CSC111 Final Exam Cheatsheet

Decimal, Binary and Hex

Decimal Binary Hex
(% (5[515]%) 0x0
1 Qo001 ox1
2 0010 0x2
3 0011 0x3
4 0100 ox4
5 0101 Ox5
6 0110 Ox6
7 0111 ox7
8 1000 Ox8
9 1001 0x9
10 1010 OxA
11 1011 OxB
12 1100 oxC
13 1101 oxD
14 1110 OxE
15 1111 OxF

Condition Flags

Program Status Register (PSR)

N(Z|C|V|Q|lcT|T| Reserved GE Reserved ICIAT ISR number
Negative - signed result is negative
» Negative bit
» N = 1 if most significant bit of result is 1 s N — S

» Zero bit
add op = overflow

» Z = 1 ifall bits of result are © Carry ------------- sub op doesn't borrow
» Carry bit last bit shifted out when shifting
» For unsigned addition,C = 1 if carry takes place oVerflow --- add/sub op = signed overflow
» For unsigned subtraction,C = @ (carry = not borrow) if borrow takes place
» For shift/rotation, C = last bit shifted out

» oVYerflow bit
» V = 1 if adding 2 same-signed numbers produces a result with the opposite sign
Positive + Positive = Negative, or
Negative + negative = Positive
» Non-arithmetic operations does not touchV bit, such as MOV, AND, LSL, MUL

Carry and Overflow Flags w/ Arithmetic Instructions

Carry flag C = | (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true result >
2"-1)

Carry flag C = 0 (Borrow flag = |) upon an unsigned subtraction if the answer is wrong (true
result < 0)

Overflow flagV =1 upon a signed addition or subtraction if the answer is wrong (true result > 2™!-
| or true result < -2™)

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands with
different signs; Overflow cannot occur when adding 2 operands with different signs or when
subtracting 2 operands with the same sign.

Unsigned Addition Unsigned Subtraction | Signed Addition or
Subtractlon

Carry flag true result > 2"-1 = trueresult<0 =
Carry flag=1 : Carry flag=0
Borrow flag=0 Borrow flag=1
(Result incorrect) (Result incorrect)
Overflow flag N/A N/A true result > 2™'-| or
true result < -2
= Overflow flag=1 ...

(Result incorrect)
Condition Codes

EQ EQual Z=1
NE Not Equal Z=0

CS/HS |Unsigned Higher or Same C=1

CC/LO |Unsigned LOwer C=0
MI MInus (Negative) N=1
PL PLus (Positive or Zero) N=0
VS oVerflow Set V=1
VC oVerflow Cleared V=0
HI Unsigned HIgher C=1 & Z=0
LS Unsigned Lower or Same C=0 or Z=1
GE Signed Greater or Equal N=V
LT Signed Less Than NI=V
GT Signed Greater Than Z=0 & N=V
LE Signed Less than or Equal |Z=1 or N!=V
AL ALways

» Condition Codes:

» EQ/NE:Z=1/Z=0 (Equal/Not Equal)

P LT/GE: N2V /N=V (Signed Less Than/Greater Equal)

P GT/LE:Z=0 & N=V / Z=1 or N2V (Signed Greater/Less Equal)

P LO/HS: C=0/C=1 (Unsigned Lower/Higher Same)

P HI/LS: C=1 & Z=0/ C=0 or Z=1 (Unsigned Higher/Lower Same)
P Flag Setting Instructions:

P CMP: R1-R2 (result discarded)

P TST:R1 & R2 (result discarded)

P TEQ:R1 @ R2 (result discarded)

» CMN: R1 + R2 (result discarded)

Branch Instructions

 linstruction |Description|Flagstested
(PP e B Label Branch to label
BEQ Label Branch if EQual Z=1
BNE Label Branch if Not Equal Z=20
BCS/BHS Label Branch if unsigned Higher or Same C =1
BCC/BLO Label Branch if unsigned LOwer c=29
BMI Label Branch if MInus (Negative) N=1
BPL Label Branch if PLus (Positive or Zero) N=20
Conditional BVS Label Branch if oVerflow Set V=1
Branch BVC Label Branch if oVerflow Clear V=2
BHI Label Branch if unsigned Higher C=1&Z=20
BLS Label Branch if unsigned Lower or Same C =0 or Z = 1
BGE Label Branch if signed Greater or Equal N=V
BLT Label Branch if signed Less Than N !=V
BGT Label Branch if signed Greater Than Z=0&N=YV
BLE Label Branch if signed Less than or Equal Z = 1 or N = !V

