Embedded Systems with ARM Cortex-M3
Microcontrollers in Assembly Language and C

Chapter 9
64-bit Data Processing

Z. Gu

Fall 2025

64-bit Addition

It uses ADDS (add with carry update) and ADC
(add with carry) instructions to compute the
64-bit result across two 32-bit parts with carry

--- propagation.

A[63:32] B[63:32] A[31:0] B[31:0]

PN

32-bit carry 32-bit
Adder ¢ Adder
#ifaz #ifﬁﬂ
C[63:32] C[31:0]

5 Adding two 64-bit integers A (rl1:r@) and B (r3:r2)
5 C(r5:r4) = A (r1:re) + B (r3:r2)
5 A = 00002222FFFFFFFF, B = 0000044400000001

LDR
LDR
LDR
LDR

; Add A and B
ADDS r4, r2, ro ; C[31:0] = A[31:0] + B[31:0], update Carry

ADC

ro,
rl,
r2,
r3,

r5,

=OXFFFFFFFF ; A’s lower 32 bits
=0Xx00002222 ; A’s upper 32 bits
=0x00000001 ; B’s lower 32 bits
=0x00000444 ; B’s upper 32 bits

r3, rl ; C[64:32] = A[64:32] + B[64:32] + Carry

64-bit Subtraction

--- subtraction.
Al63:32] B[63:32] A[31:0] B[31:0]

AR

g

It uses SUBS (subtract with carry update) and
SBC (subtract with carry) instructions with
borrow (= not Carry) to handle the two-part

32-bit barrow 32-bit
Subtractor) Subtractor
Hifaz #i’sz
C[63:32] C[31:0]

5 Subtracting two 64-bit integers A (rl:r@) and B (r3:r2).

5 C(r5:r4) = A (r1:re) - B (r3:r2)

5 A = O0000002FFFFFFFF, B = 0000000400000001
: A’s lower 32 bits

LDR r@, =@xFFFFFFFF
LDR rl, =0x00000002
LDR r2, =0x00000001
LDR r3, =0x00000004

; Subtract A from B
SUBS r4, ro, r2
SBC r5, rl, r3

J
3

°
J

; A’s upper 32 bits

B’s lower 32 bits
B’s upper 32 bits

C[31:0] = A[31:0]

C[64:32] = A[64:32] - B[64:32] + Carry - 1

- B[31:0], update Carry

64-bit Counting Leading Zeroes

; 64-bit input data = (ri:r@), rl = upper word, ro = lower word
5 r2 = # of leading zero bits in the 64-bit data

;5 Counting # of leading zeroes in upper word
CLZ r2, ri 3 CLZ = Count leading zeroes

; Counting # of leading zeroes in lower word
CMP r2, #32
CLZEQ r3, ro 5 if r2 == 32, then count leading zero

; bits of the lower word

ADDEQ r2, r2, r3 ; i1f all bits of the upper word are zero,
; add the leading zeroes of the lower word

64-bit Counting Leading Zeroes: Explanations

» Run CLZ on the upper 32 bits: CLZ r2,rl;if rl # 0, r2 already equals the 64-
bit leading-zero count since leading zeros must lie entirely in the upper half
for a nonzero upper word.

» Compare r2 with 32: CMP r2, #32; if equal, the upper word is zero, so count
lower: CLZEQ r3, rO; then ADDEQ r2,r2, r3 to add the lower’s leading zeros
for the total over 64 bits.

» Edge cases:

» If rl # 0, the lower word is ignored because the first |-bit lies in the upper word,
making r2 the final answer directly from CLZ rl.

» If rl =0and r0 # 0, the total is 32 + CLZ(r0), as there are 32 leading zeros from the
upper word plus those from the lower word until its first |-bit.

» If rl =0and r0 = 0, the total is 64; the slide’s conditional path computes r2 = 32 + 32
= 64 via CLZ on both halves.

64-bit Sign

(]

Xtension

; r@ = Lower word of 64-bit data
; rl = Upper word of 64-bit data

TST ro, 0x80000000 ;5 Check the sign bit
LDRNE rl1, =OxFFFFFFFF 3 If MSB is 1, duplicate 1 in upper word
LDREQ rl, =0x00000000 ; If MSB is O, duplicate 0 in upper word

TST (test) performs a bitwise AND between operands to test bits, updates condition
flags (notably Z and N), and discards the result. This is effectively “ANDS without
write-back,” used to check whether specific bits are set or clear before a conditional
operation.

TST r0, 0x80000000 checks the sign bit of the low 32 bits by ANDing rO with the
mask and sets condition flags without storing a result. Z=0 implies MSB=1 (negative),
Z=1 implies MSB=0 (non-negative).

