
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M3

Microcontrollers in Assembly Language and C

Chapter 9

64-bit Data Processing

1

64-bit Addition

2

; Adding two 64-bit integers A (r1:r0) and B (r3:r2)

 ; C (r5:r4) = A (r1:r0) + B (r3:r2)

 ; A = 00002222FFFFFFFF, B = 0000044400000001

 LDR r0, =0xFFFFFFFF ; A’s lower 32 bits

 LDR r1, =0x00002222 ; A’s upper 32 bits

 LDR r2, =0x00000001 ; B’s lower 32 bits

 LDR r3, =0x00000444 ; B’s upper 32 bits

 ; Add A and B

 ADDS r4, r2, r0 ; C[31:0] = A[31:0] + B[31:0], update Carry

 ADC r5, r3, r1 ; C[64:32] = A[64:32] + B[64:32] + Carry

It uses ADDS (add with carry update) and ADC

(add with carry) instructions to compute the

64-bit result across two 32-bit parts with carry

propagation.

64-bit Subtraction

3

; Subtracting two 64-bit integers A (r1:r0) and B (r3:r2).

 ; C (r5:r4) = A (r1:r0) - B (r3:r2)

 ; A = 00000002FFFFFFFF, B = 0000000400000001

 LDR r0, =0xFFFFFFFF ; A’s lower 32 bits

 LDR r1, =0x00000002 ; A’s upper 32 bits

 LDR r2, =0x00000001 ; B’s lower 32 bits

 LDR r3, =0x00000004 ; B’s upper 32 bits

 ; Subtract A from B

 SUBS r4, r0, r2 ; C[31:0] = A[31:0] - B[31:0], update Carry

 SBC r5, r1, r3 ; C[64:32] = A[64:32] - B[64:32] + Carry - 1

It uses SUBS (subtract with carry update) and

SBC (subtract with carry) instructions with

borrow (= not Carry) to handle the two-part

subtraction.

64-bit Counting Leading Zeroes

4

; 64-bit input data = (r1:r0), r1 = upper word, r0 = lower word

 ; r2 = # of leading zero bits in the 64-bit data

 ; Counting # of leading zeroes in upper word

 CLZ r2, r1 ; CLZ = Count leading zeroes

 ; Counting # of leading zeroes in lower word

 CMP r2, #32

 CLZEQ r3, r0 ; if r2 == 32, then count leading zero

 ; bits of the lower word

 ADDEQ r2, r2, r3 ; if all bits of the upper word are zero,

 ; add the leading zeroes of the lower word

64-bit Counting Leading Zeroes: Explanations

5

 Run CLZ on the upper 32 bits: CLZ r2, r1; if r1 ≠ 0, r2 already equals the 64-
bit leading-zero count since leading zeros must lie entirely in the upper half
for a nonzero upper word.

 Compare r2 with 32: CMP r2, #32; if equal, the upper word is zero, so count
lower: CLZEQ r3, r0; then ADDEQ r2, r2, r3 to add the lower’s leading zeros
for the total over 64 bits.

 Edge cases:

 If r1 ≠ 0, the lower word is ignored because the first 1-bit lies in the upper word,
making r2 the final answer directly from CLZ r1.

 If r1 = 0 and r0 ≠ 0, the total is 32 + CLZ(r0), as there are 32 leading zeros from the
upper word plus those from the lower word until its first 1-bit.

 If r1 = 0 and r0 = 0, the total is 64; the slide’s conditional path computes r2 = 32 + 32
= 64 via CLZ on both halves.

64-bit Sign Extension

6

; r0 = Lower word of 64-bit data

 ; r1 = Upper word of 64-bit data

 TST r0, 0x80000000 ; Check the sign bit

 LDRNE r1, =0xFFFFFFFF ; If MSB is 1, duplicate 1 in upper word

 LDREQ r1, =0x00000000 ; If MSB is 0, duplicate 0 in upper word

TST (test) performs a bitwise AND between operands to test bits, updates condition

flags (notably Z and N), and discards the result. This is effectively “ANDS without

write-back,” used to check whether specific bits are set or clear before a conditional

operation.

