
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 10

Preserve Environment via Stack

1 Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Overview

2

 How to call a subroutine?

 How to return the control back to the caller?

 How to pass arguments into a subroutine?

 How to return a value in a subroutine?

 How to preserve the running environment for the caller?

Stack

 A Last-In-First-Out memory model

 Only allow to access the most

recently added item

 Also called the top of the stack

 Key operations:

 push (add item to stack)

 pop (remove top item from stack)

 Example: Tower of Hanoi

 Only one disk may be moved at a time.

 Each move consists of taking the upper disk from one

of the rods and sliding it onto another rod, on top of

the other disks that may already be present on that

rod.

 No disk may be placed on top of a smaller disk.

http://en.wikipedia.org/wiki/File:Tower_of_Hanoi_4.gif

Typical Usage of Stack

4

 Why need stack?

 Saving the original contents of processor’s registers at the

beginning a subroutine (Contents are restored at the end of a

subroutine)

 Storing local variables in a subroutine

 Passing extra arguments to a subroutine

 Saving processor’s registers upon an interrupt

Stack Growth Convention:

Ascending vs Descending

5

Descending stack: Stack grows

towards low memory address

Ascending stack: Stack grows

towards high memory address

PUSH POP

Stack base

Memory

Address

0x00000000

0xFFFFFFFF

Stack grows

downwards

Stack top

PUSH POP

Stack base

Stack grows

upwards

Stack top

Memory

Address

0xFFFFFFFF

0x00000000

Stack Growth Convention:

Full vs Empty

6

Full stack: SP points to the last item

pushed onto the stack

Empty stack: SP points to the

next free space on the stack

Stack base

Stack top
Stack

Pointer

(SP)

Stack base

Stack top
Stack

Pointer

(SP)

Cortex-M Stack

 Cortex-M uses full descending stack

 Example:

 PUSH/POP {r0,r6,r3}

 Stack pointer (SP, aka R13)

 decremented on PUSH

 SP = SP – 4 * # of registers

 incremented on POP

 SP = SP + 4 * # of registers

 SP starts at 0x20000200 for STM32-
Discovery by default (can be changed in
startup.s)

7

PUSH POP

Stack

Pointer

(SP)

Stack base

Memory

Address

0x00000000

0xFFFFFFFF

stack grow

downwards

Stack top

Addressing Modes for Load/Store Multiple Registers

8

STMxx rn{!}, {register_list}

LDMxx rn{!}, {register_list}

 xx = IA, IB, DA, or DB. The order in which registers are listed does not matter

 For STM/LDM, the lowest-numbered register is stored/loaded at the lowest memory address.

Addressing Modes Description Instructions

IA Increment After STMIA, LDMIA

IB Increment Before STMIB, LDMIB

DA Decrement After STMDA, LDMDA

DB Decrement Before STMDB, LDMDB

• IA: address is incremented by 4 after a word is loaded or stored.

• IB: address is incremented by 4 before a word is loaded or stored.

• DA: address is decremented by 4 after a word is loaded or stored.

• DB: address is decremented by 4 before a word is loaded or stored.

Review

Cortex-M Stack

Store Multiple Registers

9

STMxx r0!, {r3,r1,r7,r2}

r0

High Memory

Addresses

Low Memory

Addresses

r1

r2

r0

r3

r7

r1

r2

r3

r7

r7

r1

r2

r3

r1

r2

r3

r7

STMIA
Increment After

STMIB
Increment Before

STMDA
Decrement After

STMDB
Decrement Before

Empty

Ascending

r0

Full

Ascending

Empty

Descending

Full

Descending

r0 r0

Review

Cortex-M Stack

Load Multiple

Registers

10

LDMxx r0!, {r3,r1,r7,r2}

r0

High Memory

Addresses

Low Memory

Addresses

r0

LDMIA
Increment After

LDMIB
Increment Before

LDMDA
Decrement After

LDMDB
Decrement Before

r0

r0 r0

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

0

-4

-8

-12

-16

8

4

12

16

r1 = 0
r2 = 4
r3 = 8
r7 = 12

r1 = 4
r2 = 8
r3 = 12
r7 = 16

r1 = -12
r2 = -8
r3 = -4
r7 = -0

r1 = -16
r2 = -12
r3 = -8
r7 = -4

Review

Cortex-M Stack

Full Descending Stack

11

Stack base

Top of Stack
Stack

Pointer

(SP)

High Memory Addresses

Low Memory Addresses

Stack grows toward

low memory

addresses.

