Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 10
Preserve Environment via Stack

Z. Gu

Fall 2025

| Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Overview

» How to call a subroutine!?

» How to return the control back to the caller?
» How to pass arguments into a subroutine!?

» How to return a value in a subroutine!?

» How to preserve the running environment for the caller?

» A Last-In-First-Out memory model » Example:Tower of Hanoi

} Only a”ow to access the most 4 On|)' one diSk ma)’ be moved at a time.
recently added item » Each move consists of taking the upper disk from one
of the rods and sliding it onto another rod, on top of
» Also called the top of the stack the other disks that may already be present on that
rod.

» Key operations:

_ » No disk may be placed on top of a smaller disk.
» push (add item to stack)

» pop (remove top item from stack)

PUSH POP

¥ 13

__ -http:llen.wikipedia.orglwikilFile:Tower- of -Hanoi 4.gif - -~ - -~ ____

Typical Usage of Stack

» Why need stack!?

» Saving the original contents of processor’s registers at the
beginning a subroutine (Contents are restored at the end of a
subroutine)

» Storing local variables in a subroutine
» Passing extra arguments to a subroutine

» Saving processor’s registers upon an interrupt

Stack Growth Convention:
Ascending vs Descending

Memory Memory
Address Address
OXFFFFFFFF OXFFFFFFFF

S R

Stack grows
upwards

Stack base PUSH | POP

Stack top

Stack top

PUSH = POP Stack base

Stack grows
downwards

2
¢

0x00000000 0x00000000
Descending stack: Stack grows Ascending stack: Stack grows
towards low memory address towards high memory address

Stack Growth Convention:
Full vs Empty

Stack base Stack base
Stack
Pointer Stack top Stack Stack top
(SP) Pointer
(SP)
Full stack: SP points to the last item Empty stack: SP points to the
pushed onto the stack next free space on the stack

Cortex-M Stack

Memory

» Cortex-M uses full descending stack Address

OxFFFFFFFF

» Example:

PUSH/POP {ro,r6,r3} S

» Stack pointer (SP, aka R13)

» decremented on PUSH
SP = SP - 4 * # of registers

Stack base

Stack
» incremented on POP P?;';t)er Stack top
SP = SP + 4 * # of registers ;
PUSH— stackvgrow POP
» SP starts at 0x20000200 for STM32- downwards
Discovery by default (can be changed in
startup.s)y ’ (; W

0x00000000

U Review
Addressing Modes for Load /Store Multiple Registers

STMxx rn{!}, {register list}
LDMxx rn{!}, {register list}

» xx = |A,IB, DA, or DB.The order in which registers are listed does not matter

» For STM/LDM, the lowest-numbered register is stored/loaded at the lowest memory address.

Addressing Modes

IA Increment After STMIA, LDMIA
1B Increment Before STMIB, LDMIB
DA Decrement After STMDA, LDMDA
C0H£X¢45UmkE]>' DB Decrement Before STMDB, LDMDB

e TIA:addressis incremented by 4 after a word is loaded or stored.
e IB:addressis incremented by 4 before a word is loaded or stored.
e DA: address is decremented by 4 after a word is loaded or stored.
e DB: address is decremented by 4 before a word is loaded or stored.

Review

Store Multiple Registers Cortex-M Stack
___ @
STMxx ro@!, {r3,rli,r7,r2} STMIA STMIB STMDA STMDB
Increment After Increment Before Decrement After Decrement Before
High Memory /\/\ /\/\ /\/\ /\/\ /\/\
Addresses
ro —» ro —»| r7
r7 r3
r3 r2
r2 rl
ro —p — 5 rl — P — | r7 — >
r3 r7
r2 r3
ri r2
ro —» ro—» ri
Low Memory