Ch16 Timer PWM Equations
Timer clock frequency frx cnr vs. CPU Clock Frequency fsource

f — fSOURCE
CKCNT ™ pSC + 1

Timer interrupt frequency f 7., With up-counting or down-
counting mode:

ARR+1
[rimer = m; Timer Period = —— = (ARR + 1) = Clock Period
ARR +1 fCK_CNT
Timer interrupt frequency f ;.. With center-aligned counting
mode: _ fex et

[rimer = > x ARR’ Timer Period = (2 * ARR) * Clock Period
PWM duty cycle for Mode | (Low-True):

CCR
Duty Cycle = ARRT 1
PWM duty cycle for Mode 2 (High-True):
CCR
Duty Cycle =1 — ARRT 1

Cortex-M3 Assembly Instructions

Instruction Operands Description and Action
ADC, ADCS {Rd,} Rn, Op2 Add with Carry, Rd < Rn + Op2 + Carry, ADCS updates N,Z,C,V
ADD, ADDS {Rd,} Rn, 0Op2 Add, Rd < Rn + Op2, ADDS updates N,Z,C,V
ADD, ADDS {Rd,} Rn, #imm12 Add Immediate, Rd <« Rn + imm12, ADDS updates N,Z,C,V
ADR Rd, label Load PC-relative Address, Rd « <label>
AND, ANDS {Rd,} Rn, Op2 Logical AND, Rd < Rn AND Op2, ANDS updates N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right, Rd < Rm>>(Rs|n), ASRS updates N,Z,C
B label Branch, PC « 1label
BFC Rd, #lsb, #width Bit Field Clear, Rd[(width+lsb-1):1sb] < ©
BFI Rd, Rn, #lsb, #width Bit Field Insert, Rd[(width+lsb-1):1sb] « Rn[(width-1):0]
BIC, BICS {Rd,} Rn, Op2 Bit Clear, Rd <« Rn AND NOT Op2, BICS updates N,Z,C
BKPT #imm Breakpoint, prefetch abort or enter debug state
Branch with Link,
BL label LR <« address of next instruction, PC « label
BLX Rm Branch register with link,
LR <« address of next instruction, PC <« Rm[31:1]
BX Rm Branch register, PC < Rm
CBNZ Rn, label Compare and Branch if Non-zero; PC « label if Rn != 0
CBZ Rn, label Compare and Branch if Zero; PC <« label if Rn ==
CLREX - Clear local processor exclusive tag
CLZ Rd, Rm Count Leading Zeroes, Rd « number of leading zeroes in Rm
CMN Rn, Op2 Compare Negative, Update N,Z,C,V flags on Rn + Op2
CMP Rn, Op2 Compare, Update N,Z,C,V flags on Rn— Op2
CPSID i Disable specified (i) interrupts, optional change mode
CPSIE i Enable specified (i) interrupts, optional change mode
DMB N Data Memory Barrier, ensure memory access order
DSB - Data Synchronization Barrier, ensure completion of access
EOR, EORS {Rd,} Rn, Op2 Exclusive OR, Rd < Rn XOR Op2, EORS updates N,Z,C
ISB - Instruction Synchronization Barrier
IT - If-Then Condition Block
LDM Rn{!}, reglist Load Multiple Registers increment after, <reglist> = mem[Rn], Rn

increments after each memory access

LDMDB, LDMEA

Rn{!}, reglist

Load Multiple Registers Decrement Before, <reglist> =
decrements before each memory access

mem[Rn], Rn

LDMFD, LDMIA

Rn{!}, reglist

<reglist> = mem[Rn], Rn increments after each memory access

LDR

Rt, [Rn, #offset]

Load Register with Word, Rt <« mem[Rn + offset]

LDRB, LDRBT Rt, [Rn, #offset] Load Register with Byte, Rt < mem[Rn + offset]