POP {register_list}

equivalent to:

LDMIA SP!, {register_list}

PUSH {register_list}

equivalent to:

STMDB SP!, {register_list}

DB: Decrement Before

IA: Increment After

Stack Implementation (red text is Cortex-M stack)

12

Stock Name

Push Pop

Equivalent Alternative Equivalent Alternative

Full Descending(FD) STMFD SP!,list STMDB SP!,list LDMFD SP!,list LDMIA SP!,list

Empty Descending(ED) STMED SP!,list STMDA SP!,list LDMED SP!,list LDMIB SP!,list

Full Ascending(FA) STMFA SP!,list STMIB SP!,list LDMFA SP!,list LDMDA SP!,list

Empty Ascending(EA) STMEA SP!,list STMIA SP!,list LDMEA SP!,list LDMDB SP!,list

Stack

PUSH {Rd} == STMDB SP!, {Rd} == STMFD SP!, {Rd}
 SUB SP, SP, #4 @ SP = SP-4 (descending stack)

 STR Rd, [SP] @ (*SP) = Rd (full stack)

Push multiple registers

13

PUSH {r1, r2, r3, r7}

They are equivalent. PUSH {r7}
PUSH {r3}
PUSH {r2}
PUSH {r1}

PUSH {r7, r2, r3, r1}

• SP is decremented before PUSH (pre-decrement).

• The order in which registers listed in the register list does not matter.

• When pushing multiple registers, these registers are automatically sorted by name and the lowest-

numbered register is stored to the lowest memory address, i.e. r1 is stored last.

Stack

POP {Rd} == LDMIA SP!, {Rd} == LDMFD SP!, {Rd}

 LDR Rd, [SP] @ Rd = (*SP) (full stack)

 ADD SP, #4 @ SP = SP + 4 (Stack shrinks)

Pop multiple registers

14

POP {r7, r3, r2, r1}

They are equivalent. POP {r1}
POP {r2}
POP {r3}
POP {r7}

POP {r1, r2, r3, r7}

• SP is incremented after POP (post-increment).

• The order in which registers listed in the register list does not matter.

• When popping multiple registers, these registers are automatically sorted by name and the lowest-

numbered register is loaded from the lowest memory address, i.e. r1 is loaded first.

Stack Recap

15

PUSH {r3, r1, r7, r2} POP {r3, r1, r7, r2}

Pop to the smallest-

numbered register first.

Largest-numbered register is

pushed first but popped last.

Cortex-M Stack

 PUSH {register list}

 POP {register list}

 Eligible registers for PUSH: r0 – r12, LR

 Eligible registers for POP: r0 – r12, LR, PC

 Order specified in the list does not matter

 Largest-numbered register is always pushed first and popped last

 Smallest-numbered register is always pushed last and popped first

 Smallest-numbered register is stored at lowest memory address after PUSH

16

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Register

Instruction format for PUSH:

Example: swap R1 & R2

R1

R2

R13 (SP)

0x20000200

0x200001FC

0x200001F8

0x20000200

0x22222222

0x11111111

17

xxxxxxxx

PUSH {R1}
PUSH {R2}
POP {R1}
POP {R2}

memory

Address

xxxxxxxx

xxxxxxxx

Example: swap R1 & R2

R1

R2

R13 (SP)

0x20000200

0x200001FC

0x200001F8

0x200001FC

0x22222222

0x11111111

18

xxxxxxxx

PUSH {R1}
PUSH {R2}
POP {R1}
POP {R2}

memory

Address
PC

0x11111111

xxxxxxxx

Example: swap R1 & R2

R1

R2

R13 (SP)

0x20000200

0x200001FC

0x200001F8

0x200001F8

0x22222222

0x11111111

19

xxxxxxxx

PUSH {R1}
PUSH {R2}
POP {R1}
POP {R2}

memory

Address

PC

0x11111111

0x22222222

Example: swap R1 & R2

R1

R2

R13 (SP)

0x20000200

0x200001FC

0x200001F8

0x200001FC

0x22222222

0x22222222

20

xxxxxxxx

PUSH {R1}
PUSH {R2}
POP {R1}
POP {R2}

memory

Address

PC
0x11111111

0x22222222

Example: swap R1 & R2

R1

R2

R13 (SP)

0x20000200

0x200001FC

0x200001F8

0x20000200

0x11111111

0x22222222

21

xxxxxxxx

PUSH {R1}
PUSH {R2}
POP {R1}
POP {R2}

memory

Address

PC

0x11111111

0x22222222

Values of R1 and R2 are swapped

Quiz

22

 Are the values of R1 and R2

swapped?

