
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 8

Stack and Recursive Functions

1Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Recursive Functions

2

 A recursive function is one that solves its task by
calling itself on smaller pieces of data.

 An effective tactic is to

 divide a problem into sub-problems of the same type as the

original,

 solve those sub-problems, and

 combine the results

Defining Factorial(n)

1 × 2 × 3 × … × n

factorial(0) = 1

factorial(1) = 1 = 1 × factorial(0)

factorial(2) = 2×1 = 2 × factorial(1)

factorial(3) = 3×2×1 = 3 × factorial(2)

factorial(4) = 4×3×2×1 = 4 × factorial(3)

factorial(n) = n×(n-1)×…×1 = n × factorial(n-1)

3

Product of the first n numbers

4

Classic Example: Factorial

 Factorial is the classic example:
 6! = 6  5!

 6! = 6  5 x 4!

...

 6! = 6  5  4  3  2  1

 The factorial function can be easily written as a recursive
function:

int Factorial(int n) {

 if (n < 2)
 return 1; /* base case */

 return (n * Factorial(n – 1));

}

5

Classic Example: Fibonacci Numbers

f(n) = f(n-1) + f(n-2)
f(0) = 1
f(1) = 1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, …

int Fibonacci(int n) {

 if (n <= 1)

 return 1; /* base case */

 return (Fibonacci(n-1) + Fibonacci(n-2));

}

Analysis of fib(5)
int fib(int n)

 if(n == 0 || n == 1)

 return n;

 else

 return fib(n-1) + fib(n-2);

6

fib(5)

fib(4) fib(3)

fib(3) fib(2)

fib(1) fib(0)fib(2)

fib(1) fib(0)

fib(1)

fib(2)

fib(1) fib(0)

fib(1)

1

1 1 1

1

0 0

0

1

12 1

3 2

5

Example of Recursive Function:

Testing Palindrome

7

bool isPalindrome(char* s, int len) {
 if(len < 2)
 return TRUE;
 else
 return s[0] == s[len-1] && isPalindrome(&s[1], len-2);
}

Recursion vs Iteration

Any problem that can be solved recursively can also be

solved iteratively (using loop).

Recursive functions vs Iterative functions

 Cons:

 Recursive functions are slow

 Recursive function take more memory

 Pros

 Recursive functions resembles the problem more naturally

 Recursive function are easier to program, and debug.

8

Recursive Factorial in C

factorial(5)

5 * factorial(4)

4 * factorial(3)

3 * factorial(2)

2 * factorial(1)

1

return 2

return 6

return 24

return 120

int factorial(int n);

int main(void){
 factorial(5);
 return 0;
}

int factorial(int n) {
 int f;
 if(n==1)
 return 1;
 else
 f = n * factorial(n-1);
 return f;
}

9

Recursive Functions

 PUSH LR (& working registers) onto stack before nested

call

 POP LR (& working registers) off stack after nested

return

10

11

Recursive Factorial in Assembly
AREA main, CODE, READONLY
 EXPORT __main
 ENTRY
__main PROC
 MOV r0, #0x03 ; Set argument n = 3 in r0 (r0 holds first arg)
 BL factorial ; Call factorial(n); LR gets return address;
 ; result returns in r0
stop B stop ; Halt by branching to self (infinite loop)
 ENDP

; --- Recursive factorial(n) ---
factorial
 PUSH {r4, lr} ; Save callee-used r4 and return address LR on stack
 MOV r4, r0 ; Preserve n in r4 across the recursive call
 CMP r4, #0x01 ; Check base case: n == 1 ?
 BNE NZ ; If n != 1, branch to NZ for recursive case
 MOVS r0, #0x01 ; Base case: return 1 in r0
loop POP {r4, pc} ; restore r4, and return by popping PC
NZ SUBS r0, r4, #1 ; Prepare argument r0 = n - 1 for recursive call
 BL factorial ; r0 <- factorial(n-1) after return
 MUL r0, r4, r0 ; r0 = n * factorial(n-1)
 B loop
 END

Trace Function Execution for this Call

Sequence

12

3 * factorial(2)

2 * factorial(1)

1

return 2

return 6

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

3 * factorial(2)

2 * factorial(1)

1

return 2

return 6

13

0x08000130

0x08000134

Recursive Factorial in Assembly

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

AREA main, CODE, READONLY
 EXPORT __main
 ENTRY
__main PROC
 MOV r0, #0x03 ; Set argument n = 3 in r0 (r0 holds first arg)
 BL factorial ; Call factorial(n); LR gets return address;
 ; result returns in r0
stop
 B stop ; Halt by branching to self (infinite loop)
 ENDP
; --- Recursive factorial(n) ---
factorial
 PUSH {r4, lr} ; Save callee-used r4 and return address LR on
stack
 MOV r4, r0 ; Preserve n in r4 across the recursive call
 CMP r4, #0x01 ; Check base case: n == 1 ?
 BNE NZ ; If n != 1, branch to NZ for recursive case
 MOVS r0, #0x01 ; Base case: return 1 in r0
loop
 POP {r4, pc} ; restore r4, and return by popping PC
NZ
 SUBS r0, r4, #1 ; Prepare argument r0 = n - 1 for recursive call
 BL factorial ; r0 <- factorial(n-1) after return
 MUL r0, r4, r0 ; r0 = n * factorial(n-1)
 B loop
 END14

