Embedded Systems with ARM Cortex-M
Microcontrollers in Assembly Language and C

Chapter 7
Structured Programming

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Basic Control Structures

Statement 1
False
¢ True False
True

Statement 2 Statement 1 Statement 2
Statement
v +
Statement 2 T v
Sequence Structure Selection Structure loop: Structure

» Spaghetti Code

» Before the 1980s, program flow bounces around
anywhere the programmer wanted.

110700 1
01010114

» Culprit: overusing “GOTO” statements 10011001

Qo0 ol

11014011
Aodoidn
LTHRRTRER]
foaioipd

Spaghetti code in BASIC

1 1=0 1o
5 ieitl e
3 PRINT i; "squared=";i*i
4 IF i>=100 THEN GOTO 6 Lbtasie
5 GOTO 2 et ey
6 PRINT "Program Completed." A e
7 END 6o 70
oA 0

Structured programming in BASIC

1 FOR i=1 TO 100

2 PRINT 1i;"squared=";i*i

3 NEXT i

4 PRINT "Program Completed."
5 END

> 3 https://en.wikipedia.org/wiki/Spaghetti_code https://commons.wikimedia.org/wiki/File:Spagetti_code_structural graphic.GIF

https://commons.wikimedia.org/wiki/File:Spagetti_code_structural_graphic.GIF
https://en.wikipedia.org/wiki/Spaghetti_code

Importance of Structured Programming

» Assembly is not a structured programming language
» Does not directly support selection and loop:
» Branch in assembly =“goto” in C
» Break the single-entry single-exit rule
» Easy to generate spaghetti code in assembly
» Twisted and tangled
» Difficult to debug & maintain

» One strategy to alleviate the challenge

» Use flowcharts to facilitate assembly programming

» That is why textbook has many flowcharts
» How to build flowcharts?

Software Design Strategy:
Top-Down Design

» Three common design strategies

» Top-down, also known as stepwise
refinement

» Bottom up \ Main task /

» Object oriented \ Smaller subtasks /

@
&

» Top-down: Repeatedly break down

. . 2, : / &
tasks into smaller and smaller pieces 8, . S
until they are easy to solve Trivial
subtasks

» Example: Planning a picnic
Task |:Where

» Task 2:When

» Task 3:Who

» Task 4: Food

o~
&
&
&
N
§
N

v

Top-Down Design Example

» Find all Armstrong numbers less than 10,000

» Given a positive integer that has n digits, it is an Armstrong number if the sum of the
n™" powers of its digits equals the number itself.

153 = 13 + 53 + 33
371 =33+73+ 13
1634 = 1* + 6* + 3* + 44

Top-Down Design Example

l x=1
If 1 is an Armstrong number, then print 1. d
If 2 is an Armstrong number, then print 2.
If 3 is an Armstrong number, then print 3.

If X is an Armstrong number,

If 4 is an Armstrong number, then print 4.
If 5 is an Armstrong number, then print 5.

NO

then print x Print x

If 6 is an Armstrong number, then print 6.

v

X=X+ 1

X=X+1

i];.9999 Is an Armstrong number, then print 9999.

Top-Down Design Example

Determine how many
digits x has.

Determine all digits of x.

Check whether x is | <
an Armstrong Number

Calculate the sum of the
power of all digits

Check whether x equals to
the sum

Top-Down Design Example:
Counting digits

Initialization:
— count=0
Determine how many

digits x has.

Determine all digits of x. No
Check whether x is <
an Armstrong Number
Calculate the sum of the

ower of all digits
i J Yes

Check whether x equals to

the sum number = number/10
— v

counter = counter + 1

Reuse Registers

Data memory Little-Endian
Address Data
OX2000,000F | Ox00 |
0x2000,000E _ _
int A = @; // 0x00000000 o000, %000 9X99 | - D = 6x0000,0002 = 2
int B = -1; // OXFFFFFFFF 6x2006. 00oC NEED
int C = -2; // OXFFFFFFFE 0x2000. 0008 NENEE <
int D = 2; // ©x00000002 ex2000. ooon [NEER et
: . : 0x2000,0009 | OXFF > C = ox > = -
void main(void){ ax2000. oves [NENEE
A=B+C-D; <
return; a0t o000 | BXET
) ox2000. 0005 NETEE > B = OXFFFF,FFFF = -1
0x2000,0004 | OXFF <
0x2000,0003 | OX00
0x2000,0002 | OX00
ex2000. 0001 [NEEEE >~ A = 0x0000,0000 = @
0Xx2000,0000 | OX00 Y.