 PUSH {R1, R2}; POP {R2, R1}

 Or

 PUSH {R1, R2}; POP {R2}; POP {R1}

 Or

 PUSH {R1}; PUSH {R2}; POP {R1,

R2}

Quiz ANS

23

 Are the values of R1 and R2 swapped?

(not valid assembly syntax; need to put

instructions on different lines, not using

; to separate them)

 PUSH {R1, R2}; POP {R2, R1}

 Or

 PUSH {R1, R2}; POP {R2}; POP {R1}

 Or

 PUSH {R1}; PUSH {R2}; POP {R1, R2}

 PUSH {R1, R2}; POP {R2, R1}

 is equivalent to

 PUSH {R2}; PUSH {R1}; POP{R1}; POP{R2}

 Values of R1 and R2 are unchanged

 PUSH {R1, R2}; POP {R2}; POP {R1}

 is equivalent to

 PUSH {R2}; PUSH {R1}; POP{R2}; POP{R1}

 Values of R1 and R2 are swapped

 PUSH {R1}; PUSH {R2}; POP {R1, R2}

 is equivalent to

 PUSH {R1}; PUSH {R2}; POP{R1}; POP{R2}

 Values of R1 and R2 are swapped

Subroutine

 A subroutines, also called a

function or a procedure,

 single-entry, single-exit

 Return to caller after it exits

 When a subroutine is called,

the Link Register (LR) holds

the return address of the

current subroutine call, i.e.,

memory address of the next

instruction to be executed

after the subroutine exits.

24

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

Calling a Subroutine

25

Caller Program Subroutine/Callee
...

 BL foo
 ...

foo PROC
 ...
 BX LR
EDP

foo PROC
 PUSH {LR}
 ...
 POP {PC} ; pops LR into
PC (returns)
EDP

Caller: BL label (Branch and Link)

 Step 1: LR = PC + 4

 Step 2: PC = label

 label is name of subroutine

 Compiler translates label to memory

address

 After call, LR holds return address

(the instruction following the call)

Callee: BX LR (Branch and Exchange)

at end of procedure

 PC = LR

 Return to caller by setting PC to LR

 Equivalently:

 PUSH {LR} at start of procedure

 POP {PC} at end of procedure

ARM Procedure Call Standard

26

Register Usage
Subroutine

Preserved
Notes

r0 Argument 1 and return value No
If return has 64 bits, then r0:r1 hold it. If argument 1 has

64 bits, r0:r1 hold it.

r1 Argument 2 No

r2 Argument 3 No If the return has 128 bits, r0-r3 hold it.

r3 Argument 4 No If more than 4 arguments, use the stack

r4 General-purpose V1 Yes Variable register 1 holds a local variable.

r5 General-purpose V2 Yes Variable register 2 holds a local variable.

r6 General-purpose V3 Yes Variable register 3 holds a local variable.

r7 General-purpose V4 Yes Variable register 4 holds a local variable.

r8 General-purpose V5 YES Variable register 5 holds a local variable.

r9 Platform specific/V6 Yes/No Usage is platform-dependent.

r10 General-purpose V7 Yes Variable register 7 holds a local variable.

r11 General-purpose V8 Yes Variable register 8 holds a local variable.

r12 (IP) Intra-procedure-call register No
It holds intermediate values between a procedure and the

sub-procedure it calls.

r13 (SP) Stack pointer Yes SP has to be the same after a subroutine has completed.

r14 (LR) Link register No
LR does not have to contain the same value after a

subroutine has completed.

r15 (PC) Program counter N/A Do not directly change PC

Caller-saved Registers vs

Callee-saved Registers

27

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

• Not saved by subroutine

• Hold arguments/result

• Caller expects their values are retained

• Callee must save and store it if callee modifies it

Register Bank Special Registers

Caller-saved

registers

Callee-saved

registers

Callee-saved registers

Embedded Application Binary Interface (EABI) Protocol

28

Role Must Preserve Notes

Caller R0–R3, R12, CPSR (if needed) Caller-saved (scratch)

Callee R4–R11, R13 (SP), R14 (LR) Must be saved/restored if modified

Return R0 Return value

 Caller-saved registers:

 R0–R3: Arguments/return registers.

