

P
ag

e1

7CSC111 Assembly Language Programming

Fall 2025 Midterm Exam ANS

Student Name: ID： _

Total

Points

Note: This exam paper should be kept confidential and any dissemination violates copyright.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

/10 /10 /20 /10 /10 /10 /20 /10

(In all the problems, the system is assumed to be 32-bit unless specified otherwise.)

Q1 Multiple-choice questions: enter your answer keys here:

1 2 3 4 5 6 7 8 9 10

A C B C B C C C B A

For the following multiple-choice questions, each question has exactly one correct answer key. If multiple

choices are correct, choose the option “All of the above”. Fill in the answer keys in the table above.

(Answer keys written in the question area will not be counted.)

1. Which registers are general‑purpose on ARM Cortex‑M?

A. R0–R12

B. R13–R15

C. CONTROL, BASEPRI, PRIMASK

D. xPSR only

ANS: A

2. What are the roles of R13, R14, and R15 on ARM Cortex‑M?

A. General purpose

B. Program counter, stack pointer, and link register in that order

C. Stack pointer (R13), link register (R14), program counter (R15)

D. Interrupt mask registers

ANS: C

3. On ARM Cortex-M3, the borrow and carry flags relation is:

A. Carry = Borrow

B. Carry = NOT Borrow

C. Borrow always 0

D. Carry always 0

 ANS: B

P
ag

e2

4. In two’s complement, TC(x) can be obtained by:

A. Invert bits

B. Invert bits and subtract one
C. Invert bits and add one

D. Add one then invert bits

ANS: C

5. In a 5-bit system, which statement is true about −16 (10000₂)?

A. Its two’s complement is 00000₂

B. Its two’s complement is itself

C. It cannot be represented

D. It equals +16

ANS: B (most negative number maps to itself)

6. What is the bit width of each register in ARM Cortex-M processors?

A) 16 bits

B) 24 bits

C) 32 bits

D) 64 bits

ANS: C) 32 bits

7. In ARM assembly instruction format, what is typically the first operand (operand1)?

A) Source register

B) Immediate value

C) Destination register

D) Memory address

ANS: C) Destination register

8. When adding two 64-bit integers split across two registers each, which instruction pair correctly handles

the low and high halves?

A. ADC for high halves, then ADDS for low halves to set carry

B. ADC for low halves, then ADDS for high halves

C. ADDS for low halves to set carry, then ADC for high halves

D. ADD for low halves, then ADD for high halves

ANS: C (the order cannot be reversed)

9. In ARM subtraction, what does the carry flag C indicate when a borrow occurs in SUBS?

A. C = 1 when there is a borrow

B. C = 0 when there is a borrow

C. C toggles regardless of borrow

D. C is always preserved from the previous instruction

ANS: B (Carry equals not Borrow)

10. Which single instruction multiplies a register by 17 using the barrel shifter on the second operand?
A. ADD r4, r4, r4, LSL #4

B. RSB r5, r5, r5, LSL #5

C. ADD r1, r0, r0, ASR #3

D. MUL r1, r0, #17

ANS: A

P
ag

e3

Q2. (10 points) Assuming a 4-bit system. Show the equivalent decimal values when the data is interpreted as

unsigned binary or signed binary.

Binary Value Signed Decimal Value Unsigned Decimal Value

1111

1011

0110

1001

0011

ANS:

Binary Value Signed Decimal Value Unsigned Decimal Value

1111 -1 15

1011 -5 11

0110 6 6

1001 -7 9

0011 3 3

Q3. (20 points)

(a) (5 points) Assume an 8-bit system. Copy bits 5..3 in R4 to be the rightmost bits of R5, and set the other R5

bits to 0.

ANS:

Alternatively, compute R5 = (R4 >> 3) & 0x7 (shift right then isolate the lower 3 bits)

(b) (5 points) Assume an 8-bit system. Copy the bottom four bits 3..0 in R0 to bits 6..3 in R1, and keep the

other bits in R1 unchanged.

