Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 8
Passing Parameters to Subroutines
via Registers

Z. Gu

Fall 2025

| Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Overview

» How to call a subroutine!?

» How to return the control back to the caller?
» How to pass arguments into a subroutine!?

» How to return a value in a subroutine!?

» How to preserve the running environment for the caller?

Link Register (LR)

Special Registers

Special

> Purpose

Register

32 bits
—
4 RO) Link Register (LR) holds the return
R1 address of a subroutine
R2 The processor copies LR to PC after
R3 .
Low
Regioan — the program is finished.
R5
T B
>. R7 Register
RS
High R9 32 bits
Registers R10
R11 xPSR__ |)
_ R12 J BASEPRI
Link R13 (SP) R13 (MSP) R13 (PSP) PRIMASK
) —>| R14(LR) FAULTMASK
Register R15 (PC) CONTROL

Register Bank

Link Register (LR)

void foo(void) ;

| cavee void foo (void) {
. . . ﬂ-o\ B e oo
int main(void{ er <8
1(““5(oo 0
o 0 o
4 caller — return;
. esuSPende' ’
‘FOO():é—f Resu™ }
o 0 o
}
Compiler
v
¢ Transfer] control to callee
BL foo 7 foo PROC
X Re m
e o o o
SUSPended Caller L)
ENDP

Link Register (LR)

Resi void foo(void) ;
egisters void foo (void) {
ro int main(void{ ool
rl ¢ return;
r2 foo(); }
r\3 e 0 o
}
Compiler
PC X
ri3 SP current N\
(5P) 0x08000210 — BL fo0 0x08000280 —>5fTo0 PROC
rl4 (LR) | 0x08000214 OX08000214 —> o ¢ / e e
r15 (PC) | ©x08000280 *
Transfer control to callee BX LR
32 bits LR = PC_ rrent +
ENDP
PC = Mem Addr of foo()

Link Register (LR)

Resi void foo(void) ;
egisters void foo (void) {
ro int main(void{ °°e
rl ¢ return;
r2 foo(); }
r\3 o 6 o
}
Combpiler
ri3 (SP) 0x02000210 —> BL oo 0x08000280 —f> foo PROC
rl4 (LR) | 0x08000214 OX08000214 == * * P
r15 (PC) 0x08000214 Resume suspended caller e
: PC —+—> BX LR
32 bits current
PC = LR ENDP

Procedure Call Standard

» What is it?
» Contract between a calling subroutine (caller) and a called subroutine (callee)
» Why need it!
» Allows subroutines to be separately written, compiled, assembled but work together

» Allows C program calls an assembly function, or vice versa

» This talk focuses on
» How to pass arguments to a subroutine?

» How to return a result from a subroutine?

Passing Arguments and Returning Value

__Ro_J§ Ri_J Rz Qg R3 ’

32-bit 32-bit 32-bit 32-bit

Argument 1 Argument 2 Argument 3 Argument 4 Extra arguments are
pushed to the stack by
R1(msB32) RO(LSB32) R3(MsB32) R2(LSB32) the call_er. The caller is)
64-bit Argument 1 64-bit Argument 2 responsible to pop them
out of the stack after the
R3(MSB32) R2 R1 RO(LSB32) subroutine returns.

128-bit Argument

“ R1(msB32) RO(LSB32) R3(mMsB32) R2 R1 RO(LSB32)

32-bit Return Value 64-bit Return Value 128-bit Return Value

Each argument with size < 32 bits, e.g., 8-bit
char, or |6-bit short, or 32-bit int, is passed in
a 32-bit register.

» Cannot pack multiple arguments into one register.

The subroutine can take arguments larger
than 32 bits. For example, a double-word
variable, such as 64-bit long, is passed in two
consecutive registers (e.g. RO and R1, or R2
and R3).A 128-bit variable is passed in four
consecutive registers.