Load Register with two words,
LDRD RE, Rt2, [Rn,#offset] Rt « mgm[Rn + offset], Rt2 <« mem[Rn + offset + 4]
LDREX Rt, [Rn, #offset] Load Register Exclusive, Rt < mem[Rn + offset]
LDREXB Rt, [Rn] Load Register Exclusive with Byte, Rt « mem[Rn]
LDREXH Rt, [Rn] Load Register Exclusive with Halfword, Rt < mem[Rn]
LDRH, LDRHT Rt, [Rn, #offset] Load Register with Halfword, Rt < mem[Rn + offset]
LDRSB, LDRSBT| Rt, [Rn, #offset] Load Register with Signed Byte, Rt « mem[Rn + offset]
LDRSH, LDRSHT| Rt, [Rn, #offset] Load Register with Signed Halfword, Rt < mem[Rn + offset]
LDRT Rt, [Rn, #offset] Load Register with Word, Rt < mem[Rn + offset]
LSL, LSLS Rd, Rm, <Rs|#n> Logic Shift Left, Rd « Rm << Rs|n, LSLS update N,Z,C
LSR, LSRS Rd, Rm, <Rs|#n> Logic Shift Right, Rd < Rm >> Rs|n, LSRS update N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, Rd <« (Ra + (Rn*Rm))[31:0]
MLS Rd, Rn, Rm, Ra Multiply with Subtract, Rd < (Ra - (Rn*Rm))[31:0]
MOV, MOVS Rd, 0p2 Move, Rd « Op2, MOVS updates N,Z,C
MOVT Rd, #imml6 Move Top, Rd[31:16] < imm16, Rd[15:0] unaffected
MOVW, MOVWS Rd, #imml6 Move 16-bit Constant, Rd < imml6, MOVWS updates N,Z,C
MRS Rd, spec_reg Move from Special Register, Rd « spec_reg
MSR spec_reg, Rm Move to Special Register, spec_reg < Rm, Updates N,Z,C,V
MUL, MULS {Rd,} Rn, Rm Multiply, Rd < (Rn*Rm)[31:0], MULS updates N,Z
MVN, MVNS Rd, Op2 Move NOT, Rd < OxFFFFFFFF EOR Op2, MVNS updates N,Z,C
NOP - No Operation
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT, Rd « Rn OR NOT Op2, ORNS updates N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR, Rd <« Rn OR Op2, ORRS updates N,Z,C
POP reglist Canonical form of LDM SP!, <reglist>
PUSH reglist Canonical form of STMDB SP!, <reglist>

RBIT Rd, Rn Reverse Bits, for (i = @; i < 32; i++): Rd[i] = RN[31-i]
REV Rd. Rn Reverse Byte Order in a Word, Rd[31:24]«<Rn[7:0],

’ Rd[23:16]<—Rn[15:8], Rd[15:8]—Rn[23:16], Rd[7:0]—Rn[31:24]
REV16 Rd, Rn Reverse Byte Order in a Halfword, Rd[15:8]«Rn[7:0],

Rd[7:0]—Rn[15:8], Rd[31:24]—Rn[23:16], Rd[23:16]«Rn[31:24]

REVSH Rd. Rn Reverse Byte order in Low Halfword and sign extend,

’ Rd[15:8]<—Rn[7:0], Rd[7:0]«<Rn[15:8], Rd[31:16]—Rn[7]*&FFFF
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right, Rd < ROR(Rm, Rs|n), RORS updates N,Z,C
RRX, RRXS Rd, Rm Rotate Right with Extend, Rd < RRX(Rm), RRXS updates N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract, Rd <« Op2- Rn, RSBS updates N,Z,C,V
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry, Rd <« Rn-Op2-NOT(Carry), updates NZCV

. Signed Bit Field Extract, Rd[(width-1):0] = Rn[(width+1lsb-1):1sb],
SBFX Rd, Rn, #lsb, #width Rd?Bl:width] - Replicate(Rn[&gdth+lsbzl]g [)i1sb]
SDIV {Rd,} Rn, Rm Signed Divide, Rd < Rn/Rm
SEV - Send Event
. Signed Multiply with Accumulate,