Reuse Registers

int A = 0; // 0x00000000
int B = -1; // OxFFFFFFFF
int C = -2; // OxFFFFFFFE
int D = 2; // 0x00000002

void main(void){
A=B+C-D;
return;

}

Eight registers are used:
RO,rl,r2,r3,rd,r5,r6,r7

AREA myCode, CODE

EXPORT _ main
ENTRY
__main PROC

LDR r2, = ;
LDR r3, [r2] 5
LDR r4, = ;
LDR r5, [r4] 5
LDR r6, = ;
LDR r7, [r6] 5
ADD rl, r3, r5 ;

SUB
LDR
STR
ENDP

AREA
DCD
DCD
DCD
DCD

N w >

END

rl, rl, r7 ;
ro, =A 5
rl, [r@]

myData, DATA

r2 = 0x2000,0004
r3i =B8B= -1

rd4 = 0x2000,0008
rs- =C= -2

ré = 0x2000,000B
r7 =D =2
ri=B+C
ri=B+C-0D
ro = 0x2000, 0000
Save A

Reuse Registers

Lifetime
of r3

AREA
EXPO

myCode, CODE
RT __main

ENTRY

__main

LDR
(~ LDR
LDR
LDR
LDR
LDR
\. ADD
SUB
LDR
STR
ENDP

AREA
DCD
DCD
DCD
DCD

oON w >

END

8 registers used

PROC

r2, =B
r3, [r2]
ra, =C

r5, [r4]
ré, =D

r7, [ré6]
rl, r3, r5
rl, rl, r7
re, =A
rl, [ro]

myData, DATA

The lifetime of a value in a register starts when the value is written
into the register and ends when that value is no longer needed
(either overwritten or no longer used in future instructions).

AREA myCode, CODE
EXPORT _ main
ENTRY

__main

LDR
LDR
LDR
LDR
LDR
LDR
ADD
SUB
LDR
STR
ENDP

AREA
DCD
DCD
DCD
DCD

N w >

END

PROC

r2,
r3,
r2,
r5,
r2,
r7,
r3,
r3,
r2,
r3,

myD

AREA myCode, CODE
EXPORT _ main
ENTRY
__main PROC
=B LDR r2, =
[r2] LDR r3, [r2]
=C Lifetime LDR r2, =
[r2] (©f"21) DR 2, [r2]: loads from | LDR 5, [r2]
=D memory address r2 into LDR r2, =
[r2] ~/) . LDR r2, [r2]
r3, 5 r'eglstervalue r2.ltis OK ADD r3, r3, p5 \-Reuse
r3, r7 since memory ad.dress r2 | cus r3, r3, r2 rz
“A L ifeti is never used again. LDR r2, =
[r2] of r2 STR r3, [r2]
ENDP
ata, DATA AREA myData, DATA

4 registers used

DCD ©
DCD -1
DCD -2
DCD 2

ON w >

END

3 registers used

Example 1: Factorial Numbers

(staRT)
v

Initialization:
Result = 1
i=1
n
No n!=‘ ‘i=nx(n—1)x(n—2)---x2x1
i=1
Yes

Result = Result * i

v

i=1+1

Example 1: Factorial Numbers

C Program

Assembly Program 1

Assembly Program 2

int main(void) {
int result, n, 1i;

result = 1;
n =5;
for (1 = 1; i <= n;
i++)
result = result * i;
}
> 4

AREA factorial, CODE, READONLY
EXPORT _ main

ENTRY
PROC
MOV
MOV

__main
rl, #4
ro, #1

rl
ro

result.