» int64_t add_64(int64_t a, int64_t b)
» RO and R are used to store the variable a

The return result is stored in registers (RO-
R3), depending on the size of the return
variable. If it is less than 32 bits, it is stored in
RO. If it is a double-word sized variable, such
as long long or double variables in C, it is
stored in RO and R1.

» int]28_t multiply_64(inté4_t a,int64_t b)

» RO, RI, R2,and R3 are used to store the
result

Passing Arguments |

Registers

Stack in Memory

RO

RI

R2

R3

foo (int i0, int i1, inti2, int i3)

Registers

Stack in Memory

i0

i2

i3

foo (int i0, char a1, double D)

Registers

Each argument of 8-bit char, or |6-bit short, is passed
in a 32-bit register

Stack in Memory

i0

al

D

foo (int i0, int i1, double D, int i2, int i3)

Registers

Stack in Memory

i0

D

i2

i3

Caller passes arguments i0, il, D in registers RO-R3 directly; pushes additional arguments
i2 and i3 on the stack before subroutine call

Register

as8

b8

cl6

d16

.

Passing arguments
to a subroutine

int32_t sum(uint8_t a8, int8_t b8, uintl6_t c16, uintl6e_t di6);

BT I T BT

Register ro Register ri Register r2

~ N/

Subroutine

Register 3

e

Register r@

Register

ro sum | Return the sum in register ro
rl
r2
r3
ra int32_t sum(uint8_t a8, int8_t b8, uintl6_t c16, uintl6e_t di6);
r5
o BT U
r7 Register @ Register ri Register r2 Register r3
r3 /
r9 \ \ /
r1e0
r1 Subroutine
rl2
rl3 (SP) 1
6
rl5 (PC) Register ro

Passing Arguments and Returning Value

int32_t sum(uint8_t a8, int8_t b8, uintl6_t c16, uintl6e_t die6);

s = sum(1l, 2, 3, 4);

Caller Callee
MOVS ro, #1 ; a8 sum PROC
MOVS rl1, #2 ; bS8 ADD ro, ro, rl1 ; a8 + bS8
MOVS r2, #3 ; cl6 ADD r@, ro, r2 ; add cl6
MOVS r3, #4 ; dl6 ADD ro@, ro, r3 ; add dil6
BL sum BX LR
ENDP

Returning Value
uint32_t s32;
uint32_t sum(uint8_t a8, uint8_t b8, uintl6e_t cl1l6, uintl6_t die6);

s32 = sum(1, 2, 3, 4) + 100;

MOVS r@, #1 ; 1°% argument a8

MOVS r1, #2 ; 2" argument b8

MOVS r2, #3 ; 3" argument cl6

MOVS r3, #4 ; 4™ argument di16

BL sum ; result is returned in reo

ADD ro, ro, #100

LDR r4, =s32 ; Get memory address of s32
STR r@, [r4] ; Save returned result to s32

uint32_t s32 is declared as a C global variable, so the
compiler/linker creates storage for it in .data or .bss depending
on initialization.You can simply reference it by name in
--------------------------------- assembly as a label.

Register

al[31:0]

a[63:32]

b[31:0]

b[63:32]

-

Passing arguments
to a subroutine

int64_t sum(int64_t a, int64_t b);

Callee

sum PROC
ADDS ro, r2, ro
ADC rl1, r3, rl
BX LR
ENDP

; Adding lower 32 bits
; Adding upper 32 bits

J

: Return in rl:ro

Upper 32 bits

Lower 32 bits

rl ro
+ r3 r2
rl Ry ro
N
Carry out

Addendl

Addend2

Register

sum[31:0]

sum[63:32]

Returning sum
from a subroutine

int64_t sum(int64_t a, int64_t b);

