
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 8

Passing Parameters to Subroutines

via Registers

1 Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Overview

2

 How to call a subroutine?

 How to return the control back to the caller?

 How to pass arguments into a subroutine?

 How to return a value in a subroutine?

 How to preserve the running environment for the caller?

Link Register (LR)

3

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

• Link Register (LR) holds the return

address of a subroutine

• The processor copies LR to PC after

the program is finished.

Link

Register

Register Bank Special Registers

void foo(void) ;

int main(void{

 ● ● ●

 foo();

 ● ● ●

}

Link Register (LR)

4

Compiler

● ● ●

 BL foo
 ● ● ●

foo PROC

 ● ● ●
 ● ● ●

 BX LR

 ENDP

void foo (void) {

 ● ● ●
 ● ● ●

 return;
}

Transfer control to callee

void foo(void) ;

int main(void{

 ● ● ●

 foo();

 ● ● ●

}

Link Register (LR)

5

Compiler

● ● ●

 BL foo
 ● ● ●

foo PROC

 ● ● ●
 ● ● ●

 BX LR

 ENDP

void foo (void) {

 ● ● ●
 ● ● ●

 return;
}

r0

r1

r2

r3

.

.

.

.

.

.

r13 (SP)

r14 (LR)

r15 (PC)

Registers

32 bits

0x08000214
0x08000210

0x08000214

0x08000280

0x08000280

Transfer control to callee
LR = PCcurrent + 4

PC = Mem Addr of foo()

PCcurrent

void foo(void) ;

int main(void{

 ● ● ●

 foo();

 ● ● ●

}

Link Register (LR)

6

Compiler

● ● ●

 BL foo
 ● ● ●

foo PROC

 ● ● ●
 ● ● ●

 BX LR

 ENDP

void foo (void) {

 ● ● ●
 ● ● ●

 return;
}

r0

r1

r2

r3

.

.

.

.

.

.

r13 (SP)

r14 (LR)

r15 (PC)

Registers

32 bits

0x08000214
0x08000210

0x08000214
0x08000280

PC = LR
PCcurrent

Resume suspended caller0x08000214

Procedure Call Standard

7

 What is it?

 Contract between a calling subroutine (caller) and a called subroutine (callee)

 Why need it?

 Allows subroutines to be separately written, compiled, assembled but work together

 Allows C program calls an assembly function, or vice versa

 This talk focuses on

 How to pass arguments to a subroutine?

 How to return a result from a subroutine?

Passing Arguments and Returning Value

8

R0 R1 R2 R3

32-bit

Argument 1

32-bit

Argument 2

32-bit

Argument 3

32-bit

Argument 4

R1(MSB32) R0(LSB32) R3(MSB32) R2(LSB32)

64-bit Argument 1 64-bit Argument 2

R3(MSB32) R2 R1 R0(LSB32)

128-bit Argument

Subroutine

Extra arguments are

pushed to the stack by

the caller. The caller is

responsible to pop them

out of the stack after the

subroutine returns.

R0

32-bit Return Value

R1(MSB32) R0(LSB32)

64-bit Return Value

R3(MSB32) R2 R1 R0(LSB32)

128-bit Return Value

 Each argument with size ≤ 32 bits, e.g., 8-bit
char, or 16-bit short, or 32-bit int, is passed in
a 32-bit register.
 Cannot pack multiple arguments into one register.

 The subroutine can take arguments larger
than 32 bits. For example, a double-word
variable, such as 64-bit long, is passed in two
consecutive registers (e.g. R0 and R1, or R2
and R3). A 128-bit variable is passed in four
consecutive registers.

 int64_t add_64(int64_t a, int64_t b)

 R0 and R1 are used to store the variable a

 The return result is stored in registers (R0-
R3), depending on the size of the return
variable. If it is less than 32 bits, it is stored in
R0. If it is a double-word sized variable, such
as long long or double variables in C, it is
stored in R0 and R1.

 int128_t multiply_64(int64_t a, int64_t b)

 R0, R1, R2, and R3 are used to store the
result

Each argument of 8-bit char, or 16-bit short, is passed

in a 32-bit register

Passing Arguments Examples

9

R0 R1 R2 R3

Registers Stack in Memory

foo (int i0, int i1, int i2, int i3)

i0 i1 i2 i3

Registers Stack in Memory

foo (int i0, char a1, double D)

i0 a1 D

Registers Stack in Memory

foo (int i0, int i1, double D, int i2, int i3)

i0 i1 D i2 i3

Registers Stack in Memory

Caller passes arguments i0, i1, D in registers R0-R3 directly; pushes additional arguments

i2 and i3 on the stack before subroutine call

10

r0 a8

r1 b8

r2 c16

r3 d16

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Passing arguments

to a subroutine

int32_t sum(uint8_t a8, int8_t b8, uint16_t c16, uint16_t d16);