 R12 (IP): Intra-procedure scratch register.

 CPSR: — caller must preserve its state if needed.

 Callee-saved registers:

 R4–R11: Must be saved/restored by the callee if used.

 R14 (LR): Must be saved if the callee makes nested calls.

 R13 (SP): Stack pointer — must be preserved.

 Extra parameters passed on stack:

 When more than four arguments exist.

 Return value in R0

29

 Top code (not good):
 Callee foo does MOV

R4, #10 → this
overwrites whatever
the caller had in R4.

 foo does BX LR →
returns to caller, and
R4=10 after call return.

 Middle code:
 Caller expects callee to

not modify r4.

 Callee should preserve
r4 by saving and
restores R4 by PUSH
and POP on the stack

 Bottom code:
 Callee saves and

restores R4 by PUSH
and POP

 Callee uses PUSH{LR}
and POP{PC},
equivalent to BX LR

Caller Program Subroutine/Callee

 MOV r4, #100
 ...
 BL foo
 ...
 ADD r4, r4, #1 ; r4 = 11

foo PROC
 ...
 MOV r4, #10 ; foo changes r4
 ...
 BX LR
EDP

Caller Program Subroutine/Callee

 MOV r4, #100
 ...
 BL foo
 ...
 ADD r4, r4, #1 ; r4 = 101

foo PROC
 PUSH {r4} ; save caller's R4
 MOV r4, #10
 POP {r4} ; restore caller's R4
 BX LR
EDP

Caller Program Subroutine/Callee

 MOV r4, #100
 ...
 BL foo
 ...
 ADD r4, r4, #1 ; r4 = 101

foo PROC
 PUSH {r4, LR} ; pushes LR before
r4
 MOV r4, #10
 POP {r4, PC} ; pops R4 before
LR, so now PC = LR (returns)
EDP

Example Program

30

 Caller is responsible for preserving R1.

 Callee func1 is responsible for preserving R4 and LR.

 Func1 is both a callee and a caller. Here func1 does

not need to preserve R0, since:

 We overwrite R0 with “MOV R0, #2” before calling func2.

We then rely on the return value in R0 after func2 updates

R0, and we do not need the old R0 anymore.

 If func1 had needed the original value of R0 (say, it

wanted to use both the original and the returned

value), then it would need to preserve it by PUSH and

POP before and after “BL func2”

__main PROC
 MOV R1, #0
 MOV R4, #1
 PUSH {R1}
 BL func1
 POP {R1}
 ADD R2, R1, R4
 ADD R3, R2, R0
loop B loop
 ENDP

func1 PROC
 PUSH {R4, LR}
 MOV R0, #2
 BL func2
 MOV R4, R0
 ADD R1, R0, R4
 POP {R4, LR}
 BX LR
 ENDP

func2 PROC
 ADD R0, R0, #1
 BX LR
 ENDP

Nested Subroutines: What is wrong?

31

Caller Program Subroutine foo Subroutine bar

 MOV r4, #100
 ...
 BL foo
 ...
 ADD r4, r4,
#1

foo PROC
 PUSH {r4}
 ...
 MOV r4, #10
 ...
 BL bar
 ...
 POP {r4}
 BX LR
ENDP

bar PROC
 ...
 BX LR
ENDP

 Caller (main function) does BL foo → LR
= return address back into the caller.

 foo does PUSH {r4} (saves r4) but does
not save LR.

 foo does BL bar → this instruction
overwrites LR with the return address
back into foo (i.e. the instruction after BL
bar).

 bar returns (BX LR) into foo (normal),
but the original LR that pointed back to
the caller was lost.

 foo does POP {r4} then BX LR — but
LR now points to the instruction inside
foo (not to the caller), so foo does not
return to the caller (main function)

Nested Subroutines: Solution #1

32

Caller Program Subroutine foo Subroutine bar

 MOV r4, #100
 ...
 BL foo
 ...
 ADD r4, r4, #1

foo PROC
 PUSH {r4, LR}
 ...
 MOV r4, #10
 ...
 BL bar
 ...
 POP {r4, LR}
 BX LR
ENDP

bar PROC
 ...
 BX LR
ENDP

foo saves and restores its LR for returning to its caller, before calling bar.

