7CSCI111 Assembly Language Programming

Fall 2025 Midterm Exam ANS
Student Name: ID:

Total
Points

Note: This exam paper should be kept confidential and any dissemination violates copyright.

Q1 Q2 Q3 Q4 Qs Q6 Q7 Q8

/10 /10 /20 /10 /10 /10 /20 /10

(In all the problems, the system is assumed to be 32-bit unless specified otherwise.)

Q1 Multiple-choice questions: enter your answer keys here:

1 2 3 4 5 6 7 8 9 10

A C B C B C C C B A

For the following multiple-choice questions, each question has exactly one correct answer key. If multiple
choices are correct, choose the option “All of the above”. Fill in the answer keys in the table above.
(Answer keys written in the question area will not be counted.)

1. Which registers are general-purpose on ARM Cortex-M?
A.RO-R12
B. R13-R15
C. CONTROL, BASEPRI, PRIMASK
D. xPSR only
ANS: A

2. What are the roles of R13, R14, and R15 on ARM Cortex-M?
A. General purpose
B. Program counter, stack pointer, and link register in that order
C. Stack pointer (R13), link register (R14), program counter (R15)
D. Interrupt mask registers
ANS: C

3. On ARM Cortex-M3, the borrow and carry flags relation is:
A. Carry = Borrow
B. Carry = NOT Borrow
C. Borrow always 0
D. Carry always 0
ANS: B

Pagel

10.

In two’s complement, TC(x) can be obtained by:
A. Invert bits

B. Invert bits and subtract one

C. Invert bits and add one

D. Add one then invert bits

ANS: C

In a 5-bit system, which statement is true about —16 (100002)?
A. Its two’s complement is 000002

B. Its two’s complement is itself

C. It cannot be represented

D. It equals +16

ANS: B (most negative number maps to itself)

What is the bit width of each register in ARM Cortex-M processors?
A) 16 bits

B) 24 bits

C) 32 bits

D) 64 bits

ANS: C) 32 bits

In ARM assembly instruction format, what is typically the first operand (operand1)?
A) Source register

B) Immediate value

C) Destination register

D) Memory address

ANS: C) Destination register

When adding two 64-bit integers split across two registers each, which instruction pair correctly handles
the low and high halves?

A. ADC for high halves, then ADDS for low halves to set carry

B. ADC for low halves, then ADDS for high halves

C. ADDS for low halves to set carry, then ADC for high halves

D. ADD for low halves, then ADD for high halves

ANS: C (the order cannot be reversed)

In ARM subtraction, what does the carry flag C indicate when a borrow occurs in SUBS?
A. C =1 when there is a borrow

B. C =0 when there is a borrow

C. C toggles regardless of borrow

D. C is always preserved from the previous instruction

ANS: B (Carry equals not Borrow)

Which single instruction multiplies a register by 17 using the barrel shifter on the second operand?
A. ADD 4, r4,r4, LSL #4

B. RSB 15, 15, 15, LSL #5

C.ADDrl, r0, r0, ASR #3

D. MUL r1, 10, #17

ANS: A

Page2

Q2. (10 points) Assuming a 4-bit system. Show the equivalent decimal values when the data is interpreted as
unsigned binary or signed binary.

Binary Value Signed Decimal Value Unsigned Decimal Value
1111
1011
0110
1001
0011

ANS:

Binary Value Signed Decimal Value Unsigned Decimal Value
1111 -1 15
1011 -5 11
0110 6 6
1001 -7 9
0011 3 3

Q3. (20 points)
(a) (5 points) Assume an 8-bit system. Copy bits 5..3 in R4 to be the rightmost bits of RS, and set the other R5
bits to 0.

ANS:
MOV RO, #0x38 @ build mask 00111000
Or:
MOV RO, #7 << 3 @ build mask 00111000
Or:
MOV RO, #7 @ RO = 00000111
LSL RO, RO, #3 @ RO = 00111000 (now mask is 0x38)
AND R5, R4, RO @ isolate bits 5..3. Or: AND R5, R4, #0x38
LSR R5, R5, #3 @ shift them to bits 2..0

Alternatively, compute R5 = (R4 >> 3) & 0x7 (shift right then isolate the lower 3 bits)

MOV R5, R4, LSR #3 @ R5 = R4 >> 3

Or:

LSR R5, R4, #3 @ R5 = R4 >> 3

AND R5, R5, #0x7 @ keep only lower 3 bits

(b) (5 points) Assume an 8-bit system. Copy the bottom four bits 3..0 in RO to bits 6..3 in R1, and keep the
other bits in R1 unchanged.