Register

a8 b8 c16 d16

Subroutine

Register r0 Register r1 Register r2 Register r3

Return Value

Register r0

11

r0 sum

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Return the sum in register r0

int32_t sum(uint8_t a8, int8_t b8, uint16_t c16, uint16_t d16);

Register

a8 b8 c16 d16

Subroutine

Register r0 Register r1 Register r2 Register r3

Return Value

Register r0

Passing Arguments and Returning Value

12

int32_t sum(uint8_t a8, int8_t b8, uint16_t c16, uint16_t d16);

Caller

s = sum(1, 2, 3, 4);

MOVS r0, #1 ; a8
 MOVS r1, #2 ; b8
 MOVS r2, #3 ; c16
 MOVS r3, #4 ; d16
 BL sum

Callee

sum PROC
 ADD r0, r0, r1 ; a8 + b8
 ADD r0, r0, r2 ; add c16
 ADD r0, r0, r3 ; add d16
 BX LR
 ENDP

Returning Value

13

uint32_t s32;

uint32_t sum(uint8_t a8, uint8_t b8, uint16_t c16, uint16_t d16);

s32 = sum(1, 2, 3, 4) + 100;

MOVS r0, #1 ; 1st argument a8
 MOVS r1, #2 ; 2nd argument b8
 MOVS r2, #3 ; 3rd argument c16
 MOVS r3, #4 ; 4th argument d16
 BL sum ; result is returned in r0
 ADD r0, r0, #100
 LDR r4, =s32 ; Get memory address of s32
 STR r0, [r4] ; Save returned result to s32

uint32_t s32 is declared as a C global variable, so the

compiler/linker creates storage for it in .data or .bss depending

on initialization. You can simply reference it by name in

assembly as a label.

14

r0 a[31:0]

r1 a[63:32]

r2 b[31:0]

r3 b[63:32]

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Passing arguments

to a subroutine

int64_t sum(int64_t a, int64_t b);

Callee

sum PROC
 ADDS r0, r2, r0 ; Adding lower 32 bits
 ADC r1, r3, r1 ; Adding upper 32 bits
 BX LR ; Return in r1:r0
 ENDP

r1 r0

r3 r2

r1 r0

Addend1

Addend2

Sum

Upper 32 bits Lower 32 bits

Carry out

Register

15

r0 sum[31:0]

r1 sum[63:32]

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Returning sum

from a subroutine
int64_t sum(int64_t a, int64_t b);

Callee

sum PROC
 ADDS r0, r2, r0 ; Adding lower 32 bits
 ADC r1, r3, r1 ; Adding upper 32 bits
 BX LR ; Return in r1:r0
 ENDP

r1 r0

r3 r2

r1 r0

Addend1

Addend2

Sum

Upper 32 bits Lower 32 bits

Carry out

Register

16

r0 a1

r1 a2

r2 a2

r3 a3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Passing arguments

to a subroutine

int32_t sum6(int32_t a1, int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6)

sum6(1, 2, 3, 4, 5, 6);

MOVS r0, #5
 MOVS r1, #6
 PUSH {r0, r1} ; push a5, a6
 MOVS r0, #1
 MOVS r1, #2
 MOVS r2, #3
 MOVS r3, #4
 BL sum6
 ADDS sp, sp, #8 ; pop a4, a6

sum6 PROC
 ADD r0, r0, r1 ; sum = a1 + a2
 ADD r0, r0, r2 ; sum += a3
 ADD r0, r0, r3 ; sum += a4
 LDRD r1, r2, [sp] ; load a5, a6
 ADD r0, r0, r1 ; sum += a5
 ADD r0, r0, r2 ; sum += a6
 BX LR ; return in r0
 ENDP

sp xxxx

Memory
Register

17

r0 a1

r1 a2

r2 a2

r3 a3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Passing arguments

to a subroutine

int32_t sum6(int32_t a1, int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6)

sum6(1, 2, 3, 4, 5, 6);

MOVS r0, #5
 MOVS r1, #6
 PUSH {r0, r1} ; push a5, a6
 MOVS r0, #1
 MOVS r1, #2
 MOVS r2, #3
 MOVS r3, #4
 BL sum6
 ADD sp, sp, #8 ; pop a4, a6

sp+8 xxxx

sp+4 a6

sp a5

Memory
Register

sum6 PROC
 ADD r0, r0, r1 ; sum = a1 + a2
 ADD r0, r0, r2 ; sum += a3
 ADD r0, r0, r3 ; sum += a4
 LDRD r1, r2, [sp] ; load a5, a6
 ADD r0, r0, r1 ; sum += a5
 ADD r0, r0, r2 ; sum += a6
 BX LR ; return in r0
 ENDP