(Without saving and restoring LR in foo, “BX LR” in foo will jump to instruction after

“BL bar” in foo, and program is stuck in an infinite loop within foo.)

Nested Subroutines: Solution #2

33

Caller Program Subroutine foo Subroutine bar

 MOV r4, #100
 ...
 BL foo
 ...
 ADD r4, r4, #1

foo PROC
 PUSH {r4, LR}
 ...
 MOV r4, #10
 ...
 BL bar
 ...
 POP {r4, PC}
 BX LR
ENDP

bar PROC
 ...
 BX LR
ENDP

POP {r4, PC} is equivalent to POP {r4, LR} followed by BX LR.

Nested Subroutines: Solution #1

Subroutine Calling Another Subroutine

35

MAIN

 MOV R0,#2

 BL QUAD

ENDL ...

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

SQ MUL R0,R0

 BX LR

Function MAIN Function QUAD
Function SQ

Subroutine Calling Another Subroutine

36

MAIN PROC

 MOV R0,#2

 BL QUAD

ENDL ...

 ENDP

QUAD PROC

 PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

 EDP

SQ PROC

 MUL R0,R0

 BX LR

 EDP

Function MAIN

Function QUAD

Function SQ

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx 0x20000200

0x200001FC

0x200001F8

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

R0

PC 0x08000138

LR

SP 0x20000200
SQ

QUAD

37

Stack

Example: R0 = R04

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x02R0

PC 0x0800013C

LR

SP 0x20000200
SQ

QUAD

38

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x02R0

PC 0x0800014C

LR

SP 0x20000200

0x08000140
SQ

QUAD

39

Preserve

Link Register (LR)

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

0x08000140

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x02R0

PC 0x08000150

LR

SP 0x200001FC

0x08000140
SQ

QUAD

40

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x02R0

PC 0x08000144

LR

SP 0x200001FC

0x08000154

0x08000140

SQ

QUAD

41

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x04R0

PC 0x08000148

LR

SP 0x200001FC

0x08000154

0x08000140

SQ

QUAD

42

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x04R0

PC 0x08000154

LR

SP 0x200001FC

0x08000154

0x08000140

SQ

QUAD

43

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x04R0

PC 0x08000144

LR

SP 0x200001FC

0x08000158

0x08000140

SQ

QUAD

44

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x10R0

PC 0x08000148

LR

SP 0x200001FC

0x08000158

0x08000140

SQ

QUAD

45

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x10R0

PC 0x08000158

LR

SP 0x200001FC

0x08000158

0x08000140

SQ

QUAD

46

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x10R0

PC 0x0800015C

LR

SP 0x20000200

0x08000140
SQ

QUAD

47

Restore

Link Register (LR)

0x08000140

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Example: R0 = R04

 MOV R0,#2

 BL QUAD

 B ENDL

SQ MUL R0,R0

 BX LR

QUAD PUSH {LR}

 BL SQ

 BL SQ

 POP {LR}

 BX LR

ENDL ...

PUSH {LR}

POP {LR}

BL SQ

B ENDL

BL SQ

BX LR

xxxxxxxx

MOV R0,#2

BL QUAD

BX LR

MUL R0,R0

0x10R0

PC 0x08000140

LR

SP 0x20000200

0x08000140

0x08000140

SQ

QUAD

48

0x20000200

0x200001FC

0x200001F8

0x0800014C

0x08000150

0x08000140

0x08000148

0x08000154

0x08000158

0x08000138

0x0800013C

0x08000144

0x0800015C

Stack

Stack Pointer (SP)

49

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

• SP is the shadow of MSP (Main SP) or PSP (Process SP)

• If there is no embedded OS, PSP is not used

• Determined by the ASP (Active SP) bit in the CONTROL register (ASP is always

0 in handler mode).

• 0 = MSP (default)

• 1 = PSP
• Before using the stack, software has to define stack space and initialize the stack

pointer (SP).

• The program startup.s defines stack space and initializes SP.

Register Bank Special Registers

Bit 31 - 3 2 1 0

Reserved ASP

CONTROL Register

Passing Arguments into a Subroutine

50

R0 R1 R2 R3

32-bit

Argument 1

32-bit

Argument 2

32-bit

Argument 3

32-bit

Argument 4

R1(MSB32) R0(LSB32) R3(MSB32) R2(LSB32)

64-bit Argument 1 64-bit Argument 2

R3(MSB32) R2 R1 R0(LSB32)

128-bit Argument

Subroutine

Extra arguments are

pushed to the stack by

the caller. The caller is

responsible to pop them

out of the stack after the

subroutine returns.