Callee

sum PROC
ADDS ro, r2, ro
ADC rl1, r3, rl
BX LR
ENDP

; Adding lower 32 bits
; Adding upper 32 bits
Return in rl:r@

J

Upper 32 bits

Lower 32 bits

rl roe
+ r3 r2
rl Ry ro
N
Carry out

Addendl

Addend2

Register

al

a2

a2

a3

int32_t sum6(int32_t al, int32_t a2, int32 t a3, int32 t a4, int32 t a5, int32 t a6)

> Passing arguments
to a subroutine

sum6(1l, 2, 3, 4, 5, 6);

Sp

Memory

XXXX

MOVS
MOVS
PUSH
MOVS
MOVS
MOVS
MOVS
BL

ADDS

ro, #5
rl, #6
{r@, rl} ; push a5, a6
ro, #1
rl, #2
r2, #3
r3, #4

sumoé

sp, Sp, #8 ;, pop a4, a6

sum6 PROC
ADD
ADD
ADD
LDRD
ADD
ADD
BX
ENDP

ro,
ro,
ro,
rl,
ro,
ro,
LR

ro,
ro,
ro,
r2,
ro,
ro,

rl
r2
r3
[sp]
rl
r2

sum = al + a2
sum += a3

sum += a4
load a5, a6
sum += ab

sum += a6
return in ro

Register

al

a2

a2

a3

> Passing arguments
to a subroutine

int32_t sum6(int32_t al, int32_t a2, int32 t a3, int32 t a4, int32 t a5, int32 t a6)

sum6(1, 2, 3, 4, 5, 6);

Sp+8
sp+4
sp

Memory

XXXX

a6

ab

MOVS re, #5

MOVS rl, #6

PUSH {r@, rl} ; push a5, a6
MOVS ro, #1

MOVS ril, #2

MOVS r2, #3

MOVS r3, #4

BL sumé

ADD sp, sp, #8 ; pop a4, a6

sum6 PROC
ADD
ADD
ADD
LDRD
ADD
ADD
BX
ENDP

ro,
ro,
ro,
rl,
ro,
ro,
LR

ro,
ro,
ro,
r2,
ro,
ro,

rl
r2
r3
[sp]
rl
r2

sum = al + a2
sum += a3

sum += a4
load a5, a6
sum += ab

sum += a6
return in ro

Register

Memory
ro| al
Sp | XXXX
rl| a2 > Passing arguments a6
r2| a2 to a subroutine a5
r3| a3
r4
r5
ré int32_t sum6(int32_t al, int32_t a2, int32 t a3, int32 t a4, int32 t a5, int32 t a6)
r7 sum6(1, 2, 3, 4, 5, 6);
r8
MOVS ro, #5 ; MOVS can also be sum6é PROC
r9 MOV here ADD ro, ro, ri sum = al + a2
r10 MOVS rl1, #6 ADD r@, re, r2 sum += a3
PUSH {r@, rl1} ; push a5, a6 ADD ro, re, r3 sum += a4
ril MOVS ro, #1 LDRD r1, r2, [sp] ; load a5, a6
r12 MOVS rl1, #2 ADD ro, ro, ri sum += ab
MOVS r2, #3 ADD r@, re, r2 sum += a6
r13 (SP) MOVS r3, #4 BX LR return in ro
r14 (LR) BL sumé6 ENDP
ADD sp, sp, #8 ; pop a4, a6 by
ri5 (PC) restoring sp to its old position
————————————————————————— -before-calling--PROG---------oomm

Explanations
Step r0 ri r2 r3 Stack (top Description
first)
Before call 5 6 — — — a5, a6 prepared
After PUSH — — — — a5=5,a6=6 | pushed to stack
Set rO—r3 I 2 3 4 a5=5,26=6 |al—a4in regs
Inside sumé I 2 3 4 a5=5,26=6 | entry point
LDRD loads — 5 6 — a5=5,a6=6 | from stack
Return 21 — — — a5=5,26=6 | |+2+3+4+5+6 = 2]

» First 4 parameters — registers rO—r3.Extra parameters — pushed onto the stack.
» LDRD (Load Register Double) fetches two words (a5, a6) efficiently.