18

r0 a1

r1 a2

r2 a2

r3 a3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (SP)

r14 (LR)

r15 (PC)

Passing arguments

to a subroutine

int32_t sum6(int32_t a1, int32_t a2, int32_t a3, int32_t a4, int32_t a5, int32_t a6)

sum6(1, 2, 3, 4, 5, 6);

MOVS r0, #5 ; MOVS can also be
MOV here
 MOVS r1, #6
 PUSH {r0, r1} ; push a5, a6
 MOVS r0, #1
 MOVS r1, #2
 MOVS r2, #3
 MOVS r3, #4
 BL sum6
 ADD sp, sp, #8 ; pop a4, a6 by
restoring sp to its old position
before calling PROC

sp xxxx

a6

a5

Memory
Register

sum6 PROC
 ADD r0, r0, r1 ; sum = a1 + a2
 ADD r0, r0, r2 ; sum += a3
 ADD r0, r0, r3 ; sum += a4
 LDRD r1, r2, [sp] ; load a5, a6
 ADD r0, r0, r1 ; sum += a5
 ADD r0, r0, r2 ; sum += a6
 BX LR ; return in r0
 ENDP

Explanations

19

Step r0 r1 r2 r3
Stack (top

first)
Description

Before call 5 6 — — — a5, a6 prepared

After PUSH — — — — a5=5, a6=6 pushed to stack

Set r0–r3 1 2 3 4 a5=5, a6=6 a1–a4 in regs

Inside sum6 1 2 3 4 a5=5, a6=6 entry point

LDRD loads — 5 6 — a5=5, a6=6 from stack

Return 21 — — — a5=5, a6=6 1+2+3+4+5+6 = 21

 First 4 parameters → registers r0–r3.Extra parameters → pushed onto the stack.

 LDRD (Load Register Double) fetches two words (a5, a6) efficiently.

 r0 always holds the return value.

 Caller cleans up the stack after the function (ADDS sp, sp, #8).

Quiz

20

 Can I use POP to replace ADD?

MOVS r0, #5
 MOVS r1, #6
 PUSH {r0, r1} ; push a5, a6
 MOVS r0, #1
 MOVS r1, #2
 MOVS r2, #3
 MOVS r3, #4
 BL sum6
 POP {r0, r1}
 ; ADD sp, sp, #8

Quiz ANS

21

 POP {r0, r1} is equivalent to LDMIA sp!, {r0, r1}
 Load [sp] into r0

 Load [sp + 4] into r1

 Then increment sp by 8

 This is wrong, because it would overwrite registers r0 and r1 with garbage (the old arguments you
pushed), whereas r0 should contain the return value
 After returning from sum6, you do not need those values (a5, a6) anymore. You just want to discard them, so

ADD moves stack pointer up by 8 bytes and discards data.

MOVS r0, #5
 MOVS r1, #6
 PUSH {r0, r1} ; push a5, a6
 MOVS r0, #1
 MOVS r1, #2
 MOVS r2, #3
 MOVS r3, #4
 BL sum6
 POP {r0, r1}
 ; ADD sp, sp, #8

Calling Assembly Subroutine in C

22

 If your assembly code follows the procedure call standard, a C code can call

an assembly subroutine, and vice versa.

extern int32_t sum3(int32_t a1, int32_t a2, int32_t a3);

int main(void){
 int32_t s

 ...
 s = sum3(-1, -2, -3) + sum3(4, 5, 6);
 ...

}

sum3 PROC
 EXPORT sum3
 ADD r0, r0, r1 ; sum = a1 + a2
 ADD r0, r0, r2 ; sum += a3
 BX LR ; return in r0
 ENDP

ARM Procedure Call Standard

23

Register Usage
Subroutine

Preserved
Notes

r0 Argument 1 and return value No
If return has 64 bits, then r0:r1 hold it. If argument 1 has

64 bits, r0:r1 hold it.

r1 Argument 2 No

r2 Argument 3 No If the return has 128 bits, r0-r3 hold it.

r3 Argument 4 No If more than 4 arguments, use the stack

r4 General-purpose V1 Yes Variable register 1 holds a local variable.

r5 General-purpose V2 Yes Variable register 2 holds a local variable.

r6 General-purpose V3 Yes Variable register 3 holds a local variable.

r7 General-purpose V4 Yes Variable register 4 holds a local variable.