MOV R0, #0x38 @ build mask 00111000

Or:

MOV R0, #7 << 3 @ build mask 00111000

Or:

 MOV R0, #7 @ R0 = 00000111

 LSL R0, R0, #3 @ R0 = 00111000 (now mask is 0x38)

 AND R5, R4, R0 @ isolate bits 5..3. Or: AND R5, R4, #0x38

 LSR R5, R5, #3 @ shift them to bits 2..0

MOV R5, R4, LSR #3 @ R5 = R4 >> 3

Or:

LSR R5, R4, #3 @ R5 = R4 >> 3

AND R5, R5, #0x7 @ keep only lower 3 bits

P
ag

e4

ANS:

Or: use instruction BFI <Rd>, <Rn>, #<lsb>, #<width>

Semantics: Takes the lowest <width> bits from <Rn>. Inserts them into <Rd>, starting at bit position <lsb>.

Bits outside the range [lsb, lsb+width−1] of <Rd> remain unchanged.

(c) (10 points) Assume R0 and R1 are initialized with the values below. Write a sequence of assembly

instructions that would produce the values in registers R2–R5, from R0 and R1.

Given:
R0 0xCAFEFADE

R1 0x00FF00FF

Produce:
R2 0xCAFFFAFF

R3 0xCAFFFA8F

R4 0xFFFFFFCA

R5 0xDEFF00FF

ANS:
ORR R2, R0, R1 @ R2 = 0xCAFEFADE | 0x00FF00FF = 0xCAFFFAFF

BIC R3, R2, 0x70 @ R3 = 0xCAFFFAFF & not 01110000 = 0xCAFFFA8F

ASR R4, R0, #24 @ R4 = 0xCAFEFADE >> 24 = 0xFFFFFFCA (sign-extended)

For R5, option 1:
LSL R5, R0, #24 @ R5 = 0xCAFEFADE << 24 = 0xDE000000

ORR R5, R5, R1 @ R5 = 0xDE000000 | 0x00FF00FF = 0xDEFF00FF

For R5, option 2:
ORR R5, R1, R0, LSL #24

For R5, option 3:
MOV R5, R1 @ R5 = 0x00FF00FF

BFI R5, R0, #24, #8 @ Bit Field Insert – insert the lowest 8 bits of R0

bits [7:0] (0xDE) into bits [31:24] of R5

Note that this instruction is invalid due to constraints on the immediate value (c.f., pp. 78-80 in Ch4 ARM

Arithmetic Logic):
AND R3, R2, #0xFFFFFF8F

AND R2, R0, #0x0F ; take bits 3..0 from R0 into R2

LSL R2, R2, #3 ; move into positions 6..3 in R2

AND R1, R1, #0x87 ; clear bits 6..3 in R1 with mask 0x87 = 10000111

 ; (preserve other bits of R1)

Or:

BIC R1, R1, #0x78 ; clear bits 6..3 in R1 with mask 0x78 = 01111000

ORR R1, R1, R2 ; insert new bits

BFI R1, R0, #3, #4 ; copy 4 bits from R0 (starting at bit 0) into R1 at bit

position 3

P
ag

e5

Q4. (10 points) Assume a 4-bit system. For each of the following operations, compute the result and NZCV

flags, based on the first row that has been given to you.

Operation
Result in

binary

Equivalent unsigned

arithmetic in decimal

Equivalent signed arithmetic

in decimal
NZCV

1001 + 0010 1011 9 + 2 = 11 -7 + 2 = -5 1000

1101 + 1100

1101 - 1100

1100 + 1010

0100 - 0110

0100 + 0010

ANS: (Unsigned 4-bit range: 0 to 15, Signed 4-bit range: −8 to +7. In case of overflow, please write the actual

result after truncation to 4 bits. In this exam, you are also given credit for the ground truth result that exceeds

the range.)

Operation
Result in

binary

Equivalent unsigned arithmetic

in decimal

Equivalent signed arithmetic

in decimal
NZCV

1001 + 0010 1011 9 + 2 = 11 -7 + 2 = -5 1000

1101 + 1100 1001 13 + 12 = 9 (or 25) -3 + (-4) = -7 1010

1101 - 1100 0001 13 - 12 = 1 -3 - (-4) = 1 0010

1100 + 1010 0110 12 + 10 = 6 -4 + (-6) = 6 (or -10) 0011

0100 - 0110 1110 4 - 6 = 14 (or -2) 4 - 6 = -2 1000

0100 + 0010 0110 4 + 2 = 6 4 + 2 = 6 0000

Key Explanations:

1101 + 1100: Result wraps to 1001. Carry out occurs (C=1), but no signed overflow since -3 + (-4) = -7 is

valid in 4-bit signed range.

