Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 8
Stack and Recursive Functions

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Recursive Functions

» A recursive function is one that solves its task by
calling itself on smaller pieces of data.
» An effective tactic is to

» divide a problem into sub-problems of the same type as the
original,

» solve those sub-problems, and

» combine the results

Defining Factorial(n)

Product of the first n numbers

1 x 2 x 3 x .. xn

factorial(Q) = 1

factorial(l) =1 = 1 x factorial(0)
factorial(2) = 2x1 = 2 x factorial(1l)
factorial(3) = 3x2x1 = 3 x factorial(2)
factorial(4) = 4x3x2x1 = 4 x factorial(3)

factorial(n) = nx(n-1)x.x1 = n x factorial(n-1)

(]

Classic Example: Factorial

» Factorial is the classic example:
» 6! =6 x 5!
» 6! =6 x5 x 4!

» 6l =6 x5 x4 x 3 x2x1

» The factorial function can be easily written as a recursive
function:

int Factorial(int n) {

if (n < 2)
return 1; /* base case */

return (n * Factorial(n - 1));

Classic Example: Fibonacci Numbers

f(n) = f(n-1) + f(n-2)
f(0) =1
(1) =1

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, ..

int Fibonacci(int n) {

if (n <= 1)
return 1; /* base case */

return (Fibonacci(n-1l) + Fibonacci(n-2));

Analysis of fib(9)

int fib(int n) T
if(n =0 || n == 1)

return n; >
else

return fib(n-1) + fib(n-2);

Example of Recursive Function:
Testing Palindrome

bool isPalindrome(char* s, int len) {
if(len < 2)
return TRUE;
else
return s[@] == s[len-1] && isPalindrome(&s[1], len-2);

Recursion vs Iteration

Any problem that can be solved recursively can also be
solved iteratively (using loop).

Recursive functions vs Iterative functions
» Cons:

» Recursive functions are slow

» Recursive function take more memory
» Pros

» Recursive functions resembles the problem more naturally

» Recursive function are easier to program, and debug.

Recursive Factorial in C

int factorial(int n); factorial(5)
t 120
int main(void){ \\\re b
factorial(5); 5 * factorial(4)

return 0; \\return 24

} 4 * factorial(3)

int factorial(int n) { \\ return 6

.F o

nt 3 * factorial(2)
if(n==1)

return 1; \\ return 2
else , 2 * factorial (1)

f = n * factorial(n-1);
return f; E\\1

}

Recursive Functions

» PUSH LR (& working registers) onto stack before nested
call

» POP LR (& working registers) off stack after nested
return

Recursive Factorial in Assembly

AREA main, CODE, READONLY
EXPORT _ main

ENTRY
__main PROC
MOV ro, #0x03 ; Set argument n = 3 in r@ (re holds first arg)
BL factorial ; Call factorial(n); LR gets return address;
; result returns in ro
stop B stop ; Halt by branching to self (infinite loop)
ENDP
; --- Recursive factorial(n) ---
factorial
PUSH {r4, 1r} ; Save callee-used r4 and return address LR on stack
MOV r4d, ro ; Preserve n in r4 across the recursive call
CMP r4, #0x01 ; Check base case: n ==1"7?
BNE NZ ; If n 1= 1, branch to NZ for recursive case
MOVS ro, #0x01 ; Base case: return 1 in ro
loop POP {r4, pc} ; restore r4, and return by popping PC
NZ SUBS ro, r4, #1 ; Prepare argument r@ = n - 1 for recursive call
BL factorial ; r@ <- factorial(n-1) after return
MUL ro, r4, ro ; r@ = n * factorial(n-1)
B loop
END

Trace Function Execution for this Call
Sequence

\Netu rn 6

3 * factorial(2)

\\ return 2

2 * factorial(l)