Page3

AND R2, RO, #0xOF ; take bits 3..0 from RO into R2
LSL R2, R2, #3 ; move into positions 6..3 in R2

AND RI1, R1, #0x87 ; clear bits 6..3 in Rl with mask 0x87 = 10000111
; (preserve other bits of R1)

Or:

BIC R1, R1, #0x78 ; clear bits 6..3 in Rl with mask 0x78 = 01111000

ORR R1l, R1, R2 ; 1nsert new bits

ANS:

Or: use instruction BFI <Rd>, <Rn>, #<lIsb>, #<width>

Semantics: Takes the lowest <width> bits from <Rn>. Inserts them into <Rd>, starting at bit position <lsb>.
Bits outside the range [Isb, Isb+width—1] of <Rd> remain unchanged.

BFI R1, RO, #3, #4 ; copy 4 bits from RO (starting at bit 0) into Rl at bit
position 3

(c) (10 points) Assume RO and R1 are initialized with the values below. Write a sequence of assembly
instructions that would produce the values in registers R2—R5, from R0 and R1.

Given:
RO OxCAFEFADE
R1 O0xO00FFOOFF

Produce:

R2 OxXCAFFFAFF
R3 OxCAFFFA8F
R4 OXFFFFFFCA
R5 OxXDEFFOOFF

ANS:

ORR R2, RO, RI1 @ R2 = OxCAFEFADE | O0xO0FFOOFF = OxCAFFFAFF

BIC R3, R2, 0x70 @ R3 = OxCAFFFAFF & not 01110000 = OxCAFFFASF

ASR R4, RO, #24 @ R4 = OxCAFEFADE >> 24 = OxXFFFFFFCA (sign-extended)
For R5, option 1:

LSL R5, RO, #24 @ R5 = OxCAFEFADE << 24 = 0xDE000O0O0O

ORR R5, R5, RI1 @ R5 = 0OxDE0O0OOOOO | OxOOFFOOFF = OxDEFFOOFF

For R5, option 2:
ORR R5, R1, RO, LSL #24

For R5, option 3:

MOV R5, RI1 @ R5 = 0xO00FFOOFF

BFI R5, RO, #24, #8 @ Bit Field Insert - insert the lowest 8 bits of RO
bits [7:0] (OxDE) into bits [31:24] of R5

Note that this instruction is invalid due to constraints on the immediate value (c.f., pp. 78-80 in Ch4 ARM
Arithmetic Logic):
AND R3, R2, #OxFFFFFF8F

Pagezl

Q4. (10 points) Assume a 4-bit system. For each of the following operations, compute the result and NZCV
flags, based on the first row that has been given to you.

Operation

Result in
binary

Equivalent unsigned
arithmetic in decimal

Equivalent signed arithmetic
in decimal

NZCV

1001 + 0010

1011

9+2 =11

-7 +2=-5

1000

1101 + 1100

1101 - 1100

1100 + 1010

0100 - 0110

0100 + 0010

ANS: (Unsigned 4-bit range: 0 to 15, Signed 4-bit range: —8 to +7. In case of overflow, please write the actual
result after truncation to 4 bits. In this exam, you are also given credit for the ground truth result that exceeds

the range.)
et R[fislil;:-)i,n Equivalenti :Iés:cgillls;ilarithmetic Equivalelillt1 s(ig:ielz:liaz;rithmetic NZCV
1001 + 0010 1011 9+ 2 =11 -7+ 2 =-5 1000
1101 + 1100 1001 13 + 12 = 9 (or 25) -3 + (-4) = -7 1010
1101 - 1100 0001 13 - 12 =1 -3 - (-4) =1 0010
1100 + 1010 0110 12 + 10 = 6 -4 + (-6) = 6 (or -10) 0011
0100 - 0110 1110 4 - 6 =14 (or -2) 4 - 6 = -2 1000
0100 + 0010 0110 4 +2 =6 4 + 2 =6 0000
Key Explanations:

1101 + 1100: Result wraps to 1001. Carry out occurs (C=1), but no signed overflow since -3 + (-4) = -7 is
valid in 4-bit signed range.
1101 - 1100: Straightforward subtraction giving 1. No borrow needed (C=1).
1100 + 1010: Adding two negative numbers (-4 + -6 = -10) produces a positive result (+6) because -10 is
outside the 4-bit signed range [-8, 7]. This sets overflow V=I.
0100 - 0110: Subtracting larger from smaller requires a borrow (C=0). Result is 1110 = -2 in signed, 14 in

unsigned.