1101 - 1100: Straightforward subtraction giving 1. No borrow needed (C=1).

1100 + 1010: Adding two negative numbers (-4 + -6 = -10) produces a positive result (+6) because -10 is

outside the 4-bit signed range [-8, 7]. This sets overflow V=1.

0100 - 0110: Subtracting larger from smaller requires a borrow (C=0). Result is 1110 = -2 in signed, 14 in

unsigned.

0100 + 0010: Clean addition with no flags set - result is positive, non-zero, no carry, no overflow.

Q5. (10 points) For each of the following instructions (executed individually, not sequentially), compute the

result and NZCV flags. Assume initially R0=0xFFFFFFFF, R1=0x00000001, NZCV=0000.

Instruction Result in dest. register R0 NZCV
MOVS R0, #0

ANDS R0, R0, #0

ORRS R0, R0, R1

P
ag

e6

ANDS R0, R0, R1

ADDS R0, R0, R1

SUBS R0, R0, R1

ADDS R0, R0, R1, LSL #31

 s

BICS R0, R0, R1, LSL #31

EORS R0, R0, R1, LSL #31

LSLS R0, R0, #31

ANS: (Assume initially R0=0xFFFFFFFF, R1=0x00000001.)

Instruction Result in R0 NZCV Explanation

MOVS R0, #0 0x00000000 0100 Result is zero (Z=1), bit 31=0 (N=0), MOVS doesn't affect C/V

ANDS R0, R0, #0 0x00000000 0100
Any value AND 0 = 0, so Z=1, N=0, logical ops don't affect

C/V

ORRS R0, R0, R1 0xFFFFFFFF 1000
0xFFFFFFFF | 0x00000001 = 0xFFFFFFFF, bit 31=1 (N=1),

non-zero (Z=0)

ANDS R0, R0, R1 0x00000001 0000
0xFFFFFFFF & 0x00000001 = 0x00000001, bit 31=0 (N=0),

non-zero (Z=0)

ADDS R0, R0, R1 0x00000000 0110
0xFFFFFFFF + 0x00000001 = 0 with carry out (C=1), Z=1, no

overflow

SUBS R0, R0, R1 0xFFFFFFFE 1010
0xFFFFFFFF - 0x00000001 = 0xFFFFFFFE, N=1, no borrow

(C=1)

ADDS R0, R0, R1,

LSL #31
0x7FFFFFFF 0011

R1<<31=0x80000000;

0xFFFFFFFF+0x80000000=0x7FFFFFFF; Overflow! (V=1),

Carry (C=1)
BICS R0, R0, R1,

LSL #31
0x7FFFFFFF 0000 R0 & ~(0x80000000) = 0x7FFFFFFF, clears bit 31, N=0, Z=0

EORS R0, R0, R1,

LSL #31
0x7FFFFFFF 0000

0xFFFFFFFF ^ 0x80000000 = 0x7FFFFFFF, flips bit 31, N=0,

Z=0
LSLS R0, R0, #31 0x80000000 1010 0xFFFFFFFF<<31=0x80000000, N=1, last bit out was 1 (C=1)

Key Explanations:

1) ADDS R0, R0, R1, LSL #31 causes signed overflow (V=1) when adding two negative numbers

that produce a positive result

2) BICS R0, R0, R1, LSL #31 and EORS R0, R0, R1, LSL #31 both produce 0x7FFFFFFF

by clearing/flipping bit 31

3) LSLS R0, R0, #31 he carry flag C receives the last bit shifted out, which for a shift of 31 is the

original bit 1, which is 1.

Q6. (10 points)

(a) Suppose r0 = 0x00008000, and the following memory layout:

Address Data

0x00008007 0x79

P
ag

e7

0x00008006 0xCD

0x00008005 0xA3

0x00008004 0xFD

0x00008003 0x0D

0x00008002 0xEB

0x00008001 0x2C

0x00008000 0x1A

(a1) (3 points) ARM processors can be configured as big-endian or little-endian. What is the value of r1 after

running LDR r1, [r0]?

a. If little-endian, r1 = _________________________

b. If big-endian, r1= _________________________

ANS:

a. If little-endian, r1 = 0x0DEB2C1A

b. If big-endian, r1 = 0x1A2CEB0D

(a2) (3 points) Suppose the system is little-endian. What are the values of r1 and r0? Each instruction is

executed individually, not sequentially.

a. LDR r1,[r0,#4]

b. LDR r1,[r0],#4

c. LDR r1,[r0,#4]!