N

Recursive Factorial in Assembly

AREA main, CODE, READONLY
EXPORT _ main

ENTRY
__main PROC return 6
MOV ro, #0x03 \\\::\\\
0x08000130 BL factorial
0x08000134| stop B stop 3 * factoria'(Z)
ENDP
\\ return 2
factorial
0x08000136 PUSH {r4, 1r} 2 * factorial(l)
PXx08000138 MOV r4, ro \
PX0800013A CMP r4, #0x01 |
0Xx0800013C BNE NZ
Ox0800013E MOVS ro, #0x01l

0x08000140| loop POP {r4, pc}
0x08000142| NZ SUBS ro, r4, #1

0x08000144 BL factorial
0x08000148 MUL ro, r4, ro
0x0800014C B loop

END

Recursive Factorial in Assembly

AREA main, CODE, READONLY

EXPORT _ main
ENTRY

__main PROC

MOV ro, #0x03

BL factorial
stop

B stop

ENDP
; --- Recursive factorial(n) ---
factorial

PUSH {r4, 1r}
stack

MOV r4, ro

CMP r4, #0x01

BNE NZ

MOVS ro, #0x01
loop

POP {r4, pc}
NZ

SUBS r@, r4, #1

BL factorial

MUL ro, rd, ro

B loop

|4 END

; Set argument n = 3 in r@ (re holds first arg)
; Call factorial(n); LR gets return address;

result returns in ro

Preserve n

: Check base

Ifnl=1,
Base case:

; Halt by branching to self (infinite loop)

; Save callee-used r4 and return address LR on

in r4 across the recursive call
case: n == 1 ?
branch to NZ for recursive case
return 1 in ro

restore r4, and return by popping PC

Prepare argument r@ = n - 1 for recursive call
re <- factorial(n-1) after return
rée = n * factorial(n-1)

Recursive Factorial in Assembly

AREA main, CODE, READONLY

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0xoe3

BL factorial €
stop

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

0x08000130

OXFFFFFFFF

0Xx20000600

{r4, 1r}
r4, ro

r4, #0x01
NZ

ro, #oxol
{r4, pc}
ro, rd, #1
factorial
ro, rd, ro
loop

It recursive call factorial(3), with

argument r0 = 3

Data
pC
1r
SP 7| ex12345678
r4
ro

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop <

0x08000136

0x08000134

0Xx20000600

{r4, 1lr} <
r4, ro

r4, #0x01
NZ

ro, #oxo1l
{r4, pc}
ro, rd, #1
factorial
ro, rd, ro
loop

pC
1r
SP 7| ex12345678
r4
ro

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop

{r4, 1r}

0x08000138

0x08000134

0Xx200005F8

r4, ro <
r4, #0x01
NZ

ro, #oxo1l
{r4, pc}
ro, rd, #1
factorial
ro, rd, ro
loop

pcC

1r

Sp

r4

ro

0x12345678

0x08000134

0

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop

{r4, 1r}
r4, ro

r4, #0x01
NZ

ro, #oxol
{r4, pc}
ro, r4, #1
factorial
ro, rd, ro
loop

0x08000144

0x08000134

0X200005F 8

with argument r0 = 2

pcC

1r

Sp

r4

ro

2" recursive call factorial(2),

0x12345678

0x08000134

0

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main
ENTRY

__main PROC
MOV ro, #0xe3
BL factorial
stop B stop
ENDP

factorial
PUSH {r4, 1lr} <
MOV r4, ro
CMP r4, #0x01
BNE NZ
MOVS ro, #0x01l
loop POP {r4, pc}
NZ SUBS re, r4, #1
BL factorial

0x08000136

MUL ro, r4, ro <
B loop

END

0x08000148

0X200005F 8

pcC

1r

Sp

r4

ro

0x12345678

0x08000134

0

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop

{r4, 1r}

0x08000138

0x08000148

0x200005F0

r4d, ro <
r4, #0x01
NZ

ro, #oxo1l
{r4, pc}
ro, rd, #1
factorial
ro, rd, ro
loop

pcC
1r
Sp —

0x12345678

0x08000134

0

0x08000148

r4

ro

3

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

AREA main, CODE, READONLY

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0xe3
BL factorial
stop B stop
ENDP

factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01
BNE NZ
MOVS ro, #0x01l
loop POP {r4, pc}
NZ SUBS re, ra4, #1
BL factorial
MUL ro, r4, ro
B loop