0100 + 0010: Clean addition with no flags set - result is positive, non-zero, no carry, no overflow.

Q5. (10 points) For each of the following instructions (executed individually, not sequentially), compute the
result and NZCV flags. Assume initially RO=0xFFFFFFFF, R1=0x00000001, NZCV=0000.

Instruction

Result in dest. register R0

NZCV

MOVS RO,

#0

ANDS RO,

RO, #0

ORRS RO,

RO, R1

PageES

ANDS RO, RO,

R1

ADDS RO, RO,

R1

SUBS RO, RO,

R1

ADDS RO, RO, RI,

LSL

#31

BICS RO, RO, R1,

LSL

#31

EORS RO, RO, R1,

LSL

#31

LSLS RO, RO,

#31

ANS: (Assume initially RO=0xFFFFFFFF, R1=0x00000001.)

Instruction Resultin R0 | NZCV Explanation
MOVS RO, #0 0x00000000 | 0100 | Resultis zero (Z=1), bit 31=0 (N=0), MOVS doesn't affect C/V
ANDS RO, RO, #0 000000000 | 0100 Any value AND 0 =0, so Z=Cl/;]N=O, logical ops don't affect
ORRS RO, RO, R1 OxFFFFFFFF | 1000 OxFFFFFFFF | 0x00000001 = OxFFFFFFFF, bit 31=1 (N=1),
non-zero (Z=0)
ANDS RO, RO, R1 0x00000001 | 0000 OxFFFFFFFF & 0x00000001 = 0x00000001, bit 31=0 (N=0),
non-zero (Z=0)
ADDS RO, RO, Rl 000000000 | 0110 OxFFFFFFFF + 0x00000001 = 0 with carry out (C=1), Z=1, no
overflow
SUBS RO, RO, Rl OxFFFFFFFE | 1010 OxFFFFFFFF - 0x00000001((=:£)i()FFFFFFFE, N=1, no borrow
R1<<31=0x80000000;
ADDS RO, RO, RI1, >
LS #31 Ox7FFFFFFF | 0011 OxFFFFFFFF+0x80000000=0x7FFFFFFF; Overflow! (V=1),
Carry (C=1)
BICS RO, RO, RI1, .
LST, #31 Ox7FFFFFFF | 0000 RO & ~(0x80000000) = 0x7FFFFFFF, clears bit 31, N=0, Z=0
EORS RO, RO, R1, 0xT7FFFFFFF | 0000 OxFFFFFFFF » 0x80000000 = 0x7FFFFFFF, flips bit 31, N=0,
LSL #31 7=0
LSLS RO, RO, #31 0x80000000 1010 O0xFFFFFFFF<<31=0x80000000, N=1, last bit out was 1 (C=1)
Key Explanations:

1) ADDS RO, RO, R1, LSL #31 causes signed overflow (V=1) when adding two negative numbers
that produce a positive result
2) BICS RO, RO, R1, LSL #31 and EORS RO, RO, R1, LSL #31 both produce Ox7FFFFFFF
by clearing/flipping bit 31

3) LSLS RO, RO,

original bit 1, which is 1.

#31 he carry flag C receives the last bit shifted out, which for a shift of 31 is the

(a) Suppose 10 = 0x00008000, and the following memory layout:

Q6. (10 points)
Address Data
0x00008007 | 0x79

Page6

0x00008006 | 0xCD

0x00008005 | 0xA3

0x00008004 | OxFD

0x00008003 | 0xOD

0x00008002 | OxEB

0x00008001 | 0x2C
0x00008000 | Ox1A

(al) (3 points) ARM processors can be configured as big-endian or little-endian. What is the value of r1 after
running LDR r1, [r0]?
a. Iflittle-endian, r1 =

b. If big-endian, r1=

ANS:
a. Iflittle-endian, r1 = 0OxODEB2C1A
b. Ifbig-endian, r1 = 0x1A2CEBOD

(a2) (3 points) Suppose the system is little-endian. What are the values of r1 and r0? Each instruction is
executed individually, not sequentially.

a. LDR r1,[r0,#4]

b. LDRrl,[r0]#4

c. LDRrrl,[r0,#4]!