Addresses \/\/ \/\/ \/\/ \/\/ \/\/

Empty Full Empty Full
Ascending Ascending Descending Descending

M

Review |1,0ad Multiple

Reglsters Cortex-M Stack
LDMxx r@!, {r3,rl,r7,r2} LDMIA LDMIB LDMDA LDMDB
Increment After Increment Before Decrement After Decrement Before
High Memory /\/\ /\/\ /\/\ /\/\ /\/\
Addresses
16 rO —p»| 16 rO —p| 16 16 16
12 12 12 12 12
8 8 8 8 8
0 —» © — > 0 — 5 0 —» @ — 3 0
-4 -4 -4 -4 -4
-8 -8 -8 -8 -8
-12 -12 -12 -12 -12
-16 -16 -16 rO —p| -16 rO —p»| -16
LowMemory \/~ \/\/ N2 2 VY V2%
Addresses
rli =20 rl =4 rl = -12 rl = -16
r2 =4 r2 =8 r2 = -8 r2 = -12
r3 8 r3 = 12 r3 = -4 r3 = -8
r7 = 12 r7 = 16 r7 = -0 r7 = -4

Full Descending Stack

High Memory Addresses

PUSH {register _list}
equivalent to:
Stack base STMDB SP!, {register_list}

DB: Decrement Before

Stack POP {register_list}
Pointer Top of Stack equivalent to:
(SP)

LDMIA SP!, {reqgister_list}

Stack grows toward
low memory

\?drew

Low Memory Addresses

IA: Increment After

Stack Implementation (red text is Cortex-M stack)

Stock Name
Equivalent

Full Descending() STMFD SP!,list

Empty Descending() STMED SP!,list
Full Ascending()

STMFA SP!,list

STMEA SP!,list

Empty Ascending()

Alternative

STMDB SP!,list

STMDA SP!,list

STMIB SP!,list

STMIA SP!,list

Equivalent

LDMFD SP!,list

LDMED SP!,list

LDMFA SP!,list

LDMEA SP!,list

Alternative

LDMIA SP!,list

LDMIB SP!,list

LDMDA SP!,list

LDMDB SP!,list

PUSH {Rd} == STMDB SP!, {Rd} == STMFD SP!, {Rd}
» SUB SP, SP, #4 @ SP = SP-4 (descending stack)
» STR Rd, [SP] @ (*SP) = Rd (full stack)

Push multiple registers
They are equivalent. ::3:: Er;::;
r
PUSH {rl1, r2, r3, r7} 4= PUSH {r7, r2, r3, ri1} <) PUSH {r2}
PUSH {ri}

* SPis decremented before PUSH (pre-decrement).

* The order in which registers listed in the register list does not matter.

* When pushing multiple registers, these registers are automatically sorted by name and the
numbered register is stored to the lowest memory address, i.e. rl is stored last.

STMDB

Decrement Before

AN

r7
r3
r2

0 —p{ ri

N 4

Full
Descending

lowest-

LDMIA
Increment After

Stack aa
'' 0 —» 16
POP {Rd} == LDMIA SP!, {Rd} == LDMFD SP!, {Rd} 12
» LDR Rd, [SP] @ Rd = (*SP) (full stack) -
» ADD SP, #4 @ SP = SP + 4 (Stack shrinks) - 0
-4
-8

. . -12

Pop multiple registers T

They are equivalent. POP {ril} \/\/

poP {ri, r2, r3, r7} 4= POP {r7, r3, r2, rl} =) Eg: E:;; :; :3

POP {r7} b

e SPis incremented after POP (post-increment).

* The order in which registers listed in the register list does not matter.

* When popping multiple registers, these registers are automatically sorted by name and the lowest-
numbered register is loaded from the lowest memory address, i.e. r| is loaded first.

Largest-numbered register is

Stack Recap pushed first but popped last.
PUSH {r3, rl, r7, r2} POP {r3, rl, r7, r2}
High Memory /\/\ /\/\ High Memory /\/\ /\/\
Addresses Addresses
16 sp—® 16
12 12
8 8
4 4
sp —P — P sp—» © — 9 0
r7 -4 -4
r3 -8 -8
r2 12 -12
sp —#= ril -16 -16
Low Memory Low Memory \/\/ \/\/