LDRNE rl, =0xFFFFFFFF ; if Z=0, sign bit set MSB=1 (result non-zero — NE), set upper
32 =all Is

LDREQ rl, =0x00000000 ; if Z=1, sign bit clear MSB=0 (result zero — EQ), set upper
32 = all Os

04-bit Logic Shift Leit

Upper Word Lower Word
C |« b63 <« b32 [€&— b31 <« b0 [« O

04-bit Logic Shift Left

b61

Example of Logic Shift Left by 3

Upper Word

b35 b34 b33 b32

b32 b31 b30 b29
Upper Word of Result

b31

Lower Word

b30 b29

b0 0 0 0
Lower Word of Result

04-bit Logic Shift Left

b61 b31 b30 b29

b32 b31 b30 b29 b28 b0 Y 0 0

ri Upper Word of Result ro Lower Word of Result

» Write the assembly code

04-bit Logic Shift Left

b61

b31 b30 b29

b32 b31 b30 b29 b28 b0 Y 0 0

ri Upper Word of Result ro Lower Word of Result

» Write the assembly code
; r@ = Lower word of 64-bit data
; rl = Upper word of 64-bit data

MOV r3, re ; Backup the lower word
MOVS rl1, rl, LSL #3 ; Shift left the upper word
MOV ro, re, LSL #3 ; Shift left the lower word

ORR ri, rl, r3, LSR #29 ; upper |= lower >> (32 - 3)

64-bit Logic Shift Right

Upper Word Lower Word
0 —»| b63 > b32 ——» b31 > b0 » C
Carry

64-bit Logic Shift Right

Example of Logic Shift Right by 3

Upper Word Lower Word
b63 b62 b61 b60

b31 b30 b29 b28

b2

Carry

b34 b33 b32 b31

Upper Word of Result Lower Word of Result Carry

64-bit Logic Shift Right

ri Upper Word re Lower Word

b31 b30 b29 b28

b63 b62 b61 b60 aee b32

LSL 29 ISR 3
LSR 3 b34 b33 b32 g b2
Carry
T T 3 b33 b3z b1
ri Upper Word of Result r@ Lower Word of Result Carry

» Write the assembly code
; r@ = Lower word of 64-bit data
; rl = Upper word of 64-bit data

MOV r3, ril ; Backup the upper word
MOV rl, rl, LSR #3 ; Shift right upper wonrd
MOV r@e, ro, LSR #3 ; Shift right lower word

ORR r@, ro, r3, LSL 29 ; lower |= upper << (32 - 3)

64-bit Multiplication

5 product (r5:r4) = multiplier (ri1:ro) x

; (r5:r4) = r@ x r2 + 232 x (rl x r2
; The last item exceeds 64 bits and

UMULL r4, r5, ro, r2 ; (r5:r4)
MLA r5, rl, r2, r5 5 5 =1r5

+
MLA r5, r@, r3, r5 5 r5 =r5 +

+ ro

thus

ro
rl
ro

*

*

*

multiplicand (r3:r2)
x r3) + 264 x rl x r3

it is ignored.

r2
r2
r3

UMULL r4, r5, r0, r2 computes the 64-bit product of the low words and places the low
32 bits in r4 and the high 32 bits in r5, establishing the initial 64-bit accumulator.
MLA Multiply Accumulate: MLA Rd, Rn, Rm, Ra computes Rd = (Ra + (Rn X Rm)) mod

2732. Only the least-significant 32 bits of the sum are written to Rd; any higher bits are

discarded.

MLA r5, rl, r2 adds the cross term rl 12 (which conceptually belongs at bit position

32) into the high half r5

MLA r5, rO, r3, r5 similarly adds the other cross term r0 3 into r5, completing the
contribution of both cross terms at the correct alignment; overflow beyond 32 bits of

r5 is discarded, ignoring the 2264 «(rl r3) part.

	Slide 1: Z. Gu
	Slide 2: 64-bit Addition
	Slide 3: 64-bit Subtraction
	Slide 4: 64-bit Counting Leading Zeroes
	Slide 5: 64-bit Counting Leading Zeroes: Explanations
	Slide 6: 64-bit Sign Extension
	Slide 7: 64-bit Logic Shift Left
	Slide 8: 64-bit Logic Shift Left
	Slide 9: 64-bit Logic Shift Left
	Slide 10: 64-bit Logic Shift Left
	Slide 11: 64-bit Logic Shift Right
	Slide 12: 64-bit Logic Shift Right
	Slide 13: 64-bit Logic Shift Right
	Slide 14: 64-bit Multiplication