TST r0, 0x80000000 checks the sign bit of the low 32 bits by ANDing r0 with the

mask and sets condition flags without storing a result. Z=0 implies MSB=1 (negative),

Z=1 implies MSB=0 (non-negative).

LDRNE r1, =0xFFFFFFFF ; if Z=0, sign bit set MSB=1(result non-zero → NE), set upper

32 = all 1s

LDREQ r1, =0x00000000 ; if Z=1, sign bit clear MSB=0 (result zero → EQ), set upper

32 = all 0s

64-bit Logic Shift Left

7

b63 b32C b31 b0 0

Upper Word Lower Word

64-bit Logic Shift Left

8

Example of Logic Shift Left by 3

64-bit Logic Shift Left

9

 Write the assembly code

r0r1

r1 r0

r1 r4

64-bit Logic Shift Left

10

 Write the assembly code

; r0 = Lower word of 64-bit data
; r1 = Upper word of 64-bit data

MOV r3, r0 ; Backup the lower word
MOVS r1, r1, LSL #3 ; Shift left the upper word
MOV r0, r0, LSL #3 ; Shift left the lower word

ORR r1, r1, r3, LSR #29 ; upper |= lower >> (32 - 3)

r0r1

r1 r0

r1 r4

64-bit Logic Shift Right

11

b63 b320 b31 b0 C

Upper Word Lower Word

Carry

64-bit Logic Shift Right

12

Example of Logic Shift Right by 3

64-bit Logic Shift Right

13

 Write the assembly code

; r0 = Lower word of 64-bit data

; r1 = Upper word of 64-bit data

MOV r3, r1 ; Backup the upper word

MOV r1, r1, LSR #3 ; Shift right upper word

MOV r0, r0, LSR #3 ; Shift right lower word

ORR r0, r0, r3, LSL 29 ; lower |= upper << (32 - 3)

r0r1

r0r1

64-bit Multiplication

14

; product (r5:r4) = multiplier (r1:r0) × multiplicand (r3:r2)

 ; (r5:r4) = r0 × r2 + 232 × (r1 × r2 + r0 × r3) + 264 × r1 × r3

 ; The last item exceeds 64 bits and thus it is ignored.

 UMULL r4, r5, r0, r2 ; (r5:r4) = r0 * r2

 MLA r5, r1, r2, r5 ; r5 = r5 + r1 * r2

 MLA r5, r0, r3, r5 ; r5 = r5 + r0 * r3

UMULL r4, r5, r0, r2 computes the 64-bit product of the low words and places the low

32 bits in r4 and the high 32 bits in r5, establishing the initial 64-bit accumulator.

MLA Multiply Accumulate: MLA Rd, Rn, Rm, Ra computes Rd = (Ra + (Rn × Rm)) mod

2^32. Only the least-significant 32 bits of the sum are written to Rd; any higher bits are

discarded.

MLA r5, r1, r2 adds the cross term r1·r2 (which conceptually belongs at bit position

32) into the high half r5

MLA r5, r0, r3, r5 similarly adds the other cross term r0·r3 into r5, completing the

contribution of both cross terms at the correct alignment; overflow beyond 32 bits of

r5 is discarded, ignoring the 2^64·(r1·r3) part.

	Slide 1: Z. Gu
	Slide 2: 64-bit Addition
	Slide 3: 64-bit Subtraction
	Slide 4: 64-bit Counting Leading Zeroes
	Slide 5: 64-bit Counting Leading Zeroes: Explanations
	Slide 6: 64-bit Sign Extension
	Slide 7: 64-bit Logic Shift Left
	Slide 8: 64-bit Logic Shift Left
	Slide 9: 64-bit Logic Shift Left
	Slide 10: 64-bit Logic Shift Left
	Slide 11: 64-bit Logic Shift Right
	Slide 12: 64-bit Logic Shift Right
	Slide 13: 64-bit Logic Shift Right
	Slide 14: 64-bit Multiplication