» r0 always holds the return value.

» Caller cleans up the stack after the function (ADDS sp, sp, #8).

» Can | use POP to replace ADD?

MOVS ro, #5

MOVS rl, #6

PUSH {r@, rl} ; push a5, a6
MOVS ro, #1

MOVS ril, #2

MOVS r2, #3

MOVS r3, #4

BL sum6

POP {ro, ril}

; ADD sp, sp, #8

Quiz ANS

» POP {r0, rl} is equivalent to LDMIA sp!, {rO,rl}
» Load [sp] into rO
» Load [sp + 4] into rl
» Then increment sp by 8

» This is wrong, because it would overwrite registers rO and r| with garbage (the old arguments you
pushed), whereas r0 should contain the return value

» After returning from sumé, you do not need those values (a5, a6) anymore.You just want to discard them, so
ADD moves stack pointer up by 8 bytes and discards data.

MOVS ro, #5

MOVS rl1, #6

PUSH {r@, rl} ; push a5, a6
MOVS ro, #1

MOVS ril, #2

MOVS r2, #3

MOVS r3, #4

BL sum6

POP {ro, ril}

; ADD sp, sp, #8

Calling Assembly Subroutine in C

» If your assembly code follows the procedure call standard, a C code can call

an assembly subroutine, and vice versa.

extern int32_t sum3(int32_t al, int32 t a2, int32_ t a3);

int main(void){
int32_t s

s = sum3(-1, -2, -3) + sum3(4, 5, 6);

sum3 PROC
EXPORT sum3
ADD ro, ro, ril
ADD ro, ro, r2
BX LR
ENDP

.
J
.
J

J

sum = al + a2
sum += a3

: return in ro

ARM Procedure Call Standard

Register Subroutine
g Preserved
o Argument 1 and return value No If ret-urn has 64 blt.S, then rO:rl hold it. If argument | has
64 bits, rO:rl hold it.
rl Argument 2 No
r2 Argument 3 No If the return has 128 bits, r0-r3 hold it.
r3 Argument 4 No If more than 4 arguments, use the stack
r4 General-purpose V| Yes Variable register | holds a local variable.
r5 General-purpose V2 Yes Variable register 2 holds a local variable.
ré General-purpose V3 Yes Variable register 3 holds a local variable.
r7 General-purpose V4 Yes Variable register 4 holds a local variable.
r8 General-purpose V5 Yes Variable register 5 holds a local variable.
r9 Platform specific/V6 Yes/No Usage is platform-dependent.
rie General-purpose V7 Yes Variable register 7 holds a local variable.
ril General-purpose V8 Yes Variable register 8 holds a local variable.
r12 (IP) |Intra-procedure-call register No It holds |nterm§d|ate values between a procedure and the
sub-procedure it calls.
ri3 (SP) | Stack pointer Yes SP has to be the same after a subroutine has completed.
r14 (LR) | Link register No LR does. not have to contain the same value after a
subroutine has completed.
rl5 (PC) |Program counter N/A Do not directly change PC

Callee Saved Registers vs
Caller Saved Registers

I 32 bits |
(Caller (TR0 1) ° Callee can freely modify RO, R, R2,and R3
Saved =1 * If caller expects their values are retained,
Registers = caller shou.ld push them onto the stack
before calling the callee
R3
egisters R4
R5
Callee RG > romme | © Caller expects these values are retained .
Saved R7 Register | o |f Callee modifies them, callee must restore
Registers o~ RS their values upon leaving the function.
o RY 32 bits
Regist:gs R10 —>
_ R11 / xPSR |)
L R12 | BASEPRI _
Special
R13 (SP) R13 (MSP) R13 (PSP) PRIMASK > ;urpotse
egister
R14 (LR FAULTMASK ’
R15 (PC) CONTROL |

Example: SSQ(3, 4)

SSQ

MOVS RO, #3
MOVS R1, #4
BL SSQ
MOVS R2,R0

B ENDL

PROC

MUL R2,R{, RO
MUL R3,R1,R1
ADD R2,R2,R3
MOVS RO,R2

BX LR
ENDP

Sum of Square: x% + y?