Addresses \/\/ \/\/ Addresses 1
r

=0

Full Pop to the smallest- r2 =4
Descending . r3 = 8
numbered register first. - _

Register

Cortex-M Stack ro
___ e

» PUSH {register list} r2

» POP {register list} r3

» Eligible registers for PUSH:r@ - r12, LR r4

» Eligible registers for POP: r@ - r12, LR, PC r>

» Order specified in the list does not matter re

Largest-numbered register is always pushed first and popped last r7

Smallest-numbered register is always pushed last and popped first r8

Smallest-numbered register is stored at lowest memory address after PUSH r9

r1lo

Instruction format for PUSH: r11

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 O ri12

1110 1]0 o]1 0 o[1]o]1 1 0 1]o)m]0) register_list

Example: swap R1 & R2

R1 0x11111111
R2 0x22222222

/ \ | | Address
PUSH {R1} R13 (SP) | ©x20000200 \; _________ :
PUSH {R2} | |

XXX XXXXX 0Xx20000200
PO P { R 1 } OO X Ox200001FC
P O P { R2 } XXXXX XXX Ox200001F8

- J . .

Example: swap R1 & R2

R1 0x11111111
R2 0x22222222

/ \ : : Address
rc—b pUSH {R1} R13 (SP) | @x200001FC S — :
PUSH {R2} XXXXXXXX | 0X20000200
POP {R1} Ox11111111 | Ox200001FC
POP { R2 } XXXXXXXX | OX200001F8
\ J . .
memory

PUSH {R1}

PC—p PUSH {R2}

o

POP {R1}

POP {R2}

/

Example: swap R1 & R2

R1
R2

R13 (SP)

0x11111111

0x22222222

0x200001F8

XAXXXXXX

0x11111111

0x22222222

Address

0x20000200
0x200001FC
0x200001F8

PUSH {R1}
PUSH {R2}

pc—p»POP {R1}

o

POP {R2}

/

Example: swap R1 & R2

R1
R2

R13 (SP)

0x22222222

0x22222222

0x200001FC

XAXXXXXX

0x11111111

0x22222222

Address

0x20000200
0x200001FC
0x200001F8

Example: swap R1 & R2

R1 0x22222222
R2 0x11111111

‘\\ | |

PUSH {R1} R13 (SP) | 6x20000200 \J _________
PUSH { RZ} OO XXX
POP {R1} ox11111111
pc—pPOP {R2} 0x22222222
_ J .
memory

Values of R| and R2 are swapped

Address

0x20000200
0x200001FC
0x200001F8

» Are the values of Rl and R2
swapped!

» PUSH {R1,R2}; POP {R2,RI}

» Or

» PUSH {R1, R2}; POP {R2}; POP {R 1}
» Or

» PUSH {R1}; PUSH {R2}; POP {RI,
R2)

Quiz ANS

» Are the values of Rl and R2 swapped? » PUSH {R1,R2}; POP {R2,R 1}

(not valid assembly syntax; need to put » is equivalent to
instructions on different lines, not using » PUSH {R2}; PUSH {R1}; POP{R|}; POP{R2}
, to separate them) » Values of Rl and R2 are unchanged
» PUSH {R1, R2}; POP {R2, R} » PUSH {R1, R2}; POP {R2}; POP {R 1}
» Or » is equivalent to
» PUSH {RI, R2}; POP {R2}: POP {R 1} » PUSH {R2}; PUSH {RI}; POP{R2}; POP{R |}
» Or » Values of Rl and R2 are swapped

» PUSH {RI};PUSH {R2}; POP {RI,R2} * PUSH{RI};PUSH {R2};POP {RI,R2}

» is equivalent to
» PUSH {R1}; PUSH {R2}; POP{R1}; POP{R2}
» Values of Rl and R2 are swapped

Subroutine

» A subroutines, also called a
function or a procedure,
» single-entry, single-exit
» Return to caller after it exits

» When a subroutine is called,
the Link Register (LR) holds
the return address of the
current subroutine call, i.e.,
memory address of the next
instruction to be executed
after the subroutine exits.

