Why Learn Assembly Languages

Z. Gu

Fall 2025

| Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Top Programming Languages 2022

Click a button to see a differently weighted ranking

[EEE Spectrum’s Top
Programming
Languages 2022

Co++ 88 .58

Cit 86.99

. Java 70.22
https://spectrum.ieee.org/top- o a7 37

programming-languages-2022 J—— 4048

=

HTML .97
TypeScript 16.99
Go 13.@6
PHP

Shell

=

(%] B
~ e
b

[

-\.‘]

Ruby

Scala 8.71

Matlab 8.7
SAS IR

Assembly

Kotlin [SprgN

Rust -
;__i __ Perl -

https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022

Assembly: Not just another language

» Assembly vs high level languages (HLLs).
» Most embedded systems are programmed in HLLs
» Assembly disadvantages
difficult to develop, read, and maintain High-Level Language
bug prone

Assembly Language
not portable A

Machine Language

» However, assembly isn’t “just another

» Hardware
language”.

» Interface between hardware and software

» Implements high-level languages

Assembly: Learn how processors work

» Learn about the inner workings of a processor

» Data representation
Central
i Processing Instruction
4 Reglsters Unit (CPU) struct Memory
. . nsirucuon
» Computer arithmetic - Data
Control Unit
i —» Add
» Memory addressing nstruction ress
» Instruction set medel TSWUS Nemory
Arithmetic & 1’0
} I/O Lﬂgic Unit Data Memﬂr‘.‘f Periphemls
(ALU) Address o | Address
Result/ | Data
. Operands
» Provide background knowledge for later courses _ Data oo
Registers |-= o " a
. emo
» computer architecture, i
- Address
» operating systems, Data

» compiler

Assembly: Faster and smaller

» Assembly program runs faster than HLLs.

» Performance critical codes must be written in
assembily.

» Use profiling tools to find the performance bottleneck
and rewrite that code section in assembly

» Latency-sensitive applications, such as aircraft controller

» Some C compilers do not use some special Thumb
instructions, such as ROR (Rotate Right) and RRX (Rotate
Right Extended).

» Cost-sensitive applications brliant.rg
» Assembly consumes little memory

» Embedded devices, where the size of code is limited,
wash machine controller, automobile controllers

Assembly: The only choice sometimes

» Hardware/processor specific code,
» Special instructions not supported by a compiler

CPSID I ; Disable IRQ by setting PRIMASK
CPSIE I ; Enable IRQ by clearing PRIMASK
MSR/MSR ; Read/write to special registers
WFI ; Enter low-power & wait for interrupt

// Enable Interrupts

__attribute_ ((always inline))

static inline void __ _enable_irq(void)

{
¥

// Disable Interrupts

__asm("cpsie i");

__attribute_ ((always_inline))

static inline void _ disable_irq(void)

{
}

__asm("cpsid i");

cmsis_armcc.h

Assembly: The only choice sometimes

» Hardware/processor specific code, Stack_Size EQU @x400;
AREA STACK,NOINIT,READWRITE,ALIGN=3
Stack _Mem SPACE Stack_Size
__initial_sp

Heap Size EQU ©x200;
AREA HEAP, NOINIT, READWRITE, ALIGN=3

__heap_base
» Startup Code Heap_Mem SPACE Heap_Size
the stack and heap areas __heap_limit
interrupt vector table
)) __Vectors
default implementation of ISRs DCD _ initial sp . Top of Stack
written in assembly, and possible in C with inline DCD Reset_Handler ; Reset Handler
assembly DCD NMI_Handler ; NMI Handler
C version is toolchain dependent DCD HardFault_Handler ; Hard Fault Handler

DCD MemManage Handler ; MPU Fault Handler
DCD BusFault Handler ; Bus Fault Handler
DCD UsageFault Handler ; Usage Fault Handler

startup_stm321476xx.s

Assembly: The only choice sometimes

» Hardware/processor specific code,
static inline u8 __ raw_readb(const volatile
void _ iomem *addr) {

u8 val;
asm volatile("1ldrb %6, %1"

"=p" (val)

"Qo" (*(volatile u8 __ force *)addr));
return val;

}

static inline void _ raw_writeb(u8 val,
volatile void _ iomem *addr) {
asm volatile("strb %1, %0"
"Qo" (*(volatile u8 _ force *)addr),