R1: second argument

RO: first argument

,/'—-\\\\\\

N

int SSQ(int™x, int y){
int z;
Z = X*X + y*y;
return z;

}

RO: Return Value

TN
Example: SSQ(3, 4)
MOVS RO, #3 RO
MOVS R1,#4 R1
Memory
BL SSQ R2 Address
MOVS R2,RO R3 MOVS Re,#3 | 0x08000128
B ENDL MOVS R1,#4 | 0x0800012C
LR BL SSQ Px08000130
SSQ PROC PC | 0x08000128 MOVS R2,RO | 0x08000134
MUL R2,RO,RO B ENDL Px08000136
MUL R3,R1,R1 SSQ | MUL R2,... | ©x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C
MOVS RO,R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | 0x08000142
ENDP
ENDL BX LR Px08000144

TN
Example: SSQ(3, 4)
MOVS RO, #3 RO 3
MOVS R1,#4 R1
Memory
BL SSQ R2 Address
MOVS R2,RO R3 MOVS RO, #3 | 0x08000128
B ENDL MOVS R1,#4 | 0x0800012C
LR BL SSQ Px08000130
SSQ PROC PC | 0x08000128 MOVS R2,RO | 0x08000134
MUL R2,RO,R0O B ENDL Px08000136
MUL R3,R1,R1 SSQ [MUL R2,... | 0x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C
MOVS RO,R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | 0x08000142
ENDP
ENDL BX LR Px08000144

TN
Example: SSQ(3, 4)
MOVS RO, #3 RO 3
MOVS R1,#4 R1 4
Memory
BL SSQ R2 Address
MOVS R2,RO R3 MOVS RO,#3 | 0x08000128
B ENDL MOVS R1,#4 | 0x0800012C
LR / BL SSQ 0x08000130
SSQ PROC PC | ©x0800012C MOVS R2,R0 | 0x08000134
MUL R2,RO,RO B ENDL OXx08000136
MUL R3,R1,R1 SSQ | MUL R2,... | ©x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C
MOVS RO,R2 ADD R2,R3 | ©x08000140
BX LR
MOVS R@,R2 | Ox08000142
ENDP
ENDL BX LR Px08000144

TN
Example: SSQ(3, 4)
MOVS RO, #3 RO 3
MOVS R1,#4 R1 4
Memory
BL SSQ R2 Address
MOVS R2,RO R3 MOVS RO, #3 | 0x08000128
B ENDL MOVS R1,#4 | 0x0800012C
LR / BL SSQ Px08000130
SSQ PROC PC | 0x08000130 MOVS R2,RO | 0x08000134
MUL R2,RO,R0O B ENDL Px08000136
MUL R3,R1,R1 SSQ [MUL R2,... | 0x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C
MOVS RO,R2 ADD R2,R3 | ©x08000140
BX LR
MOVS R@,R2 | ©x08000142
ENDP
ENDL BX LR Px08000144

