r1, [r0]

int* pi;
int volatile* pvi;
int* volatile vpi;

Frame for caller

Frame for factorial(5)

Frame for factorial(4)

Frame for factorial(3)

Frame for factorial(2)

Frame for factorial(1)

Stack grows in

recursive phase

Stack shrinks in

regression phase

Assembly: Help you write better HLLs

10

uint32_t x = 1;
int32_t y = -1;

if (x > y)
 printf("Of course.")
else
 printf("Something is wrong!");

compiling main.c...
linking...
Program Size: Code=640 RO-data=424 RW-data=8 ZI-data=5472
FromELF: creating hex file...
".\Objects\project.axf" - 0 Error(s), 0 Warning(s).
Build Time Elapsed: 00:00:01

Output:
Something is wrong!

CMP r0, r1
BLS else ; Branch on Unsigned Lower than or Same

r0 = 0x00000001 ; x = 1
r1 = 0xFFFFFFFF ; y = -1

The C standard dictates that when a signed integer and an
unsigned integer of the same size are compared, the signed
integer is converted to an unsigned integer, hence
0xFFFFFFFF=2^32-1=4,294,967,295 (UINT_MAX), instead of -1

Assembly: Help you write better HLLs

11

uint32_t x = 1;
int32_t y = -1;

if ((int32_t) x > y)
 printf("Of course.")
else
 printf("Something is wrong!");

Assembly: Help you write better HLLs

12

x = x + 3;

x = 1;

What is the final value of x?

x = x + 5;

A B

Assembly: Help you write better HLLs

13

x = x + 3;

x = 1;

x = 4, 6, 9;

x = x + 5;

A B

Assembly: Help you write better HLLs

14

LWR r0, =x
LWR r1, [r0]
ADD r1, r1, #3
STR r1, [r0]

x = 1;

x = 4, 6, 9;

A

LWR r2, =x
LWR r3, [r2]
ADD r3, r3, #5
STR r3, [r2]

B

Assembly: Help you write better HLLs

15

x = 1;

x = 9

A

LWR r2, =x
LWR r3, [r2]
ADD r3, r3, #5
STR r3, [r2]

LWR r0, =x
LWR r1, [r0]
ADD r1, r1, #3
STR r1, [r0]

B

x = 4

x = 9

STR r1, [r0]

Assembly: Help you write better HLLs

16

x = 1;

x = 4

A

LWR r2, =x
LWR r3, [r2]
ADD r3, r3, #5
STR r3, [r2]

LWR r0, =x
LWR r1, [r0]
ADD r1, r1, #3

B

x = 4

x = 6

STR r3, [r2]

Assembly: Help you write better HLLs

17

x = 1;

x = 6

A

LWR r0, =x
LWR r1, [r0]
ADD r1, r1, #3
STR r1, [r0]

LWR r2, =x
LWR r3, [r2]
ADD r3, r3, #5

B

x = 4

x = 6

Why should we learn Assembly?

 Assembly isn’t “just another language”.

 Help you understand how does the processor work

 Assembly program runs faster than high-level language.

 Performance critical codes may need to be written in assembly.

 Use the profiling tools to find the performance bottle and rewrite that code section in assembly

 Latency-sensitive applications, such as aircraft controller

 Standard C compilers do not use some operations available on ARM processors, such ROR (Rotate Right) and
RRX (Rotate Right Extended).

 Hardware/processor specific code,

 Processor booting code

 Device drivers

 Compiler, assembler, linker

 A test-and-set atomic assembly instruction can be used to implement locks and semaphores.

 Cost-sensitive applications

 Embedded devices, where the size of code is limited, wash machine controller, automobile controllers

 Better understand high-level programming languages

18

Recap: Why Learn Assembly?

19

 Gain insights about what is under

the hood of a processor

 Assembly should be used for

performance critical sessions

 Assembly must be used for

processor-dependent instructions

that are not supported by

compilers

 Understanding assembly helps us

write better HLLs

www.andysinger.com

References

20

 The Untold Story of Assembly

 https://www.youtube.com/watch?v=2RM5HTpdSqY

https://www.youtube.com/watch?v=2RM5HTpdSqY
https://www.youtube.com/watch?v=2RM5HTpdSqY
https://www.youtube.com/watch?v=2RM5HTpdSqY

	Slide 1: Z. Gu
	Slide 2: IEEE Spectrum’s Top Programming Languages 2022
	Slide 3: Assembly: Not just another language
	Slide 4: Assembly: Learn how processors work
	Slide 5: Assembly: Faster and smaller
	Slide 6: Assembly: The only choice sometimes
	Slide 7: Assembly: The only choice sometimes
	Slide 8: Assembly: The only choice sometimes
	Slide 9: Assembly: Help you write better HLLs
	Slide 10: Assembly: Help you write better HLLs
	Slide 11: Assembly: Help you write better HLLs
	Slide 12: Assembly: Help you write better HLLs
	Slide 13: Assembly: Help you write better HLLs
	Slide 14: Assembly: Help you write better HLLs
	Slide 15: Assembly: Help you write better HLLs
	Slide 16: Assembly: Help you write better HLLs
	Slide 17: Assembly: Help you write better HLLs
	Slide 18: Why should we learn Assembly?
	Slide 19: Recap: Why Learn Assembly?
	Slide 20: References