R0

32-bit Return Value

R1(MSB32) R0(LSB32)

64-bit Return Value

R3(MSB32) R2 R1 R0(LSB32)

128-bit Return Value

Review

Passing Arguments into a Subroutine

51

a16 b16 c8 d32

Subroutine

Register R0 Register R1 Register R2 Register R3

Return Value

Register R0

int32_t sum(int16_t a16, int16_t b16, int8_t c8, int32_t d32);

Review

Passing 4 Arguments

52

Caller

s = sum(1, 2, 3, 4);

MOVS r0, #1 ; a16
 MOVS r1, #2 ; b16
 MOVS r2, #3 ; c8
 MOVS r3, #4 ; d32
 BL sum

Callee

sum PROC
 ADD r0, r0, r1 ; a16 + b16
 ADD r0, r0, r2 ; add c8
 ADD r0, r0, r3 ; add d32
 BX LR ; return
 ENDP

int32_t sum(int16_t a16, int16_t b16, int8_t c8, int32_t d32);

Review

Passing Extra Arguments

via Stack

53

int32_t sum(int32_t a, int32_t b, int32_t c,
int32_t d, int32_t h, int32_t i, int32_t j,
int32_t k);
s = sum(1, 2, 3, 4, 5, 6, 7, 8);

Caller

MOVS r0, #5
 MOVS r1, #6
 MOVS r2, #7
 MOVS r3, #8
 PUSH {r0, r1, r2, r3}
 MOVS r0, #1
 MOVS r1, #2
 MOVS r2, #3
 MOVS r3, #4
 BL sum
 ...
 POP {r0, r1, r2, r3}

Version 1 sum PROC
 EXPORT sum
 ADD r0, r0, r1 ; add a + b
 ADD r0, r0, r2 ; add c
 ADD r0, r0, r3 ; add d
 LDRD r1,r2, [sp] ; r1=mem[sp],r2=mem[sp+4]
 ADD r0, r0, r1 ; add h
 ADD r0, r0, r2 ; add i
 LDRD r1,r2, [sp, #8] ; r1=mem[sp+8],r2=mem[sp+12]
 ADD r0, r0, r1 ; add j
 ADD r0, r0, r2 ; add k
 BX LR
 ENDP

sum PROC
 EXPORT sum
 PUSH {r5, r6, lr}
 ADD r0, r0, r1 ; add a + b
 ADD r0, r0, r2 ; add c
 ADD r0, r0, r3 ; add d
 LDRD r5,r6, [sp, #12] ;r5=mem[sp+12],r6=mem[sp+16]
 ADD r0, r0, r5 ; add h
 ADD r0, r0, r6 ; add i
 LDRD r5,r6, [sp, #20] ;r5=mem[sp+20],r6=mem[sp+24]
 ADD r0, r0, r5 ; add j
 ADD r0, r0, r6 ; add k
 POP {r5, r6, pc}
 ENDP

Version 2

Explanations

54

 Version 1:

 Callee reads the extra args directly from the caller’s push with LDRD:
Load Register Doubleword:

 LDRD r1,r2, [sp] → loads 5th & 6th args (h, i)

 LDRD r1,r2, [sp,#8] → loads 7th & 8th args (j, k)

 It returns with BX LR.

 Version 2:

 Callee pushes r5, r6, and lr on entry: PUSH {r5, r6, lr}.

 Because it pushed, the extra-argument addresses are shifted, so it
uses offsets like [sp,#12] and [sp,#20] to read the caller’s arguments
into r5,r6.

 LDRD r5,r6, [sp, #12]

 LDRD r5,r6, [sp, #20]

 It returns via POP {r5, r6, pc} (popping lr into pc returns directly).

 Ladder analogy:

 Think of the stack like a ladder: The ladder = one shared stack in memory.

 The rung each function stands on = its current SP value.

 When a function “pushes,” it steps down a few rungs (SP decreases).

 The caller’s pushed data remains up above — just higher up the same
ladder.