TN

Example: SSQ(3, 4)
MOVS RO, #3 RO 3
MOVS R1,#4 R1 4

Memory

BL SSQ R2 Address
MOVS R2,R0O R3 MOVS RO,#3 | Ox08000128
B ENDL MOVS R1,#4 | 0x0800012C

LR | ©x08000134 BL SSQ 0x08000130

SSQ PROC PC| 0x0800013B Q MOVS R2,R0@ | 0x08000134

MUL R2,RO,RO B ENDL Ox08000136

MUL R3,R1,R1 SSQY MUL R2,... | Ox0800013B

ADD R2,R2,R3 RPN RECICELLEE I [MUL R3, ... | ©x0800013C

MOVS RO,R2 b bit @ of PC

"ovs Re, ATRAGTI (100 2,15 | 0+05000140
Al s il MOVS R@,R2 | 0x08000142

ENDP indicate thumb mode.
ENDL .o

BX LR 0x08000144

TN

Example: SSQ(3, 4)
MOVS RO, #3 RO 3
MOVS R1,#4 R1

Memory

BL SSQ R2 9 Address
MOVS R2,R0O R3 MOVS RO,#3 | Ox08000128
B ENDL MOVS R1,#4 | 0x0800012C

LR | ©x08000134 BL SSQ 0x08000130

SSQ PROC PC| 0x0800013B s MOVS R2,R0@ | 0x08000134

MUL R2,R0O,R0O B ENDL Px08000136
MUL R3,R1,R1 SSQY MUL R2,... | 0x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C
MOVS RO,R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | @x08000142
ENDP
—— BX LR 0x08000144

TN

Example: SSQ(3, 4)
MOVS RO, #3 RO 3
MOVS R1,#4 R1

Memory

BL SSQ R2 9 Address
MOVS R2,R0O R3 16 MOVS RO, #3 | 9x08000128
B ENDL MOVS R1,#4 | 0x0800012C

LR | ©x08000134 \ BL SSQ 0x08000130

SSQ PROC PC | 9x0800013C MOVS R2,RO | 0x08000134
MUL R2,RO,RO B ENDL Ox08000136

MUL R3,R1,R1 SSQ | MUL R2,... | ©x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C

MOVS RO, R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | ©x08000142
ENDP
ENDL . BX LR 0x08000144

TN

Example: SSQ(3, 4)
MOVS RO, #3 RO 3
MOVS R1,#4 R1 4

Memory

BL SSQ R2 25 Address
MOVS R2,R0O R3 16 MOVS RO,#3 | Ox08000128
B ENDL MOVS R1,#4 | 0x0800012C

LR | ©x08000134 \ BL SSQ 0x08000130

SSQ PROC PC | 9x08000140 MOVS R2,RO | 0x08000134
MUL R2,RO,RO B ENDL Ox08000136

MUL R3,R1,R1 SSQ | MUL R2,... | ©x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C

MOVS R, R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | ©x08000142
ENDP
ENDL . BX LR 0x08000144

TN

Example: SSQ(3, 4)
MOVS RO, #3 RO 25
MOVS R1,#4 R1 4

Memory

BL SSQ R2 25 Address
MOVS R2,R0O R3 16 MOVS RO,#3 | Ox08000128
B ENDL MOVS R1,#4 | 0x0800012C

LR | ©x08000134 \ BL SSQ 0x08000130

SSQ PROC PC | 008000142 MOVS R2,RO | 0x08000134
MUL R2,RO,RO B ENDL Ox08000136

MUL R3,R1,R1 Q |MUL R2,... | Ox0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C

MOVS RO, R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | Ox08000142
ENDP
ENDL . BX LR 0x08000144

TN

Example: SSQ(3, 4)
MOVS RO, #3 RO 25
MOVS R1,#4 R1 4

Memory

BL SSQ R2 25 Address
MOVS R2,R0O R3 16 MOVS RO,#3 | Ox08000128
B ENDL MOVS R1,#4 | 0x0800012C

LR | ©x08000134 \ BL SSQ 0x08000130

SSQ PROC PC | 008000144 MOVS R2,RO | 0x08000134
MUL R2,RO,RO B ENDL Ox08000136

MUL R3,R1,R1 Q |MUL R2,... | Ox0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C

MOVS RO, R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | ©x08000142
ENDP
ENDL . BX LR 0x08000144

