

P
ag

e1

CSC111 Assembly Language Programming

Fall 2025 Midterm Exam

Student Name: ID： _s

Total

Points

Note: This exam paper should be kept confidential and any dissemination violates copyright.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

/10 /10 /20 /10 /10 /10 /20 /10

(In all the problems, the system is assumed to be 32-bit unless specified otherwise.)

Q1 Multiple-choice questions: enter your answer keys here:

1 2 3 4 5 6 7 8 9 10

For the following multiple-choice questions, each question has exactly one correct answer key. If multiple

choices are correct, choose the option “All of the above”. Fill in the answer keys in the table above.

(Answer keys written in the question area will not be counted.)

1. Which registers are general‑purpose on ARM Cortex‑M?

A. R0–R12

B. R13–R15

C. CONTROL, BASEPRI, PRIMASK

D. xPSR only

2. What are the roles of R13, R14, and R15 on ARM Cortex‑M?

A. General purpose

B. Program counter, stack pointer, and link register in that order

C. Stack pointer (R13), link register (R14), program counter (R15)

D. Interrupt mask registerse

3. On ARM Cortex-M3, the borrow and carry flags relation is:

A. Carry = Borrow

B. Carry = NOT Borrow

C. Borrow always 0

D. Carry always 0

4. In two’s complement, TC(x) can be obtained by:

A. Invert bits

B. Invert bits and subtract one

C. Invert bits and add one

D. Add one then invert bits

P
ag

e2

5. In a 5-bit system, which statement is true about −16 (10000₂)?

A. Its two’s complement is 00000₂

B. Its two’s complement is itself

C. It cannot be represented

D. It equals +16

6. What is the bit width of each register in ARM Cortex-M processors?

A) 16 bits

B) 24 bits

C) 32 bits

D) 64 bits

7. In ARM assembly instruction format, what is typically the first operand (operand1)?

A) Source register

B) Immediate value

C) Destination register

D) Memory address

8. When adding two 64-bit integers split across two registers each, which instruction pair correctly handles

the low and high halves?

A. ADC for high halves, then ADDS for low halves to set carry

B. ADC for low halves, then ADDS for high halves

C. ADDS for low halves to set carry, then ADC for high halves

D. ADD for low halves, then ADD for high halves

9. In ARM subtraction, what does the carry flag C indicate when a borrow occurs in SUBS?

A. C = 1 when there is a borrow

B. C = 0 when there is a borrow

C. C toggles regardless of borrow

D. C is always preserved from the previous instruction

10. Which single instruction multiplies a register by 17 using the barrel shifter on the second operand?

A. ADD r4, r4, r4, LSL #4

B. RSB r5, r5, r5, LSL #5

C. ADD r1, r0, r0, ASR #3

D. MUL r1, r0, #17

Q2. (10 points) Assuming a 4-bit system. Show the equivalent decimal values when the data is interpreted as

unsigned binary or signed binary.

Binary Value Signed Decimal Value Unsigned Decimal Value

1111

1011

0110

1001

0011

P
ag

e3

Q3. (20 points)

(a) (5 points) Assume an 8-bit system. Copy bits 5..3 in R4 to be the rightmost bits of R5, and set the other R5

bits to 0.

(b) (5 points) Assume an 8-bit system. Copy the bottom four bits 3..0 in R0 to bits 6..3 in R1, and keep the

other bits in R1 unchanged.

(c) (10 points) Assume R0 and R1 are initialized with the values below. Write a sequence of assembly

instructions that would produce the values in registers R2–R5, from R0 and R1.

Given:
R0 0xCAFEFADE

R1 0x00FF00FF

Produce:
R2 0xCAFFFAFF

R3 0xCAFFFA8F

R4 0xFFFFFFCA

R5 0xDEFF00FF

P
ag

e4

Q4. (10 points) Assume a 4-bit system. For each of the following operations, compute the result and NZCV

flags, based on the first row that has been given to you. s

Operation
Result in

binary

Equivalent unsigned

arithmetic in decimal

Equivalent signed arithmetic

in decimal
NZCV

1001 + 0010 1011 9 + 2 = 11 -7 + 2 = -5 1000

1101 + 1100

1101 - 1100

1100 + 1010

0100 - 0110

0100 + 0010

Q5. (10 points) For each of the following instructions (executed individually, not sequentially), compute the

result and NZCV flags. Assume initially R0=0xFFFFFFFF, R1=0x00000001.