MOV r2, #1
CMP r2, ri
BGT stop

MUL r@, r2,
ADD r2,

B loop

; P2 i 1

;compare r2 and n

; if 1 > n, stop
ro result *= i
r2, #1 i++

loop:

.
J

)

AREA factorial, CODE, READONLY
EXPORT _ main
ENTRY
__main PROC
MOV rli, #4 ; rl = n
MOVS re, rl ; ro = n. Also sets
flags based on r@ (so we can handle
n==0)
MOVEQ rO, #1 ; if n == 0, set ro
=1
loop: SUBNES rl1, rl, #1 ; if rl !=
0: rl =rl1 - 1 (and set flags)
MULNE r@, rl, re ; if rl != O:
re =rl * ro
BNE loop ; if rl 1= 0,

jump to loop label

Worked example for N = 4

» Assembly Program I:

» r2is loop counter (i) initialized to |, rO is running product (result) initialized to I, r| holds n.
Entry:rl =4 (input). MOV r0,#| — r0 = | (initialize result). MOV r2,#| — r2 = | (starti = I).

» Loop iteration I: CMP r2,rl compares | and 4 (I < 4),so continue. MUL r0,r2,rO - rO=1*1=1.ADD r2,r2,#| — r2 = 2.B loop
branches back.

Iteration 2: CMP r2, r| compares 2 and 4 (2 < 4), continue. MUL r0,r2,r0 — r0 =2* | =2.ADD r2,r2,#| — r2 = 3. B loop.
Iteration 3: CMP r2, r| compares 3 and 4 (3 < 4), continue. MUL r0,r2,r0 — r0 =3 *2 = 6.ADD r2,r2,#| — r2 = 4.B loop.
Iteration 4: CMP r2, r| compares 4 and 4 (4 < 4), continue. MUL r0,r2,r0 — r0 =4 * 6 = 24.ADD r2,r2,#| — r2 = 5.B loop.
Iteration 5 (exit test): CMP r2,r| compares 5 and 4 (5 > 4), BGT stop taken, loop ends. Fall through to return.

Return: MOV pc, rl4 (or BX Ir), function returns with rO = 24 (which is 4!).
Final registers of interest: rO = 24 (result),rl =4 (n),r2 =5 (loop counter one past n).

» Assembly Program 2:

rl is loop counter initialized to 4, r0 is running product initialized to rl = 4.

Entry: r0=4 (input). MOVS rl,r0 — r1=4,7=0. MOVEQ skipped.

Loop iteration I:SUBS rl,rl,#l — rl1=3 (Z=0).MUL r0 =rl * rO0 — r0 = 3*4 = |2. BNE true — repeat.

Iteration 2: SUBS — r1=2.MUL — r0 = 2*|2 = 24. BNE true.

Iteration 3: SUBS — rl=1.MUL — r0 = 1*24 = 24. BNE true.

Iteration 4: SUBS — r1=0, sets Z=1. MULNE skipped (NE false), BNE not taken, fall through to MOV pc,rl4. Return rO = 24 (which is 4!).

» Assembly Program 3 (omitted):
» r0is running product initialized to r| = |, and the loop counter counts up to n.

v Vv Vv v Vv

v Vv Vv Vv Vv Vv

Stop B stop

» “stop B stop” means an infinite loop: that repeatedly branches to the label
"StOP".
» Literal translation to C is while(I);

» B is the branch instruction in ARM, which causes the program to jump to the specified
label or address.

» Here, the label and destination are both "stop". This creates a loop: where execution
never moves past this point.

» It is commonly used to halt the program or wait indefinitely, often when the program
completes or to prevent it from running into uninitialized memory.