END

34 recursive call factorial(l),
with argument r0 = |

Data
0x08000144 | PC
0x08000148 | 1r
0x200005F0 | Sp /1 | py12345678
0x08000134
)
0x08000148
2 rd > 3
1 ro

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial

PUSH {r4, 1lr} <«

MoV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop

0x08000136

0x08000148

0Xx200005F0

r4, ro

r4, #0x01
NZ

ro, #oxo1l
{r4, pc}
ro, rd, #1
factorial

ro, r4, ro <€

loop

pcC
1r
Sp —

0x12345678

0x08000134

0

0x08000148

r4

ro

3

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

AREA main, CODE, READONLY

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop

{r4, 1r}
rid, ro <

0x08000138

0x08000148

OXx200005E8

r4, #0x01
NZ

ro, #oxo1l
{r4, pc}
ro, rd, #1
factorial
ro, rd, ro
loop

pcC
1r
Sp —

r4

0x12345678

0x08000134

0

0x08000148

3

0x08000148

ro

2

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

0x12345678

0x08000134

0

0x08000148

3

0x08000148

EXPORT _ _main 0x0800013E | PC
0x08000148 | 1r
ENTRY
OX200005E8 Sp
__main PROC
MOV ro, #0x03
BL factorial
stop B stop
ENDP
1 r4
factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01 - ro
BNE NZ
MOVS ro, #0x01 <
loop POP {r4, pc} Compute factorial(1)=1
NZ SUBS ro, r4, #1
BL factorial
MUL ro, r4, ro
B loop
END

2

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

0x12345678

0x08000134

0

0x08000148

EXPORT _ _main 0x08000148 | PC
0x08000148 | 1p
ENTRY
Ox200005F0 Sp —
__main PROC
MOV ro, #0x03
BL factorial
stop B stop
ENDP
2 r4
factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01 1 ro
BNE NZ
MOVS ro, #0x01l
loop POP {r4, pc}< Return from factorial(l)
NZ SUBS ro, r4, #1
BL factorial
MUL ro, r4, ro
B loop
END

3

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main
ENTRY
__main PROC
MOV ro, #0x03
BL factorial
stop B stop
ENDP
factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01
BNE NZ
MOVS ro, #0x01l
loop POP {r4, pc}
NZ SUBS re, r4, #1
BL factorial
MUL r@, r4d, ro €—
B loop
END

0x08000148

0x08000148

0Xx200005F0

pcC
1r
Sp —

0x12345678

0x08000134

0

0x08000148

r4

ro

Compute 2 * factorial(l) = 2

3

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main
ENTRY

__main PROC
MOV re, #0xe3

BL factorial
stop B stop
ENDP
factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01
BNE NZ

MOVS ro, #0x01l
loop POP {r4, pc} Return from factorial(2)
NZ

SUBS ro, r4, #1
BL factorial

MUL ro, r4, ro
B loop

END

0x08000140

0x08000148

0Xx200005F0

pcC
1r
Sp —

0x12345678

0x08000134

0

0x08000148

r4

ro

3

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop

{r4, 1r}
r4, ro

r4, #0x01
NZ

ro, #oxo1l
{r4, pc} <

0x08000148

0x08000148

0Xx200005F8

ro, rd, #1
factorial
ro, rd, ro
loop

pcC

1r

Sp

r4

ro

0x12345678

0x08000134

0

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main
ENTRY
__main PROC
MOV ro, #0x03
BL factorial
stop B stop
ENDP
factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01
BNE NZ
MOVS ro, #0x01l
loop POP {r4, pc}
NZ SUBS re, r4, #1
BL factorial
MUL ro, r4, ro €——
B loop
END