SMLAL RdLo, RdHi, Rn, Rm Rdﬁi,RdLo «—pszgned(RdHi,RdLo + Rn*Rm)
SMULL RdLo, RdHi, Rn, Rm Signed Multiply, RdHi,RdLo < signed(Rn*Rm)
SSAT Rd, #n, Rm{,shift #s} Signed Saturate, Rd « SignedSat((Rm shift s), n). Update Q
STM Rn{!}, reglist Store Multiple Registers

STMDB, STMEA

Rn{!}, reglist

Store Multiple Registers Decrement Before

STMFD, STMIA

Rn{!}, reglist

Store Multiple Registers Increment After

STR

Rt, [Rn, #offset]

Store Register with Word, mem[Rn+offset] Rt

STRB, STRBT

Rt, [Rn, #offset]

Store Register with Byte, mem[Rn+offset] Rt

Store Register with two Words,

STRD RE, Rt, [Rn,#offset] mem[Rn+offset] = Rt, mem[Rn+offset+4] = Rt2

Store Register Exclusive, If allowed, mem[Rn + offset] < Rt, clear
STREX Rd, R, [Rn,#offset] exclusive tag, Rd «— 0. Else Rd « 1.

Store Register Exclusive Byte, mem[Rn] « Rt[15:0] or mem[Rn] «
STREXB Rd, Rt, [Rn] Rt[7:0], clear exclusive tag, Rd <« 0. Else Rd <« 1
STREXH Rd, Rt, [Rn] Store Register Exclusive Halfword, mem[Rn] <« Rt[15:0] or mem[Rn]

«— Rt[7:0], clear exclusive tag, Rd «— 0. Else Rd « 1

STRH, STRHT

Rt, [Rn, #offset]

Store Halfword, mem[Rn + offset] «— Rt[15:0]

STRT

Rt, [Rn, #offset]

Store Register with Translation, mem[Rn + offset] = Rt

SUB, SUBS {Rd,} Rn, Op2 Subtraction, Rd < Rn— Op2, SUBS updates N,Z,C,V
SUB, SUBS {Rd,} Rn, #imml2 Subtraction, Rd < Rn-imm12, SUBS updates N,Z,C,V
SVC #imm Supervisor Call
SXTB {Rd,} Rm {,ROR #n} Sign Extend Byte, Rd « SignExtend((Rm ROR (8*n))[7:0])
SXTH {Rd,} Rm {,ROR #n} Sign Extend Halfword, Rd « SignExtend((Rm ROR (8*n))[15:0])
TBB [Rn, Rm] Table Branch Byte, PC « PC+ZeroExtend(Memory(Rn+Rm,1)<<1)
Table Branch Halfword

TBH [Rn, Rm, LSL #1] PC «— PC + ZeroExtendZMemory(Rn+Rm<<1, 2)<<1)
TEQ Rn, 0p2 Test Equivalence, Update N,Z,C,V on Rn EOR Operand2
TST Rn, Op2 Test, Update N,Z,C,V on Rn AND Op2

. Unsigned Bit Field Extract, Rd[(width-1):0] = Rn[(width+1lsb-
UBFX Rd, Rn, #lsb, #width 1):1§b], RA[31:width] = Reélicgée(e))20 3
UDIV {Rd,} Rn, Rm Unsigned Divide, Rd < Rn/Rm

. Unsigned Multiply with Accumulate,
UMLAL RdLo, RdHi, Rn, Rm RdHi?RdLo - ussigned(RdHi,RdLo + Rn*Rm)
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply, RdHi,RdLo <« unsigned(Rn*Rm)
USAT Rd, #n, Rm{,shift #s} Unsigned Saturate, Rd<—UnsignedSat((Rm shift s),n), Update Q
UXTB {Rd,} Rm {,ROR #n} Unsigned Extend Byte, Rd « ZeroExtend((Rm ROR (8*n))[7:0])
Unsigned Extend Halfword,

UXTH {Rd,} Rm {,ROR #n} Rd +§ ZeroExtend((Rm ROR (8*n))[15:0])
WFE - Wait For Event
WFI - Wait for Interrupt