. . After LDR:rO=10101010101010I0I10IOI0IOIOIOIO0I0
Example 2: Counting Ones in = (Ladinput cara inco r0)

After MOV:rl=r0 >> 31 = | (Initialize r| with the most
a Word significant bit of r0. rO logical shift right by 31 bits, take the
___ leftmost bit b3 1)
Assembly Program After MOVS:r0 = r0 << 2
AREA Count Ones, CODE =l0lol0lolololOlOIOI0I0I0I0I0I000
EXPORT main (Logical shift left rO by 2 bits and update C = 0, as the last shifted
ALIGN out bit b30)
ENTRY After ADC:rl =rl +r0>> 31 + Carry =b3| + b29 + b30 =| +
main PROC | +0=2
— ; r@ = Input = x 2" jteration:rl =rl +b28 +b27=2+1+0=3
. rl = Number of ones = counter If after MOVS, the result in r0 is zero, (no more I’s), Z flag is set
LDR ro, =—OxAAAAAAAA to | and the loop: exits
Initialization
; rl =re > 31 MOV r1, r0, LSR #31 ; 11 =b31 of r0
MOV rl1, r@, LSR #31 rM: [0]—» 0o — [o [b31}—> C |
/ Carry
; M@ = re << 2 and change Carry /
loop: MOVS ro, ro, LSL #2 Loop
MOVS r0, r0, LSL #2 ; shift b30 into Car
5 rl =r1 + ro > 31 + Carry r0: [b30 je—]b29] <«Jwo oo
ADC rl, rl, ro, LSR #31 Carry /
BNE 1loop:
ro, LSR #31
Stop: B stop [ofF—{o —> o [ozo] [b30]
ENDP Carry is not
END ADC r1,r1,r0,LSR#31 ; r1 -we updated

'' At the end of the first loop: 1= b31 +b30 + b29""""'"

Example 2: Counting Ones in a Word: Explanations

Iteration Shifted r0 value | Carry bit (last rl (accumulated count) | Notes
(MSB bit) shifted out)

. _ rl initialized with
0 (init) — — b3l =1 b3
| 109 = | 130 = 0 | (b31) + 1 (629) + 0 (b30) | rO shifted lefc by 2

=2 bits
2 b27 = | b28 =0 2+ | (b27) + 0 (b28) = 3
3 b25 = | b26 = 0 3+ | (b25) + 0 (b26) = 4
4 b23 = | b24 =0 4+ 1 (b23)+0 (b24) =5
» In OXAAAAAAAA, bits at odd positions (31,29, 27, ..., |) are all 1, bits at even positions (30, 28, 26, ..., 0) are

all 0.
» Carry bit is always the even bit index at each iteration.
» At each iteration, r| accumulates | (highest bit, odd index) + 0 (carry bit, even index).
» The loop: ends when r0 becomes zero after the last shift, triggering the Zero flag and exiting the branch.
» The count accumulates to |6, consistent with the fact that OXAAAAAAAA has exactly 16 ones in 32 bits.

» This program counts two bits per loop iteration, leveraging the Carry bit, and will take 16 iterations for a 32-
bit word.

Example 2: Counting Ones in a Word: Simpler Programs

LDR ro, =0xAAAAAAAA ;3 Load input data into ro
MOV r2, #0 5 Initialize count (r2) to o

loop:

MOV rl1, ro, LSR #31 5 Extract leftmost bit (MSB) of r@ into rl1 (0 or 1)
ADD r2, r2, ri ; Add extracted bit to count in r2
MOVS ro, ro, LSL #1 ; Shift re left by 1 bit, update flags
BNE loop ; If ro != 0, repeat loop(may loop less than 32 iters)
LDR ro, =0xAAAAAAAA ;3 Load input data into ro Algo 2
MOV r2, #0 5 Initialize bit count accumulator (r2) to 0

loop:
MOVS r@, ro, LSL #1 5 Shift left by 1 bit, carry gets old MSB
ADC r2, r2, #0 ;3 Add carry (0 + carry) to r2
BNE loop ; Loop while r@ != 0 (Zero flag clear)

» Algo l:use MOV rl, r0, LSR #31 to extract the highest bit from r0 and accumulates the per-bit count. (Carry flag is
set but ignored.)

» Algo 2:use MOVS r0, rO, LSL #1 to shift left by | bit and update the carry flag with the bit shifted out (the leftmost

bit of the original value). Use ADC (Add with Carry) to add the carry bit to accumulator r2 without needing to
move the leftmost bit explicitly.

» Both programs count one bit per loop iteration. Algo | uses rl to store the MSB of intermediate values of r0, and
Algo 2 uses C flag to store it.