After LDR r1,[r0,#4]

r0 = _________________________

r1 = _________________________

After LDR r1,[r0],#4

r0 = _________________________

r1 = _________________________

After LDR r1,[r0,#4]!

r0 = _________________________

r1 = _________________________

ANS:

After LDR r1,[r0,#4]

r0 = 0x00008000

r1 = 0x79CDA3FD

After LDR r1,[r0],#4

r0 = 0x00008004

P
ag

e8

r1 = 0x0DEB2C1A

After LDR r1,[r0,#4]!

r0 = 0x00008004

r1 = 0x79CDA3FD

Explanations:

1) LDR r1, [r0, #4] — loads from r0+4 but does not change r0.

2) LDR r1, [r0], #4 — post-index; load from r0, then r0 += 4.

3) LDR r1, [r0, #4]! — pre-index; r0 += 4 then load from new r0

(b) (4 points) Assume little-endian memory ordering. Suppose r0 = 0x2000,0000 and r1 = 0x12345678. All

bytes in memory are initialized to 0x00. Fill the following table after the assembly program has finished

execution.

STR r1, [r0], #4

STR r1, [r0, #4]!

STR r1, [r0]

ANS:

Memory Address
Initial Memory

Content

Final Memory

Content

0x2000,0013 00 00

0x2000,0012 00 00

0x2000,0011 00 00

0x2000,0010 00 00

0x2000,000F 00 00

0x2000,000E 00 00

0x2000,000D 00 00

0x2000,000C 00 00

0x2000,000B 00 12

0x2000,000A 00 34

0x2000,0009 00 56

0x2000,0008 00 78

0x2000,0007 00 00

0x2000,0006 00 00

0x2000,0005 00 00

0x2000,0004 00 00

0x2000,0003 00 12

0x2000,0002 00 34

0x2000,0001 00 56

0x2000,0000 00 78

Q7. (20 points) Show all updates to registers as the assembly code shown below runs, assuming big-endian

ordering. (Memory addresses increase from left to right in the table.) Fill in the tables of final register values

and memory contents. Show the NZCV flags after execution, assuming NZCV=0000 initially.

P
ag

e9

Assembly program

LDR R1, =0x10000010

LDR R2, [R1]

LDR R3, [R1, #4]!

ASR R4, R2, #12

MOVW R5, #14

LSL R6, R5, #9

BIC R7, R2, R6

AND R8, R7, R6

STR R7, [R1, #8]

Initial memory contents:

0x10000010 FF EF CD AB 00 00 CD AB AA BB CC DD EE FF 11 22

Final register values:

R1 R2 R3 R4

R5 R6 R7 R8

Final memory contents:

0x10000010

Final NZCV = _________

ANS:

Registers

R1 0x10000014 R2 0xFFEFCDAB R3 0x0000CDAB R4 0xFFFFFEFC

R5 0x0000000E R6 0x00001C00 R7 0xFFEFC1AB R8 0x00000000

Final memory contents:

0x10000010 FF EF CD AB 00 00 CD AB AA BB CC DD FF EF C1 AB

Final NZCV = 0000

Explanations (not required for exam):

1. LDR R1, =0x10000010 → R1 = 0x10000010.

2. LDR R2, [R1] → load bytes FF EF CD AB → R2 = 0xFFEFCDAB.

3. LDR R3, [R1, #4]! → pre-index: it increments R1 to 0x10000014 before the load. Load 00 00

CD AB → R3 = 0x0000CDAB.

4. ASR R4, R2, #12 → arithmetic shift right 12 of 0xFFEFCDAB → R4 = 0xFFFFFEFC. NZCV

unchanged (assume initial NZCV = 0000). (Please refer to p. 60 “Notes on Shifts and Flags” in Ch4 ARM

Arithmetic Logic.)

1. Hypothetically, if we had ASRS instead of ASR, then ASRS R4, R2, #12 → arithmetic

shift right 12 of 0xFFEFCDAB → R4 = 0xFFFFFEFC. Flags: N=1, Z=0, C=bit11(R2)=1

(last bit shifted out is the leftmost bit of DAB), V unchanged → NZCV = 1010.