Low
Registers

High
Registers

32 bits
P

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

General
>’ Purpose

Register

32 bits

xPSR

BASEPRI

R13 (SP)

R13 (MSP)

R13 (PSP)

PRIMASK

R14 (LR)

R15 (PC)

FAULTMASK

CONTROL

Special
Purpose
Register

Calling a Subroutine

Caller: BL label (Branch and Link) Callee: BX LR (Branch and Exchange)
» Step I: LR = PC + 4 at end of procedure
» Step 2:PC = label » PC = LR
» label is name of subroutine » Return to caller by setting PC to LR
» Compiler translates label to memory » Equivalently:
address » PUSH {LR} at start of procedure
» After call, LR holds return address » POP {PC} at end of procedure

(the instruction following the call)

co foo PROC foo PROC
BL foo PUSH {LR}
BX LR co
EDP POP {PC} ; pops LR into
PC (returns)
e EDP____

ARM Procedure Call Standard

Register Subroutine
g Preserved
o Argument 1 and return value No If ret-urn has 64 blt.S, then rO:rl hold it. If argument | has
64 bits, rO:rl hold it.
rl Argument 2 No
r2 Argument 3 No If the return has 128 bits, r0-r3 hold it.
r3 Argument 4 No If more than 4 arguments, use the stack
r4 General-purpose V| Yes Variable register | holds a local variable.
r5 General-purpose V2 Yes Variable register 2 holds a local variable.
ré General-purpose V3 Yes Variable register 3 holds a local variable.
r7 General-purpose V4 Yes Variable register 4 holds a local variable.
r8 General-purpose V5 YES Variable register 5 holds a local variable.
r9 Platform specific/V6 Yes/No Usage is platform-dependent.
rie General-purpose V7 Yes Variable register 7 holds a local variable.
ril General-purpose V8 Yes Variable register 8 holds a local variable.
r12 (IP) |Intra-procedure-call register No It holds |nterm§d|ate values between a procedure and the
sub-procedure it calls.
ri3 (SP) | Stack pointer Yes SP has to be the same after a subroutine has completed.
r14 (LR) | Link register No LR does. not have to contain the same value after a
subroutine has completed.
rl5 (PC) |Program counter N/A Do not directly change PC

Caller-saved Registers vs
Callee-saved Registers

I 32 bits |
g R] A
Caller-saved = * Not saved by subroutine
registers = Hold arguments/result
(C | d s \
allee-save General . .
recisters R6 > Eﬁr:o:e * Caller expects their values are retained
egister
g - R7 ° * Callee must save and store it if callee modifies it
R8
e RY 32 bits
>
Registers R10
__ R11 -/ xPSR |)
k R12 _ BASEPRI _
Special
R13 (SP) R13 (MSP) R13 (PSP) PRIMASK | b= Purpose
egister
Callee-saved registers | R14 (LR) FAULTMASK °
R15 (PC) CONTROL |

» 27 Register Bank Special Registers

Embedded Application Binary Interface (EABI) Protocol
""" » Caller-saved registers:

» RO-R3:Arguments/return registers.
» RI12 (IP): Intra-procedure scratch register.
» CPSR:— caller must preserve its state if needed.

» Callee-saved registers:
» R4—RII:Must be saved/restored by the callee if used.
» RI14 (LR): Must be saved if the callee makes nested calls.
» RI3 (SP): Stack pointer — must be preserved.

» Extra parameters passed on stack:

» When more than four arguments exist.

» Return value in RO

Role Must Preserve Notes
Caller | RO-R3,R12, CPSR (if needed) Caller-saved (scratch)
Callee | R4-RII,RI13 (SP),R14 (LR) Must be saved/restored if modified
________________________ Return|RO =~~~ [Rewrnvale .= [

» Top code (not good):

» Callee foo does MOV Caller Program Subroutine/Callee

R4, #10 — this [foo PROC
overwrites whatever MOV r4, #100
the caller had in R4. MOV r4, #10 ; foo changes r4
» foo does BX LR — BL foo ...
returns to caller, and e BX LR
R4=10 after call return. ADD r4, r4, #1 ; r4 = 11 EDP
» Middle code:
Caller Program Subroutine/Callee
» Caller expects callee to foo PROC
not modify r4. MOV r4, #100 PUSH {r4} ; save caller's R4
» Callee should preserve MOV r4, #10
r4 by saving and BL foo POP {r4} ; restore caller's R4
restores R4 by PUSH e BX LR
and POP on the stack ADD r4, rd4, #1 ; r4 = 101 EDP
» Bottom code:
Caller Program Subroutine/Callee
» Callee saves and foo PROC
restores R4 by PUSH MOV r4, #100 PUSH {r4, LR} ; pushes LR before
and POP ~l
» Callee uses PUSH{LR} BL foo MOV r4, #10
and POP{PC}, POP {r4, PC} ; pops R4 before
equivalent to BX LR ADD r4, r4, #1 ; r4 = 101 LR, so now PC = LR (returns)
e] i