Instruction Result in dest. register R0 NZCV
MOVS R0, #0

ANDS R0, #0

ORRS R0, R0, R1

ANDS R0, R0, R1

ADDS R0, R0, R1

SUBS R0, R0, R1

ADDS R0, R0, R1, LSL #31

BICS R0, R0, R1, LSL #31

EORS R0, R0, R1, LSL #31

LSLS R0, R0, #31

P
ag

e5

Q6. (10 points)

(a) Suppose r0 = 0x00008000, and the following memory layout:

Address Data

0x00008007 0x79

0x00008006 0xCD

0x00008005 0xA3

0x00008004 0xFD

0x00008003 0x0D

0x00008002 0xEB

0x00008001 0x2C

0x00008000 0x1A

(a1) ARM processors can be configured as big-endian or little-endian. What is the value of r1 after running

LDR r1, [r0]?

a. If little-endian, r1 = _________________________

b. If big-endian, r1= _________________________

(a2) Suppose the system is little-endian. What are the values of r1 and r0? Each instruction is executed

individually, not sequentially.

a. LDR r1,[r0,#4]

b. LDR r1,[r0],#4

c. LDR r1,[r0,#4]!

After LDR r1,[r0,#4]

r0 = _________________________

r1 = _________________________

After LDR r1,[r0],#4

r0 = _________________________

r1 = _________________________

After LDR r1,[r0,#4]!

r0 = _________________________

r1 = _________________________

(b) Assume little-endian memory ordering. Suppose r0 = 0x2000,0000 and r1 = 0x12345678. All bytes in

memory are initialized to 0x00. Fill the following table after the assembly program has finished execution.

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0]

P
ag

e6

Memory Address
Initial Memory

Content

Final Memory

Content

0x2000,0013 00

0x2000,0012 00

0x2000,0011 00

0x2000,0010 00

0x2000,000F 00

0x2000,000E 00

0x2000,000D 00

0x2000,000C 00

0x2000,000B 00

0x2000,000A 00

0x2000,0009 00

0x2000,0008 00

0x2000,0007 00

0x2000,0006 00

0x2000,0005 00

0x2000,0004 00

0x2000,0003 00

0x2000,0002 00

0x2000,0001 00

0x2000,0000 00

P
ag

e7

Q7. (20 points) Show all updates to registers as the assembly code shown below runs, assuming big-endian

ordering. (Memory addresses increase from left to right in the table.) Fill in the tables of final register values

and memory contents. Show the NZCV flags after execution, assuming NZCV=0000 initially.

Assembly program

LDR R1, =0x10000010

LDR R2, [R1]

LDR R3, [R1, #4]!

ASR R4, R2, #12

MOVW R5, #14

LSL R6, R5, #9

BIC R7, R2, R6

AND R8, R7, R6

STR R7, [R1, #8]

Initial memory contents:

0x10000010 FF EF CD AB 00 00 CD AB AA BB CC DD EE FF 11 22

Final register values:

R1 R2 R3 R4

R5 R6 R7 R8

Final memory contents:

0x10000010

Final NZCV = _________

P
ag

e8

Q8. (10 points) Consider an array[] of 25 integers (each integer is 4 bytes). Assume register R2 holds the base

memory address of array[]. A compiler associates variables x and y with registers R0 and R1, respectively.

Translate this C program into ARM assembly language based on the provided comments..

C program Assembly program

uint32_t x = array[5]

+ y;

array[6] = x * 4;

array[7] = x / 4;

array[8] = x - 10;

array[9] = x * (x - 1);

____________________________; load array[5] (with 5*4 = 20 bytes offset) into

 ; temporary register R3

____________________________; x = array[5] + y

____________________________; R3 = x * 4

____________________________; store into array[6]

____________________________; R3 = x / 4

____________________________; store into array[7]

____________________________; R3 = x – 10

____________________________; store into array[8]

____________________________; R4 = x – 1

____________________________; R3 = x * (x - 1)

____________________________; store into array[9]

P
ag

e9

Appendix. Conversion table. (You may tear off and discard this page.)

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