r8 General-purpose V5 Yes Variable register 5 holds a local variable.

r9 Platform specific/V6 Yes/No Usage is platform-dependent.

r10 General-purpose V7 Yes Variable register 7 holds a local variable.

r11 General-purpose V8 Yes Variable register 8 holds a local variable.

r12 (IP) Intra-procedure-call register No
It holds intermediate values between a procedure and the

sub-procedure it calls.

r13 (SP) Stack pointer Yes SP has to be the same after a subroutine has completed.

r14 (LR) Link register No
LR does not have to contain the same value after a

subroutine has completed.

r15 (PC) Program counter N/A Do not directly change PC

Callee Saved Registers vs

Caller Saved Registers

24

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (SP)

R14 (LR)

R15 (PC)

32 bits

CONTROL

FAULTMASK

PRIMASK

BASEPRI

R13 (MSP) R13 (PSP)

xPSR

Low

Registers

High

Registers

32 bits

Special

Purpose

Register

General

Purpose

Register

• Callee can freely modify R0, R1, R2, and R3

• If caller expects their values are retained,

caller should push them onto the stack

before calling the callee

• Caller expects these values are retained .

• If Callee modifies them, callee must restore

their values upon leaving the function.

Caller

Saved

Registers

Callee

Saved

Registers

Example: SSQ(3, 4)

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

 ...25

int SSQ(int x, int y){
 int z;
 z = x*x + y*y;
 return z;
}

R0: first argument

R1: second argument

R0: Return Value

𝒙𝟐 + 𝒚𝟐Sum of Square:

Example: SSQ(3, 4)

R0

R1

0x08000128PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

R2

LR

BX LR

R3

SSQ

26

MOVS R0,#3

MOVS R1,#4

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

Example: SSQ(3, 4)

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

3R0

R1

0x08000128PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

R2

LR

BX LR

R3

SSQ

27

MOVS R0,#3

MOVS R1,#4

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

3R0

4R1

0x0800012CPC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

R2

LR

BX LR

R3

SSQ

28

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

3R0

4R1

0x08000130PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

R2

LR

BX LR

R3

SSQ

29

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

3R0

4R1

0x0800013BPC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

R2

0x08000134LR

BX LR

R3

SSQ

30

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

Address of the next instruction

after the branch is saved into LR.

In fact, LR is 0x08000135

because bit 0 of PC

should always be 1 for

ARM Cortex-M to

indicate thumb mode.

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

3R0

4R1

0x0800013BPC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

9R2

0x08000134LR

BX LR

R3

SSQ

31

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

3R0

4R1

0x0800013CPC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

9R2

0x08000134LR

BX LR

16R3

SSQ

32

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

3R0

4R1

0x08000140PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

25R2

0x08000134LR

BX LR

16R3

SSQ

33

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

25R0

4R1

0x08000142PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

25R2

0x08000134LR

BX LR

16R3

SSQ

34

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

25R0

4R1

0x08000144PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

25R2

0x08000134LR

BX LR

16R3

SSQ

35

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

25R0

4R1

0x08000134PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

25R2

0x08000134LR

BX LR

16R3

SSQ

36

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

Copy LR to PC when returning

from a subroutine!

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

25R0

4R1

0x08000134PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

25R2

0x08000134LR

BX LR

16R3

SSQ

37

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Example: SSQ(3, 4)

25R0

4R1

0x08000136PC

MOVS R0,R2

MUL R3,...

MOVS R2,R0

BL SSQ

MUL R2,...

B ENDL

ADD R2,R3

25R2

0x08000134LR

BX LR

16R3

SSQ

38

MOVS R0,#3

MOVS R1,#4

 MOVS R0,#3

 MOVS R1,#4

 BL SSQ

 MOVS R2,R0

 B ENDL

 ...

SSQ PROC

 MUL R2,R0,R0

 MUL R3,R1,R1

 ADD R2,R2,R3

 MOVS R0,R2

 BX LR

 ENDP

ENDL ...

0x08000128

0x0800012C

0x08000130

0x08000134

0x08000136

0x08000140

0x0800013B

0x0800013C

0x08000142

0x08000144

Memory
Address

Realities

39

 In the previous example,

 PC is incremented by 2 or 4.

 The least significant bit of LR is always 0.

Well, I lied!

Realities

40

 PC is always incremented by 4.

 Each time, 4 bytes are fetched from the instruction memory

 It is either two 16-bit instructions or one 32-bit instruction

 If bit [15-11] = 11101, 11110, or 11111, then, it is the first half-word

 of a 32-bit instruction. Otherwise, it is a 16-bit instruction.