After LDR rl,[r0,#4]

r0 =

rl =

After LDR rl1,[r0],#4

r) =

rl =

After LDR r1,[r0,#4]!

r) =

rl =

ANS:
After LDR r1,[r0,#4]
r0 = 0x00008000
rl = 0x79CDA3FD
After LDR rl1,[r0],#4
r0 = 0x00008004

Page7

rl = 0xODEB2C1A
After LDR rl,[r0,#4]!

r0 = 0x00008004

rl = 0x79CDA3FD

Explanations:

1) LDR r1l, [r0, #4] — loads from r0+4 but does not change r0.

2) LDR rl, [r0], #4— post-index;load from r0, then r0 += 4.

3) LDR rl, [r0, #4]! — pre-index; rO += 4 then load from new r0

(b) (4 points) Assume little-endian memory ordering. Suppose r0 = 0x2000,0000 and r1 = 0x12345678. All
bytes in memory are initialized to 0x00. Fill the following table after the assembly program has finished
execution.
STR rl, [r0], #4
STR 1, [r0, #4]!

STR r1, [r0]
ANS:
0x2000,0013 00 00
0x2000,0012 00 00
0x2000,0011 00 00
0x2000,0010 00 00
0x2000,000F 00 00
0x2000,000E 00 00
0x2000,000D 00 00
0x2000,000C 00 00
0x2000,000B 00 12
0x2000,000A 00 34
0x2000,0009 00 56
0x2000,0008 00 78
0x2000,0007 00 00
0x2000,0006 00 00
0x2000,0005 00 00
0x2000,0004 00 00
0x2000,0003 00 12
0x2000,0002 00 34
0x2000,0001 00 56
0x2000,0000 00 78

Q7. (20 points) Show all updates to registers as the assembly code shown below runs, assuming big-endian
ordering. (Memory addresses increase from left to right in the table.) Fill in the tables of final register values
and memory contents. Show the NZCV flags after execution, assuming NZCV=0000 initially.

Page8

Assembly program

LDR R1,=0x10000010
LDR R2,[RI]

LDR R3, [RI, #4]!
ASR R4,R2, #12
MOVW RS, #14

LSL R6,R5,#9

BIC R7,R2,R6
AND RS, R7, R6

STR R7, [RI, #8]
Initial memory contents:

| 0x10000010 | FF | EF [CD [AB [00 |00 [CD [AB [AA |BB |CC | DD | EE | FF |11 22|

Final register values:

R1 R2 R3 R4

R5 R6 R7 R8

Final memory contents:
loxio000010| | | [| [| [[[[| [o | | |

Final NZCV =

ANS:
Registers

R1 | 0x10000014 | R2 | OXFFEFCDAB | R3 | 0x0000CDAB | R4 | OxFFFFFEFC

RS | 0x0000000E | R6 [0x00001C00 R7 | OxFFEFCIAB [R8 [0x00000000

Final memory contents:
| 0x10000010 | FF [EF | CD [AB |00 |00 |CD |AB [AA [BB | CC | DD | FF|EF|C1][AB|

Final NZCV = 0000

Explanations (not required for exam):
1. LDR R1, =0x10000010 —>R1 = 0x10000010.
2. LDR R2, [R1] —loadbytes FF EF CD AB — R2 = OxFFEFCDAB.
3. LDR R3, [R1l, #4]! — pre-index: itincrements R1 to 0x10000014 before the load. Load 00 00
CD AB— R3 = 0x0000CDAB.
4. ASR R4, R2,#12 — arithmetic shift right 12 of OxFFEFCDAB — R4 = O0xFFFFFEFC. NZCV
unchanged (assume initial NZCV = 0000). (Please refer to p. 60 “Notes on Shifts and Flags” in Ch4 ARM
Arithmetic Logic.)
1. Hypothetically, if we had ASRS instead of ASR, then ASRS R4, R2, #12 — arithmetic
shift right 12 of 0OxFFEFCDAB — R4 = OxFFFFFEFC. Flags: N=1, Z=0, C=bit11(R2)=1
(last bit shifted out is the leftmost bit of DAB), V unchanged — NZCV = 1010.
MOVW R5, #14 —-R5 = 0x0000000E.
LSL R6, R5, #9—R6 = 0x00001CO00.
BIC R7, R2, R6—>R7 = R2 & ~R6 = OxFFEFCI1AB.
AND R8, R7, R6 —RS8 0x00000000.
STR R7, [R1l, #8] — storesataddressR1 + 8=0x10000014 + 8 = 0x1000001C. Write
OxFFEFC1AB (big-endian bytes FF EF C1 AB)to 0x1000001C..0x1000001F.