0x08000148

0x08000148

0X200005F 8

pcC

1r

Sp

r4

ro

Compute 3 * factorial(2) = 6

0x12345678

0x08000134

0

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main
ENTRY

__main PROC
MOV re, #0xe3

BL factorial
stop B stop
ENDP
factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01
BNE NZ

MOVS ro, #0x01l
loop POP {r4, pc} Return from factorial(3)
NZ

SUBS ro, r4, #1
BL factorial

MUL ro, r4, ro
B loop

END

0x08000148

0x08000148

0X200005F 8

pcC

1r

Sp

r4

ro

0x12345678

0x08000134

0

OXFFFFFFFF

0Xx20000600
0Xx200005FC
Ox200005F8
Ox200005F4
0X200005F0
0Xx200005EC
OXx200005E8
Ox200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

AREA main, CODE, READONLY

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

EXPORT _ main

ENTRY

__main PROC
MOV ro, #0x03
BL factorial

stop B
ENDP

factorial
PUSH
MOV
CMP
BNE
MOVS

loop POP

NZ SUBS
BL
MUL
B

END

stop

{r4, 1r}
r4, ro
r4, #o0x01
NZ

ro, #oxo1l

0x08000134

0x08000148

0x20000600

{ra, pc} <
ro, rd, #1
factorial
ro, rd, ro
loop

Data
pC
1r
SP 7| ex12345678
r4
ro

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

Recursive Factorial in Assembly

0x08000130
0x08000134

0x08000136
0x08000138
0x0800013A
0x0800013C
0x0800013E
0x08000140
0x08000142
0x08000144
0x08000148
0x0800014C

AREA main, CODE, READONLY

EXPORT _ main

0x08000134

0x08000148

0Xx20000600

ENTRY
__main PROC
MOV ro, #0x03
BL factorial
stop B stop <
ENDP
factorial
PUSH {r4, 1r}
MOV r4, ro
CMP r4, #0x01
BNE NZ
MOVS ro, #0x01l
loop POP {r4, pc}
NZ SUBS re, r4, #1
BL factorial
MUL ro, r4, ro
B loop
END

pC
1r
SP 7| ex12345678
r4
ro

OXFFFFFFFF

0Xx20000600
0Xx200005FC
0Xx200005F8
0x200005F4
0X200005F0
0Xx200005EC
OXx200005E8
0Xx200005E4
OX200005EQ
0x200005DC
0x200005D8
0x200005D4

0x00000000

	Slide 1: Z. Gu
	Slide 2: Recursive Functions
	Slide 3: Defining Factorial(n)
	Slide 4: Classic Example: Factorial
	Slide 5: Classic Example: Fibonacci Numbers
	Slide 6: Analysis of fib(5)
	Slide 7: Example of Recursive Function: Testing Palindrome
	Slide 8: Recursion vs Iteration
	Slide 9: Recursive Factorial in C
	Slide 10: Recursive Functions
	Slide 11: Recursive Factorial in Assembly
	Slide 12: Trace Function Execution for this Call Sequence
	Slide 13: Recursive Factorial in Assembly
	Slide 14: Recursive Factorial in Assembly
	Slide 15: Recursive Factorial in Assembly
	Slide 16: Recursive Factorial in Assembly
	Slide 17: Recursive Factorial in Assembly
	Slide 18: Recursive Factorial in Assembly
	Slide 19: Recursive Factorial in Assembly
	Slide 20: Recursive Factorial in Assembly
	Slide 21: Recursive Factorial in Assembly
	Slide 22: Recursive Factorial in Assembly
	Slide 23: Recursive Factorial in Assembly
	Slide 24: Recursive Factorial in Assembly
	Slide 25: Recursive Factorial in Assembly
	Slide 26: Recursive Factorial in Assembly
	Slide 27: Recursive Factorial in Assembly
	Slide 28: Recursive Factorial in Assembly
	Slide 29: Recursive Factorial in Assembly
	Slide 30: Recursive Factorial in Assembly
	Slide 31: Recursive Factorial in Assembly
	Slide 32: Recursive Factorial in Assembly