 The least significant bit of LR is always 1 for ARM Cortex-M

 This bit is used to control the processor mode:

 0 = ARM, 1 = THUMB

 Cortex-M only supports THUMB.

Summary

41

 How to call a subroutine?

 Branch with link: BL subroutine

 How to return the control back to the caller?

 Branch and exchange: BX LR

 How to pass arguments into a subroutine?

 Each 8-, 16- or 32-bit variables is passed via r0, r1, r2, r3

 Extra parameters are passed via stack

 How to return a value in a subroutine?

 Value is returned in r0

 How to preserve the running environment for the caller?

 (to be covered)

Common Coding Patterns

42

 Callee returns a constant in r0.
 mov r0,#17 @ r0 is return value register

 bx lr @ return from function

 Callee saves some registers, does some arithmetic, and returns the result in r0.
 push {r4-r7,lr}

 mov r4, #10

 mov r5, #100

 add r0,r4,r5

 pop {r4-r7,pc} @ pop saved lr value into PC to return from function

 Callee calls another function (nested function calls)
 push {lr} @ must save LR if we call our own function

 mov r0, #123 @ r0 is first function parameter

 bl print_int @ call function print_int(123)

 pop {pc} @ pop saved lr into PC to return from function

 Callee return: restore previously-pushed LR, then jump to LR (POP {lr}; BX lr), or equivalently, pop
previously-pushed LR to PC
 POP {pc} ≡ POP {lr}; BX lr

Common Coding Patterns

43

 Memory access: first put memory address into register, then load memory content at that address
 adr r2, mydata @Compute address of label mydata using a PC-relative add and put that address in r2

 ldr r0, [r2] @Dereference that address, loading the 32-bit word stored at mydata into r0

 bx lr

 mydata:

 .word 123

 Or
 ldr r2,=mydata @ pseudo-instruction that loads absolute address of mydata from a nearby literal pool into r2

 ldr r0,[r2]

 bx lr

 mydata:

 .word 123

 adr vs. ldr
 If mydata is in range for adr (c.f.,), both forms will leave r2 holding the same address at run time.

 Out-of-range labels: adr may fail; ldr =mydata still works, but it incurs one memory access

 Note: pseudo-instruction LDR Rd, =X loads a value if X is a constant, and an address if X is a symbol,
 e.g., “LDR r2, =0x55555555” loads the value 0x55555555 from memory

References

44

 Lecture 29. Calling a subroutine

 https://www.youtube.com/watch?v=xt2Q9n1Udb4&list=PLRJhV4hUhIymmp5CCeIFPy

xbknsdcXCc8&index=29

 Lecture 30. Passing Arguments to a Subroutine

 https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyx

bknsdcXCc8&index=31

https://www.youtube.com/watch?v=xt2Q9n1Udb4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=29
https://www.youtube.com/watch?v=xt2Q9n1Udb4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=29
https://www.youtube.com/watch?v=xt2Q9n1Udb4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=29
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31

	Slide 1: Z. Gu
	Slide 2: Overview
	Slide 3: Link Register (LR)
	Slide 4: Link Register (LR)
	Slide 5: Link Register (LR)
	Slide 6: Link Register (LR)
	Slide 7: Procedure Call Standard
	Slide 8: Passing Arguments and Returning Value
	Slide 9: Passing Arguments Examples
	Slide 10
	Slide 11
	Slide 12: Passing Arguments and Returning Value
	Slide 13: Returning Value
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Explanations
	Slide 20: Quiz
	Slide 21: Quiz ANS
	Slide 22: Calling Assembly Subroutine in C
	Slide 23: ARM Procedure Call Standard
	Slide 24: Callee Saved Registers vs Caller Saved Registers
	Slide 25: Example: SSQ(3, 4)
	Slide 26: Example: SSQ(3, 4)
	Slide 27: Example: SSQ(3, 4)
	Slide 28: Example: SSQ(3, 4)
	Slide 29: Example: SSQ(3, 4)
	Slide 30: Example: SSQ(3, 4)
	Slide 31: Example: SSQ(3, 4)
	Slide 32: Example: SSQ(3, 4)
	Slide 33: Example: SSQ(3, 4)
	Slide 34: Example: SSQ(3, 4)
	Slide 35: Example: SSQ(3, 4)
	Slide 36: Example: SSQ(3, 4)
	Slide 37: Example: SSQ(3, 4)
	Slide 38: Example: SSQ(3, 4)
	Slide 39: Realities
	Slide 40: Realities
	Slide 41: Summary
	Slide 42: Common Coding Patterns
	Slide 43: Common Coding Patterns
	Slide 44: References