» Device driver "r" (val));
access machine-dependent registers and 1/O
control exact code behavior in critical sections Linux 5.6, /arch/arm/include/asm/io.h

Assembly: Help you write better HLLs

» Help you understand and write HLLs better
» Low-level data representation
» C Pointers

Reference & dereference

» Passing parameters to functions: int* pi;
int volatile* pvi;
int* volatile vpi;

Pass by reference

Pass by value
» Variables declared as volatile or static

» Inefficiency of recursive function: stack operations

Stack grows in
recursive phase

*p += 100

y

A 4

P
<

Frame for caller
Frame for factorial(5)
Frame for factorial(4)
Frame for factorial(3)

Frame for factorial(2)

Frame for factorial(l)

Stack shrinks in
regression phase

Assembly: Help you write better HLLs

uint32_t x = 1; Output: |

int32 t vy : Something is wrong!

if (x > y) re = 0x00000001 ; x =1
rl = OXFFFFFFFF ; y = -1

printf("0f course.™)
else
printf("Something is wrong!");

CMP ro, ril

BLS else ; Branch on Lower than or Same

compiling main.c...

linking...

Program Size: Code=640 RO-data=424 RW-data=8 ZI-data=5472
FromELF: creating hex file...

".\Objects\project.axf" - @ Error(s), @ Warning(s).

Build Time Elapsed: ©0:00:01
The C standard dictates that when a signed integer and an

unsigned integer of the same size are compared, the signed
___ integer is converted to an unsigned integer, hence
» 10 OXFFFFFFFF=2732-1=4,294,967,295 (UINT_MAX), instead of -1

Assembly: Help you write better HLLs

uint32 t x
int32 t vy

if ((int32_

printf("0f course.™)
else
printf("Something is wrong!");

Assembly: Help you write better HLLs

Assembly: Help you write better HLLs

Assembly: Help you write better HLLs

Assembly: Help you write better HLLs

Assembly: Help you write better HLLs

Assembly: Help you write better HLLs

Why should we learn Assembly?

» Assembly isn’t “just another language”.
» Help you understand how does the processor work
» Assembly program runs faster than high-level language.
Performance critical codes may need to be written in assembly.
Use the profiling tools to find the performance bottle and rewrite that code section in assembly
Latency-sensitive applications, such as aircraft controller

v Vv Vv Vv

Standard C compilers do not use some operations available on ARM processors, such ROR (Rotate Right) and
RRX (Rotate Right Extended).

» Hardware/processor specific code,
Processor booting code

4

» Device drivers

» Compiler, assembler, linker
4

A test-and-set atomic assembly instruction can be used to implement locks and semaphores.
» Cost-sensitive applications
» Embedded devices, where the size of code is limited, wash machine controller, automobile controllers

» Better understand high-level programming languages

Recap: Why Learn Assembly?

NO EXIT © Andy Singer

» Gain insights about what is under
the hood of a processor

» Assembly should be used for
performance critical sessions

» Assembly must be used for
processor-dependent instructions
that are not supported by
compilers

» Understanding assembly helps us
write better HLLs

References

» The Untold Story of Assembly
» https://www.youtube.com/watch?v=2RM5HTpdSqY

https://www.youtube.com/watch?v=2RM5HTpdSqY
https://www.youtube.com/watch?v=2RM5HTpdSqY
https://www.youtube.com/watch?v=2RM5HTpdSqY

	Slide 1: Z. Gu
	Slide 2: IEEE Spectrum’s Top Programming Languages 2022
	Slide 3: Assembly: Not just another language
	Slide 4: Assembly: Learn how processors work
	Slide 5: Assembly: Faster and smaller
	Slide 6: Assembly: The only choice sometimes
	Slide 7: Assembly: The only choice sometimes
	Slide 8: Assembly: The only choice sometimes
	Slide 9: Assembly: Help you write better HLLs
	Slide 10: Assembly: Help you write better HLLs
	Slide 11: Assembly: Help you write better HLLs
	Slide 12: Assembly: Help you write better HLLs
	Slide 13: Assembly: Help you write better HLLs
	Slide 14: Assembly: Help you write better HLLs
	Slide 15: Assembly: Help you write better HLLs
	Slide 16: Assembly: Help you write better HLLs
	Slide 17: Assembly: Help you write better HLLs
	Slide 18: Why should we learn Assembly?
	Slide 19: Recap: Why Learn Assembly?
	Slide 20: References