Address Contents Access

0x0FFC arg8 (k=8) [sp,#12]

0x0FF8 arg7 (j=7) [sp,#8]

0x0FF4 arg6 (i=6) [sp,#4]

0x0FF0 arg5 (h=5) [sp] ← SP

Address Contents Access

0x0FFC arg8 (k=8) [sp,#24]

0x0FF8 arg7 (j=7) [sp,#20]

0x0FF4 arg6 (i=6) [sp,#16]

0x0FF0 arg5 (h=5) [sp,#12]

0x0FEC saved lr [sp,#8]

0x0FE8 saved r6 [sp,#4]

0x0FE4 saved r5 [sp] ← SP

Version 1 stack after Caller PUSH

Version 2 stack after Caller PUSH and Callee PUSH

Version 2 is Better Programming Practice

55

 Caller pushes extra arguments (5th to 8th) onto the stack before calling the
function.

 Version 1: Callee accesses those extra arguments directly from the stack using
LDRD instructions at specific offsets from SP. It demonstrates the basic
mechanism for handling extra arguments on the stack.

 Version 2: Callee begins by pushing registers r5, r6, and the link register (LR)
(the callee-saved registers) onto the stack to preserve them. After addition
operations, it pops r5, r6, and the program counter (PC) to return, restoring
the preserved registers and the return address. This ensures that the
subroutine does not unintentionally overwrite or lose the caller's data and
return address, maintaining program correctness during and after the function
call.

Summary

56

 ARM Cortex-M uses full descending stack

 How to pass arguments into a subroutine?

 Each 8-, 16- or 32-bit parameter is passed via r0, r1, r2, r3

 Extra parameters are passed via the stack

 What registers should be preserved?

 Caller-saved registers vs callee-saved registers

 How to preserve the running environment for the caller?

 Via stack

References

57

 Lecture 31. Preserving registers in a Subroutine

 https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyx

bknsdcXCc8&index=31

https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31

	Slide 1: Z. Gu
	Slide 2: Overview
	Slide 3: Stack
	Slide 4: Typical Usage of Stack
	Slide 5: Stack Growth Convention: Ascending vs Descending
	Slide 6: Stack Growth Convention: Full vs Empty
	Slide 7: Cortex-M Stack
	Slide 8: Addressing Modes for Load/Store Multiple Registers
	Slide 9: Store Multiple Registers
	Slide 10: Load Multiple Registers
	Slide 11: Full Descending Stack
	Slide 12: Stack Implementation (red text is Cortex-M stack)
	Slide 13: Stack
	Slide 14: Stack
	Slide 15: Stack Recap
	Slide 16: Cortex-M Stack
	Slide 17: Example: swap R1 & R2
	Slide 18: Example: swap R1 & R2
	Slide 19: Example: swap R1 & R2
	Slide 20: Example: swap R1 & R2
	Slide 21: Example: swap R1 & R2
	Slide 22: Quiz
	Slide 23: Quiz ANS
	Slide 24: Subroutine
	Slide 25: Calling a Subroutine
	Slide 26: ARM Procedure Call Standard
	Slide 27: Caller-saved Registers vs Callee-saved Registers
	Slide 28: Embedded Application Binary Interface (EABI) Protocol
	Slide 29
	Slide 30: Example Program
	Slide 31: Nested Subroutines: What is wrong?
	Slide 32: Nested Subroutines: Solution #1
	Slide 33: Nested Subroutines: Solution #2
	Slide 34: Nested Subroutines: Solution #1
	Slide 35: Subroutine Calling Another Subroutine
	Slide 36: Subroutine Calling Another Subroutine
	Slide 37: Example: R0 = R04
	Slide 38: Example: R0 = R04
	Slide 39: Example: R0 = R04
	Slide 40: Example: R0 = R04
	Slide 41: Example: R0 = R04
	Slide 42: Example: R0 = R04
	Slide 43: Example: R0 = R04
	Slide 44: Example: R0 = R04
	Slide 45: Example: R0 = R04
	Slide 46: Example: R0 = R04
	Slide 47: Example: R0 = R04
	Slide 48: Example: R0 = R04
	Slide 49: Stack Pointer (SP)
	Slide 50: Passing Arguments into a Subroutine
	Slide 51: Passing Arguments into a Subroutine
	Slide 52: Passing 4 Arguments
	Slide 53: Passing Extra Arguments via Stack
	Slide 54: Explanations
	Slide 55: Version 2 is Better Programming Practice
	Slide 56: Summary
	Slide 57: References