__main PROC

MOV R1, #0
— MOV R4, #1
Example Program s ()
BL funcl
» Caller is responsible for preserving R1. POP {R1}
. . . ADD R2, R1, R4
» Callee funcl is responsible for preserving R4 and LR. ADD R3, R2, RO
. loop B loop
» Funcl is both a callee and a caller. Here func| does ENDP
not need to preserve RO, since: funcl PROC
» We overwrite RO with “MOV RO, #2” before calling func2. PUSH {R4, LR}
We then rely on the return value in RO after func2 updates ECL)V igacgz
RO, and we do not need the old RO anymore. MOV R4, RO
. , ADD R1, RO, R4
» If funcl had needed the original value of RO (say, it POP {R4, LR}
wanted to use both the original and the returned SO
value), then it would need to preserve it by PUSH and o oo
9y unc
POP before and after “BL func2 ADD RO, RO, #1
BX LR
ENDP

Caller Program Subroutine foo Subroutine bar

#1

Nested Subroutines: What is wrong?

MOV r4, #100
BL foo

ADD r4, r4,

foo PROC
PUSH

MOV
BL
POP
BX
ENDP

{ra}
r4, #10

bar

{ra}
LR

bar PROC
BX
ENDP

LR

>

4

Caller (main function) does BL foo — LR
= return address back into the caller.

foo does PUSH {r4} (saves r4) but does
not save LR.

foo does BL bar — this instruction
overwrites LR with the return address

back into foo (i.e. the instruction after BL
bar).

bar returns (BX LR) into foo (normal),
but the original LR that pointed back to
the caller was lost.

foo does POP {r4} then BX LR — but
LR now points to the instruction inside
foo (not to the caller), so foo does not
return to the caller (main function)

Nested Subroutines: Solution #1

foo saves and restores its LR for returning to its caller, before calling bar.
(Without saving and restoring LR in foo,“BX LR” in foo will jump to instruction after
“BL bar” in foo, and program is stuck in an infinite loop within foo.)

Caller Program Subroutine foo Subroutine bar
foo PROC bar PROC
MOV r4, #100 PUSH {r4, LR} .
“o ce BX LR
BL foo MOV r4, #10 ENDP
ADD r4, r4, #1 BL bar

POP {r4, LR}
BX LR
ENDP

Nested Subroutines: Solution #2

POP {r4,PC} is equivalent to POP {r4, LR} followed by BX LR.

Caller Program Subroutine foo Subroutine bar
foo PROC bar PROC
MOV r4, #100 PUSH {r4, LR} e
.o .o BX LR
BL foo MOV r4, #10 ENDP
ADD r4, rd, #1 BL bar

POP {r4, PC}

Nested Subroutines: Solution #1

Main Program foo subroutine
PUSH {LR]
[R=PCi+4 |~ L 4 {LR} bar subroutine
: PC=foo _ ~ . [R=PC,+4
: 7 ; PCebar |- -y PUSH {LR}
-~ . -
7 d — -
PC; —f——p BLfoo ~ PC, ——— BLbar— ~ :
PCi+4 =P Next_lnstrucnon\ - PC, + 4 =—=1p Next_lnstrucnon‘\ ~L '
™ [™S - -
: RN : =R~ L
: NN ' =PC,+4 | — ~POP{PC)
' PC=LR "N
=PC,+4 | > POP{LR)
SBXLR

Subroutine Calling Another Subroutine

MATN QUAD PUSH {LR}
MOV RO, #2 BL S5Q SQ MUL RO, RO
BL QUAD ‘ BL SQ - BX LR
ENDL ... POP {LR}
BX LR
Function MAIN Function QUAD Function 3Q

Subroutine Calling Another Subroutine

QUAD PROC

MAIN PROC /
PUSH {LR}

MOV RO,#E///,/‘ 2 SQ PROC
BL QUAD BL SQ””‘r’///)? MUL RO,RO
ENDL ... ">~ BL 39’2/// —— BX LR
ENDP N“\sN\\\\\.POP (LR}eT | EDP
BX LR
Function MAIN EDP Function SQ