5. MOVW R5, #14 → R5 = 0x0000000E.

6. LSL R6, R5, #9 → R6 = 0x00001C00.

7. BIC R7, R2, R6 → R7 = R2 & ~R6 = 0xFFEFC1AB.

8. AND R8, R7, R6 → R8 = 0x00000000.

9. STR R7, [R1, #8] → stores at address R1 + 8 = 0x10000014 + 8 = 0x1000001C. Write

0xFFEFC1AB (big-endian bytes FF EF C1 AB) to 0x1000001C..0x1000001F.

P
ag

e1
0

Final memory (address order from 0x10000010):

• 0x10000010..0x10000013 = FF EF CD AB

• 0x10000014..0x10000017 = 00 00 CD AB

• 0x10000018..0x1000001B = AA BB CC DD (unchanged)

• 0x1000001C..0x1000001F = FF EF C1 AB (stored value)

Q8. (10 points) Consider an array[] of 25 integers (each integer is 4 bytes). Assume register R2 holds the base

memory address of array, i.e., array[0]. A compiler associates variables x and y with registers R0 and R1,

respectively. Translate this C program into ARM assembly language based on the provided comments.. (The

original problem did not specify if x is unsigned or signed integer, so both LSR and ASR are graded as correct

for computing x/4.)

C program Assembly program

uint32_t x = array[5]

+ y;

array[6] = x * 4;

array[7] = x / 4;

array[8] = x - 10;

array[9] = x * (x - 1);

____________________________; load array[5] (with 5*4 = 20 bytes offset) into

 ; temporary register R3

____________________________; x = array[5] + y

____________________________; R3 = x * 4

____________________________; store into array[6]

____________________________; R3 = x / 4

____________________________; store into array[7]

____________________________; R3 = x – 10

____________________________; store into array[8]

____________________________; R4 = x – 1

____________________________; R3 = x * (x - 1)

____________________________; store into array[9]

ANS:

C program Assembly program

uint32_t x = array[5]

+ y;

array[6] = x * 4;

array[7] = x / 4;

array[8] = x - 10;

array[9] = x * (x - 1);

LDR R3, [R2, #20] ; load array[5] (with 5*4 = 20 bytes offset) into a temp register

ADD R0, R3, R1 ; x = array[5] + y

LSL R3, R0, #2 ; R3 = x * 4.

Or:

MOV R1, #4

MUL R3, R0, R1 ; Note that MUL R3, R0, #4 is not valid syntax

STR R3, [R2, #24] ; store into array[6]

LSR R3, R0, #2 ; R3 = x / 4. Note that UDIV R3, R0, #2 is not valid syntax

STR R3, [R2, #28] ; store into array[7]

SUB R3, R0, #10 ; R3 = x - 10

STR R3, [R2, #32] ; store into array[8]

SUB R4, R0, #1 ; R4 = x - 1

P
ag

e1
1

MUL R3, R0, R4 ; R3 = x * (x - 1)

STR R3, [R2, #36] ; store into array[9]

Or:

C program Assembly program

uint32_t x = array[5]

+ y;

array[6] = x * 4;

array[7] = x / 4;

array[8] = x - 10;

array[9] = x * (x - 1);

LDR R3, [R2], #20 ; load array[5] (with 5*4 = 20 bytes offset) into a temp register

ADD R0, R3, R1 ; x = array[5] + y

LSL R3, R0, #2 ; R3 = x * 4.

STR R3, [R2], #4 ; store into array[6]

LSR R3, R0, #2 ; R3 = x / 4. Note that UDIV R3, R0, #2 is not valid syntax

STR R3, [R2], #4 ; store into array[7]

SUB R3, R0, #10 ; R3 = x - 10

STR R3, [R2], #4 ; store into array[8]

SUB R4, R0, #1 ; R4 = x - 1

MUL R3, R0, R4 ; R3 = x * (x - 1)

STR R3, [R2], #4 ; store into array[9]

P
ag

e1
2

Appendix; Conversion table. (You may tear off and discard this page.)

Decimal Binary Hex

0 0000 0x0

1 0001 0x1

2 0010 0x2

3 0011 0x3

4 0100 0x4

5 0101 0x5

6 0110 0x6

7 0111 0x7

8 1000 0x8

9 1001 0x9

10 1010 0xA

11 1011 0xB

12 1100 0xC

13 1101 0xD

14 1110 0xE

15 1111 0xF