Recursive Factorial in Assembly

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

15

0x08000130

0xFFFFFFFF

0x20000600

pc

lr

sp

Data

0x12345678

…
…

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

0

3

r4

r0

…
…

Recursive Factorial in Assembly

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Memory

1st recursive call factorial(3), with

argument r0 = 3

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

16

0x08000136

0x08000134

0x20000600

Memory

Data

0x12345678

…
…

0

3

…
…

Recursive Factorial in Assembly

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

17

0x08000138

0x08000134

0x200005F8

Memory

Data

0x08000134

0

0x12345678

…
…

3

3

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

18

0x08000144

0x08000134

0x200005F8

Memory

Data

0x08000134

0

0x12345678

…
…

3

2

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

2nd recursive call factorial(2),

with argument r0 = 2

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

19

0x08000136

0x08000148

0x200005F8

Memory

Data

0x08000134

0

0x12345678

…
…

3

2

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

20

0x08000138

0x08000148

0x200005F0

Memory

Data

0x08000134

0

0x08000148

3

0x12345678

…
…

2

2

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

21

0x08000144

0x08000148

0x200005F0

Memory

Data

0x08000134

0

0x08000148

3

0x12345678

…
…

2

1

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

3rd recursive call 2 * factorial(1)3rd recursive call factorial(1),

with argument r0 = 1

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

22

0x08000136

0x08000148

0x200005F0

Memory

Data

0x08000134

0

0x08000148

3

0x12345678

…
…

2

1

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

23

0x08000138

0x08000148

0x200005E8

Memory

Data

0x08000134

0

0x08000148

3

0x08000148

2

0x12345678

…
…

1

1

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

24

0x0800013E

0x08000148

0x200005E8

Memory

Data

0x08000134

0

0x08000148

3

0x08000148

2

0x12345678

…
…

1

1

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

Compute factorial(1)=1

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

25

0x08000148

0x08000148

0x200005F0

Memory

Data

0x08000134

0

0x08000148

3

0x12345678

…
…

2

1

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

Return from factorial(1)

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

26

0x08000148

0x08000148

0x200005F0

Memory

Data

0x08000134

0

0x08000148

3

0x12345678

…
…

2

2

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

Compute 2 * factorial(1) = 2

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

27

0x08000140

0x08000148

0x200005F0

Memory

Data

0x08000134

0

0x08000148

3

0x12345678

…
…

2

2

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

Return from factorial(2)

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

28

0x08000148

0x08000148

0x200005F8

Memory

Data

0x08000134

0

0x12345678

…
…

3

2

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

29

0x08000148

0x08000148

0x200005F8

Memory

Data

0x08000134

0

0x12345678

…
…

3

6

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

Compute 3 * factorial(2) = 6

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

30

0x08000148

0x08000148

0x200005F8

Memory

Data

0x08000134

0

0x12345678

…
…

3

6

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

Return from factorial(3)

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

31

0x08000134

0x08000148

0x20000600

Memory

Data

0x12345678

…
…

0

6

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

AREA main, CODE, READONLY
 EXPORT __main

 ENTRY

__main PROC
 MOV r0, #0x03
 BL factorial
stop B stop
 ENDP

factorial
 PUSH {r4, lr}
 MOV r4, r0
 CMP r4, #0x01
 BNE NZ
 MOVS r0, #0x01
loop POP {r4, pc}
NZ SUBS r0, r4, #1
 BL factorial
 MUL r0, r4, r0
 B loop

 END

Recursive Factorial in Assembly

32

0x08000134

0x08000148

0x20000600

Memory

Data

0x12345678

…
…

0

6

…
…

0x08000130

0x08000134

0x08000136

0x08000144

0x08000148

0x08000140

0x08000142

0x08000138

0x0800013A

0x0800013C

0x0800013E

0x0800014C

Address

0x00000000

0xFFFFFFFF

0x20000600

0x200005FC

0x200005F8

0x200005F4

0x200005F0

0x200005EC

0x200005E8

0x200005E4

0x200005E0

0x200005DC

0x200005D8

0x200005D4

pc

lr

sp

r4

r0

	Slide 1: Z. Gu
	Slide 2: Recursive Functions
	Slide 3: Defining Factorial(n)
	Slide 4: Classic Example: Factorial
	Slide 5: Classic Example: Fibonacci Numbers
	Slide 6: Analysis of fib(5)
	Slide 7: Example of Recursive Function: Testing Palindrome
	Slide 8: Recursion vs Iteration
	Slide 9: Recursive Factorial in C
	Slide 10: Recursive Functions
	Slide 11: Recursive Factorial in Assembly
	Slide 12: Trace Function Execution for this Call Sequence
	Slide 13: Recursive Factorial in Assembly
	Slide 14: Recursive Factorial in Assembly
	Slide 15: Recursive Factorial in Assembly
	Slide 16: Recursive Factorial in Assembly
	Slide 17: Recursive Factorial in Assembly
	Slide 18: Recursive Factorial in Assembly
	Slide 19: Recursive Factorial in Assembly
	Slide 20: Recursive Factorial in Assembly
	Slide 21: Recursive Factorial in Assembly
	Slide 22: Recursive Factorial in Assembly
	Slide 23: Recursive Factorial in Assembly
	Slide 24: Recursive Factorial in Assembly
	Slide 25: Recursive Factorial in Assembly
	Slide 26: Recursive Factorial in Assembly
	Slide 27: Recursive Factorial in Assembly
	Slide 28: Recursive Factorial in Assembly
	Slide 29: Recursive Factorial in Assembly
	Slide 30: Recursive Factorial in Assembly
	Slide 31: Recursive Factorial in Assembly
	Slide 32: Recursive Factorial in Assembly