Function QUAD

Example: RO = RO*

-- Stack

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ

BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x20000200

0x08000138

XXXXXXXX

MOV RO,#2

BL QUAD

B ENDL

SQ

MUL RO,RO

BX LR

QUAL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

Example: RO = RO*

-- Stack

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ

BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x02

0x20000200

0x0800013C

XXXXXXXX

MOV RO,#2

BL QUAD

B ENDL

Q

MUL RO,RO

BX LR

QUAL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

Example: RO = RO*

-- Stack

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ

BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x02

XXXXXXXX

MOV RO,#2

BL QUAD

0x20000200

0x08000140

B ENDL
A MUL RO,RO

0x0800014C

BX LR

Preserve
Link Register (LR)

7

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

Example: RO = RO*

-- Stack

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ

BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x02

0x200001FC

0x08000140

S

0x08000150

Q

AN

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

MUL RO,RO

BX LR

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

S

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO,RO
BX LR

PUSH {LR}
BL SQ

BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x02

0x200001FC

0x08000154

0x08000144

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

MUL RO,RO

BX LR

QWAL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

%

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ
BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x04

0x200001FC

0x08000154

0x08000148

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

SQ

MUL RO,RO

BX LR

QWAL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

%

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ
BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x04

0x200001FC

0x08000154

0x08000154

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

SQ

MUL RO,RO

BX LR

AL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

%

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO,RO
BX LR

PUSH {LR}
BL SQ
BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x04

0x200001FC

0x08000158

0x08000144

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

MUL RO,RO

BX LR

AL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

%

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ
BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x10

0x200001FC

0x08000158

0x08000148

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

SQ

MUL RO,RO

BX LR

AL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

%

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ
BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x10

0x200001FC

0x08000158

0x08000158

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

SQ

MUL RO,RO

BX LR

AL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

%

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ
BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

XXXXXXXX

0x08000140

0x10

MOV RO,#2

BL QUAD

0x20000200

B ENDL

0x08000140

SQ

N

MUL RO,RO

0x0800015C

BX LR

Restore
Link Register (LR)

UAL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

=

xample: RO = RO*

SQ

QUAD

ENDL

MOV RO, #2
BL QUAD
B ENDL

MUL RO, RO
BX LR

PUSH {LR}
BL SQ
BL SQ
POP {LR}
BX LR

RO

SP
LR
PC

0x10

0x20000200

0x08000140

0x08000140

XXXXXXXX

0x08000140

MOV RO,#2

BL QUAD

B ENDL

MUL RO,RO

BX LR

QUAL

) PUSH {LR}

BL SQ

BL SQ

POP {LR}

BX LR

0X20000200
0x200001FC
OXx200001F8

0x08000138
0x0800013C
0x08000140
0x08000144
0x08000148
0x0800014C
0x08000150
0x08000154
0Xx08000158
0x0800015C

Stack Pointer (SP)

. 32 bits " * SPis the shadow of MSP (Main SP) or PSP (Process SP)
- = N * If there is no embedded OS, PSP is not used
= * Determined by the ASP (Active SP) bit in the CONTROL register (ASP is always
= 0 in handler mode).
= * O = MSP (default)
RegisI;::; R4 * 1 = PSP
T * Before using the stack, software has to define stack space and initialize the stack
R6 > ss:;;::a pointer (SP)
= Register ~ * | he program startup.s defines stack space and initializes SP.
R
RO _ Bit 31 - 3 2 1
High 32 bits
Registers R10 I Reserved ASP
R11 xPSR |) ,
- EASEPR] - CONTROL Register
R13 (SP) R13 (MSP) R13 (PSP) PRIMASK | » Purpose
: FAULTMASK
R15 (PC) | CONTROL
.............. RegisterBank ... Special Registers ...

Review

Passing Arguments into a Subroutine

_Ro_Q§ R1_J Rz Qg R3

32-bit 32-bit 32-bit 32-bit

Argument 1 Argument 2 Argument 3 Argument 4 Extra arguments are
pushed to the stack by
R1(msB32) RO(LSB32) R3(MsB32) R2(LsB32) the caller. The caller is
64-bit Argument 1 64-bit Argument 2 responsible to pop them
out of the stack after the
R3(MsB32) R2 R1 RO(LSB32) subroutine returns.