TN
Example: SSQ(3, 4)
MOVS RO, #3 RO 25
MOVS R1,#4 R1 4
Memory
BL SSQ R2 25 Address
MOVS R2,R0O R3 16 MOVS Re,#3 | 0x08000128
B ENDL MOVS R1,#4 | 0x0800012C
LR | 0x08000134 BL SSQ Px08000130
S5Q PROC PC | 0x08000134 >)Movs R2,R0 | Ox08000134
MUL R2,RO,RO B ENDL Px08000136
MUL R3,R1,R1 SSQ | MUL R2,... | ©x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C
MOVS RO,R2
’ AR JORV TNl | ADD R2,R3 | 908000140
BX LR -t
ENDP from a subroutine! MOVS RO,R2 | 0x08000142
BX LR Px08000144
ENDL ... X

Example: SSQ(3, 4)
MOVS RO, #3 RO 25
MOVS R1,#4 R1 4 vemory
BL SSQ R2 25 Address
MOVS R2,R0O R3 16 MOVS RO,#3 | 9x08000128
B ENDL MOVS R1,#4 | ©x0800012C
LR | 0x08000134 BL SSQ Px08000130
SSQ PROC PC | 0x08000134 >Maovs R2,RO | Ox08000134
MUL R2,R0,R0O B ENDL Ox08000136

MUL R3,R1,R1 SSQ [MUL R2,... | Ox0800013B

ADD R2,R2,R3 MUL R3,... | ©x0800013C

MOVS RO, R2 ADD R2,R3 | ©x08000140
BX LR
MOVS RO,R2 | ©x08000142
ENDP
ENDL . BX LR 0x08000144

TN
Example: SSQ(3, 4)
MOVS RO, #3 RO 25
MOVS R1,#4 R1 4
Memory
BL SSQ R2 25 Address
MOVS R2,RO R3 16 MOVS Re,#3 | 0x08000128
B ENDL MOVS R1,#4 | ©x0800012C
LR | 0x08000134 \ BL SSQ Px08000130
SSQ PROC PC | 0x08000136 \MOVS R2,RO | Ox08000134
MUL R2,RO,R0O B ENDL Px08000136
MUL R3,R1,R1 SSQ [MUL R2,... | 0x0800013B
ADD R2,R2,R3 MUL R3,... | ©x0800013C
MOVS RO,R2 ADD R2,R3 | ©x08000140
BX LR
MOVS R@,R2 | ©x08000142
ENDP
ENDL BX LR Px08000144

Realities

» In the previous example,
» PC is incremented by 2 or 4.
» The least significant bit of LR is always O.

Well, | lied!

Realities

» PC is always incremented by 4.
» Each time, 4 bytes are fetched from the instruction memory

» It is either two |6-bit instructions or one 32-bit instruction

- — — — — — — 16-bit half-word = = == e— a— -

Instruction

X | x| x| x| x 1 x| xIxI x| xIxpPxlI x| x| x| x| sen ec———s,
Stream

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

If bit [15-11] = 11101,11110,0r 11111, then,it is the first half-word
of a 32-bit instruction. Otherwise, it is a | 6-bit instruction.

» The least significant bit of LR is always 1 for ARM Cortex-M

» This bit is used to control the processor mode:
0 =ARM,1 =THUMB
» Cortex-M only supports THUMB.

» How to call a subroutine!?
» Branch with link: BL subroutine

» How to return the control back to the caller?
» Branch and exchange: BX LR

» How to pass arguments into a subroutine!?
» Each 8-, |6- or 32-bit variables is passed via r9,rl,r2,r3

» Extra parameters are passed via stack

» How to return a value in a subroutine?

» Value is returned in ro

» How to preserve the running environment for the caller?