» Q: InAlgo | and Algo 2, can we change MOVS r0, rQ, LSL #1 to MOV r0, r0,
LSL #1?

» ANS: No, since the C carry flag, which captures the leftmost bit shifted out, is needed
for bit counting

» Q:InAlgo |, can we change MOV rl, r0,LSR #31 to MOVS rl, rO, LSR #3 1
» ANS: Yes, MOVS sets flags, but they are not used by later instsructions.

» Q:InAlgo 2, can we change ADC r2,r2,#0 to ADD r2,r2, #0?

» ANS: No, ADC (Add with Carry) adds two operands plus the carry flag. ADD only
adds the two operands without considering the carry flag

Example 3: Finding
Max of an Array

(starT)
v

Initialization:
maxLocation = @
maxValue = array[@]
i=290

// Initialize max and location
maxLocation = 0O;
maxValue = array[0];

// loop: through the array
for (i = @; 1 < arraySize; i++) {
if (array[i] > maxValue) {
maxValue = array[i];
maxLocation = 1i;

No
i < arraySize

Yes

array[i] > No
maxValue

Yes

maxLocation = i
maxValue = array[i]

Example 3: Finding Max of an Array

C Program

Assembly Program

int array[10] = {-1, 5, 3, 8, 10, 23, 6, 5,

2, -10};

int size = 10;
int main(void) {
int i, maxLocation, maxValue;

// Initialize max and location
maxLocation = 0;
maxValue = array[0];

// loop: through the array
for (i = @; i < size; i++){
if (array[i] > maxValue) {
maxValue = array[i];
maxLocation = i;

while(1); //dead loop:

15

AREA myData, DATA

ALIGN
array pcb -1,5,3,8,10,23,6,5,2,-10
size DCD 10

AREA findMax, CODE
EXPORT __main
ALIGN
ENTRY
__main PROC
; Identify the array size
LDR r3, =size
LDR r3, [r3] 5 array size
SuB r3, r3, #1

5 Initialize max value and location
LDR r4, =array

LDR reo, [r4] 5 r@ = default max

MOV rl, #o 3 rl = max location
5 loop: over the array
MoV r2, #0 5 loop: index i
loop: CcMP r2, r3 ; compare i & size
BGE stop ; stop if i 2 size
LDR r5, [r4,r2,LSL #2] ;5 array[i]
CcMP r5, ro ; compare with max
MOVGT r@, r5 ; update max value
MOVGT rl1, r2 ; update location
ADD r2, r2, #1 ; update index i
B loop
stop B stop ; dead loop:
______________ ENOP
END

» Instruction LDR r5, [r4,r2,LSL #2] has the form:

» LDR <destination register>, [<base register>, <index register>, LSL #<shift
amount>]

» Address=value in r4+(value in r2x22)

» The memory address is calculated by taking the value in the <base register> (here r4)
plus the value in the <index register> (here r2) shifted left (logical shift left, LSL) by a
certain number of bits (#2 means shifted by 2 bits, or multiplied by 4).

» Q:why do we perform r2x2? here!?
» ANS:

	Slide 1: Z. Gu
	Slide 2: Basic Control Structures
	Slide 3: History
	Slide 4: Importance of Structured Programming
	Slide 5: Software Design Strategy: Top-Down Design
	Slide 6: Top-Down Design Example
	Slide 7: Top-Down Design Example
	Slide 8: Top-Down Design Example
	Slide 9: Top-Down Design Example: Counting digits
	Slide 10: Reuse Registers
	Slide 11: Reuse Registers
	Slide 12: Reuse Registers
	Slide 13: Example 1: Factorial Numbers
	Slide 14: Example 1: Factorial Numbers
	Slide 15: Worked example for N = 4
	Slide 16: Stop B stop
	Slide 17: Example 2: Counting Ones in a Word
	Slide 18: Example 2: Counting Ones in a Word: Explanations
	Slide 19: Example 2: Counting Ones in a Word: Simpler Programs
	Slide 20: Quiz
	Slide 21: Example 3: Finding Max of an Array
	Slide 22: Example 3: Finding Max of an Array
	Slide 23: Quiz