128-bit Argument

“ R1(msB32) RO(LSB32) R3(mMsB32) R2 R1 RO(LSB32)

32-bit Return Value 64-bit Return Value 128-bit Return Value

Review

Passing Arguments into a Subroutine

int32_t sum(intl6_t al6, intl6_t bl6, int8 t c8, int32_t d32);

BT T B O

Register RO Register R1 Register R2 Register R3

1

Return Value

Register RO

U Review
Passing 4 Arguments

int32_t sum(intl6_t al6, intl6_t bl6, int8 t ¢8, int32_t d32);

s = sum(1l, 2, 3, 4);

Caller Callee
MOVS ro, #1 ; alé6 sum PROC
MOVS rl1, #2 ; bl6 ADD ro, ro, rl1 ; al6 + bl6
MOVS r2, #3 ; c8 ADD ro, ro, r2 ; add c8
MOVS r3, #4 ; d32 ADD ro, ro, r3 ; add d32
BL sum BX LR ; return
ENDP

Version |

Passing Extra Arguments
via Stack

int32_t sum(int32_t a, int32_t b, int32_t c,
int32_t d, int32_t h, int32_t i, int32_t j,
int32_t k);

s = sum(1, 2, 3, 4, 5, 6, 7, 8);

Caller

MOVS ro, #5
MOVS rl, #6
MOVS r2, #7 Version 2
MOVS r3, #8

PUSH {r@, ril1, r2, r3}
MOVS ro, #1

MOVS rl1, #2

MOVS r2, #3

MOVS r3, #4

BL sum

POP {ro, ri, r2, r3}

sum PROC
EXPORT sum
ADD ro, ro, ril
ADD ro, ro, r2
ADD ro, ro, r3
LDRD ri1,r2, [sp]
ADD ro, ro, ril
ADD ro, ro, r2
LDRD ri1,r2, [sp,
ADD ro, ro, ril
ADD ro, ro, r2
BX LR
ENDP

; add a + b

; add c

; add d

; rl=mem[sp],r2=mem[sp+4]

; add h

; add 1

#8] ; rl=mem[sp+8],r2=mem[sp+12]
; add j

; add k

sum PROC
EXPORT sum
PUSH {r5, r6, 1r}
ADD ro, ro, ril
ADD ro, ro, r2
ADD ro, ro, r3
LDRD r5,r6, [sp,
ADD ro, ro, r5
ADD ro, ro, ré
LDRD r5,r6, [sp,
ADD ro, ro, r5
ADD ro, ro, ré
POP {r5, r6, pc}
ENDP

; add a + b

; add c

; add d

#12] ;r5=mem[sp+12],r6=mem[sp+16]
; add h

; add 1

#20] ;r5=mem[sp+20],r6=mem[sp+24]
; add j

; add k

S

xplanations

» Version I:

» Callee reads the extra args directly from the caller’s push with LDRD:
Load Register Doubleword:

» LDRD rl,r2,[sp] — loads 5th & 6th args (h, i)
» LDRD rl,r2, [sp,#8] — loads 7th & 8th args (j, k)

» It returns with BX LR.

» Version 2:

» Callee pushes r5, ré,and Ir on entry: PUSH {r5, r6, Ir}.

» Because it pushed, the extra-argument addresses are shifted, so it
uses offsets like [sp,#12] and [sp,#20] to read the caller’s arguments
into r5,ré.

» LDRD r5,r6, [sp, #12]
» LDRD r5,r6, [sp, #20]
» It returns via POP {r5, ré, pc} (popping Ir into pc returns directly).
» Ladder analogy:
» Think of the stack like a ladder:The ladder = one shared stack in memory.
The rung each function stands on = its current SP value.
» When a function “pushes,” it steps down a few rungs (SP decreases).
» The caller’s pushed data remains up above — just higher up the same
__________ ladder-
p 54

Address Contents | Access
OxOFFC arg8 (k=8) | [sp,#12]
OxOFF8 arg/ (i=7) | [sp,#8]
OxOFF4 argéb (i=6) | [sp,#4]
OxOFFO arg5 (h=5) | [sp] <« SP
Version | stack after Caller PUSH
Address Contents | Access
OxOFFC arg8 (k=8) | [sp,#24]
OxOFF8 arg/ (i=7) | [sp,#20]
OxOFF4 argb (i=6) | [sp,#16]
OxOFFO arg5 (h=5) | [sp,#12]
OxOFEC saved Ir [sp#8]
OxOFES8 saved ré6 [sp.#4]
OxOFE4 saved r5 [sp] < SP

Version 2 stack after Caller PUSH and Callee PUSH

Version 2 1s Better Programming Practice

» Caller pushes extra arguments (5th to 8th) onto the stack before calling the
function.