» (to be covered)

Common Coding Patterns

» Callee returns a constant in rO.
» mov r0#17 @ r0 is return value register
» bxIr @ return from function

» Callee saves some registers, does some arithmetic, and returns the result in rO.
push {r4-r7,Ir}

mov r4,#10

mov r5,#100

add rO,r4,r5

pop {r4-r7,pc} @ pop saved Ir value into PC to return from function
» Callee calls another function (nested function calls)

» push {Ir} @ must save LR if we call our own function

» mov r0,#123 @ r0 is first function parameter

» bl print_int @ call function print_int(123)

» pop {pc} @ pop saved Ir into PC to return from function

» Callee return: restore previously-pushed LR, then jump to LR (POP {Ir}; BX Ir), or equivalently, pop
previously-pushed LR to PC

» POP {pc} = POP {Ir}; BX Ir

v Vv Vv Vv Vv

Common Coding Patterns

» Memory access: first put memory address into register, then load memory content at that address
» adrr2,mydata @Compute address of label mydata using a PC-relative add and put that address in r2
» Idr r0, [r2] @Dereference that address, loading the 32-bit word stored at mydata into r0

» bxlIr

» mydata:

> .word 123

» Or
|dr r2,=mydata @ pseudo-instruction that loads absolute address of mydata from a nearby literal pool into r2
|dr rO,[r2]
bx Ir
mydata:
.word 123
» adr vs.Idr
» If mydata is in range for adr (c.f.,), both forms will leave r2 holding the same address at run time.
» Out-of-range labels: adr may fail; Idr =mydata still works, but it incurs one memory access
» Note: pseudo-instruction LDR Rd, =X loads a value if X is a constant,and an address if X is a symbol,
» e.g, LDR r2,=0x55555555" loads the value 0x55555555 from memory

v Vv Vv Vv Vv

References

» Lecture 29. Calling a subroutine

» https://www.youtube.com/watch?v=xt2Q9n | Udb4&list=PLR]hV4hUhlymmp5CCelFPy
xbknsdcXCc8&index=29

» Lecture 30. Passing Arguments to a Subroutine

» https://www.youtube.com/watch?v=DGK|jFKjxAYs&list=PLR|hV4hUhlymmp5CCelFPyx
bknsdcXCc8&index=3 |

https://www.youtube.com/watch?v=xt2Q9n1Udb4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=29
https://www.youtube.com/watch?v=xt2Q9n1Udb4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=29
https://www.youtube.com/watch?v=xt2Q9n1Udb4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=29
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31
https://www.youtube.com/watch?v=DGKjFKjxAYs&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=31

	Slide 1: Z. Gu
	Slide 2: Overview
	Slide 3: Link Register (LR)
	Slide 4: Link Register (LR)
	Slide 5: Link Register (LR)
	Slide 6: Link Register (LR)
	Slide 7: Procedure Call Standard
	Slide 8: Passing Arguments and Returning Value
	Slide 9: Passing Arguments Examples
	Slide 10
	Slide 11
	Slide 12: Passing Arguments and Returning Value
	Slide 13: Returning Value
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Explanations
	Slide 20: Quiz
	Slide 21: Quiz ANS
	Slide 22: Calling Assembly Subroutine in C
	Slide 23: ARM Procedure Call Standard
	Slide 24: Callee Saved Registers vs Caller Saved Registers
	Slide 25: Example: SSQ(3, 4)
	Slide 26: Example: SSQ(3, 4)
	Slide 27: Example: SSQ(3, 4)
	Slide 28: Example: SSQ(3, 4)
	Slide 29: Example: SSQ(3, 4)
	Slide 30: Example: SSQ(3, 4)
	Slide 31: Example: SSQ(3, 4)
	Slide 32: Example: SSQ(3, 4)
	Slide 33: Example: SSQ(3, 4)
	Slide 34: Example: SSQ(3, 4)
	Slide 35: Example: SSQ(3, 4)
	Slide 36: Example: SSQ(3, 4)
	Slide 37: Example: SSQ(3, 4)
	Slide 38: Example: SSQ(3, 4)
	Slide 39: Realities
	Slide 40: Realities
	Slide 41: Summary
	Slide 42: Common Coding Patterns
	Slide 43: Common Coding Patterns
	Slide 44: References