0O 0w

Page9

Final memory (address order from 0x10000010):

e (0x10000010..0x10000013 =FF EF
e (0x10000014..0x10000017 =00 00
e 0x10000018..0x1000001B=AA BB
e (0x1000001C..0x1000001F =FF EF

Q8. (10 points) Consider an array[] of 25 integers (each integer is 4 bytes). Assume register R2 holds the base
memory address of array, i.e., array[0]. A compiler associates variables x and y with registers RO and R1,
respectively. Translate this C program into ARM assembly language based on the provided comments.. (The
original problem did not specify if x is unsigned or signed integer, so both LSR and ASR are graded as correct

for computing x/4.)

CD AB
CD AB
cc DD (unchanged)
Cl AB (stored value)

C program

Assembly program

uint32_t x = array[5]
Ty

array[6] =x * 4;
array[7] =x/ 4;
array[8] = x - 10;
array[9] =x * (x - 1);

; temporary register R3

; X =array[5] +y

;R3=x*4

; store into array[6]

;R3=x/4

; store into array[7]

; R3=x-10

; store into array[§]

;RA=x-1

;R3=x*(x-1)

; store into array[9]

; load array[5] (with 5*4 = 20 bytes offset) into

ANS:

C program

Assembly program

uint32_t x = array[5]
Ty

array[6] = x * 4;
array[7] = x/ 4;
array[8] =x - 10;
array[9] =x * (x - 1);

LDR R3, [R2, #20]
ADD RO, R3,R1
LSL R3, RO, #2
Or:

MOV R1, #4

MUL R3, RO, R1

STR R3, [R2, #24]
LSR R3, RO, #2
STR R3, [R2, #28]
SUB R3, RO, #10
STR R3, [R2, #32]
SUB R4, RO, #1

; load array[5] (with 5*4 = 20 bytes offset) into a temp register

; x=array[5] +y
;R3I=x*4.

; Note that MUL R3, RO, #4 is not valid syntax

; store into array[6]

; R3=x/4. Note that UDIV R3, RO, #2 is not valid syntax

; store into array[7]
;R3=x-10

; store into array[8]
;RA=x-1

page 1.0

MUL R3, RO, R4 ;R3=x*(x-1)
STR R3,[R2,#36] ; store into array[9]
Or:
C program Assembly program

uint32_t x = array[5]
Ty

array[6] =x * 4;
array[7] =x/ 4;
array[8] = x - 10;
array[9] =x * (x - 1);

LDR R3, [R2], #20
ADD RO, R3, R
LSL R3, RO, #2
STR R3, [R2], #4
LSR R3, RO, #2
STR R3, [R2], #4
SUB R3, RO, #10
STR R3, [R2], #4
SUB R4, RO, #1
MUL R3, RO, R4
STR R3, [R2], #4

; load array[5] (with 5*4 = 20 bytes offset) into a temp register

; X =array[5] +y
;R3=x*4,
; store into array[6]

; R3 =x/4. Note that UDIV R3, RO, #2 is not valid syntax

; store into array[7]
;R3=x-10

; store into array[§]
;RA=x-1
;R3=x*(x-1)

; store into array[9]

page 1 1

Appendix; Conversion table. (You may tear off and discard this page.)
Decimal Binary Hex

0 0000 0x0
1 0001 ox1
2 0010 0x2
3 0011 0x3
4 0100 ox4
5 0101 0x5
6 0110 0x6
7 0111 ox7
8 1000 0x8
9 1001 0x9
10 1010 OxA
11 1011 oxB
12 1100 oxC
13 1101 oxD
14 1110 OxE
15 1111 OxF

Page 1 2