» Version |: Callee accesses those extra arguments directly from the stack using
LDRD instructions at specific offsets from SP. It demonstrates the basic
mechanism for handling extra arguments on the stack.

» Version 2: Callee begins by pushing registers r5, ré, and the link register (LR)
(the callee-saved registers) onto the stack to preserve them.After addition
operations, it pops r5, ré, and the program counter (PC) to return, restoring
the preserved registers and the return address. This ensures that the
subroutine does not unintentionally overwrite or lose the caller's data and
return address, maintaining program correctness during and after the function
call.

» ARM Cortex-M uses full descending stack

» How to pass arguments into a subroutine!?
» Each 8-, 16- or 32-bit parameter is passed via ro,rl1,r2,r3

» Extra parameters are passed via the stack

» What registers should be preserved!?
» Caller-saved registers vs callee-saved registers

» How to preserve the running environment for the caller?

» Via stack

References

» Lecture 3 1. Preserving registers in a Subroutine

» https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLR]hV4hUhlymmp5CCelFPyx
bknsdcXCc8&index=3 |

https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31

	Slide 1: Z. Gu
	Slide 2: Overview
	Slide 3: Stack
	Slide 4: Typical Usage of Stack
	Slide 5: Stack Growth Convention: Ascending vs Descending
	Slide 6: Stack Growth Convention: Full vs Empty
	Slide 7: Cortex-M Stack
	Slide 8: Addressing Modes for Load/Store Multiple Registers
	Slide 9: Store Multiple Registers
	Slide 10: Load Multiple Registers
	Slide 11: Full Descending Stack
	Slide 12: Stack Implementation (red text is Cortex-M stack)
	Slide 13: Stack
	Slide 14: Stack
	Slide 15: Stack Recap
	Slide 16: Cortex-M Stack
	Slide 17: Example: swap R1 & R2
	Slide 18: Example: swap R1 & R2
	Slide 19: Example: swap R1 & R2
	Slide 20: Example: swap R1 & R2
	Slide 21: Example: swap R1 & R2
	Slide 22: Quiz
	Slide 23: Quiz ANS
	Slide 24: Subroutine
	Slide 25: Calling a Subroutine
	Slide 26: ARM Procedure Call Standard
	Slide 27: Caller-saved Registers vs Callee-saved Registers
	Slide 28: Embedded Application Binary Interface (EABI) Protocol
	Slide 29
	Slide 30: Example Program
	Slide 31: Nested Subroutines: What is wrong?
	Slide 32: Nested Subroutines: Solution #1
	Slide 33: Nested Subroutines: Solution #2
	Slide 34: Nested Subroutines: Solution #1
	Slide 35: Subroutine Calling Another Subroutine
	Slide 36: Subroutine Calling Another Subroutine
	Slide 37: Example: R0 = R04
	Slide 38: Example: R0 = R04
	Slide 39: Example: R0 = R04
	Slide 40: Example: R0 = R04
	Slide 41: Example: R0 = R04
	Slide 42: Example: R0 = R04
	Slide 43: Example: R0 = R04
	Slide 44: Example: R0 = R04
	Slide 45: Example: R0 = R04
	Slide 46: Example: R0 = R04
	Slide 47: Example: R0 = R04
	Slide 48: Example: R0 = R04
	Slide 49: Stack Pointer (SP)
	Slide 50: Passing Arguments into a Subroutine
	Slide 51: Passing Arguments into a Subroutine
	Slide 52: Passing 4 Arguments
	Slide 53: Passing Extra Arguments via Stack
	Slide 54: Explanations
	Slide 55: Version 2 is Better Programming Practice
	Slide 56: Summary
	Slide 57: References

