
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M

Microcontrollers in Assembly Language and C

Chapter 7

Structured Programming

1
Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Basic Control Structures

2

Sequence Structure Selection Structure loop: Structure

History

3

 Spaghetti Code

 Before the 1980s, program flow bounces around

anywhere the programmer wanted.

 Culprit: overusing “GOTO” statements

https://commons.wikimedia.org/wiki/File:Spagetti_code_structural_graphic.GIF

1 i=0
2 i=i+1
3 PRINT i; "squared=";i*i
4 IF i>=100 THEN GOTO 6
5 GOTO 2
6 PRINT "Program Completed."
7 END

Spaghetti code in BASIC

Structured programming in BASIC

1 FOR i=1 TO 100
2 PRINT i;"squared=";i*i
3 NEXT i 'termination of loop: body
4 PRINT "Program Completed."
5 END

https://en.wikipedia.org/wiki/Spaghetti_code

https://commons.wikimedia.org/wiki/File:Spagetti_code_structural_graphic.GIF
https://en.wikipedia.org/wiki/Spaghetti_code

Importance of Structured Programming

4

 Assembly is not a structured programming language

 Does not directly support selection and loop:

 Branch in assembly = “goto” in C

 Break the single-entry single-exit rule

 Easy to generate spaghetti code in assembly

 Twisted and tangled

 Difficult to debug & maintain

 One strategy to alleviate the challenge

 Use flowcharts to facilitate assembly programming

 That is why textbook has many flowcharts

 How to build flowcharts?

Software Design Strategy:

Top-Down Design

5

 Three common design strategies

 Top-down, also known as stepwise
refinement

 Bottom up

 Object oriented

 Top-down: Repeatedly break down
tasks into smaller and smaller pieces
until they are easy to solve

 Example: Planning a picnic

 Task 1: Where

 Task 2: When

 Task 3: Who

 Task 4: Food

Top-Down Design Example

6

 Find all Armstrong numbers less than 10,000

 Given a positive integer that has n digits, it is an Armstrong number if the sum of the

nth powers of its digits equals the number itself.

371 = 33 + 73 + 13

1634 = 14 + 64 + 34 + 44

153 = 13 + 53 + 33

Top-Down Design Example

7 Step 1 Step 2 Step 3

Top-Down Design Example

8

Top-Down Design Example:

Counting digits

9

Reuse Registers

10

int A = 0; // 0x00000000
int B = -1; // 0xFFFFFFFF
int C = -2; // 0xFFFFFFFE
int D = 2; // 0x00000002

void main(void){
 A = B + C – D;
 return;
}

0x00
0x00
0x00
0x02
0xFF
0xFF
0xFF
0xFE
0xFF
0xFF
0xFF
0xFF
0x00
0x00
0x00
0x00

0x2000,000F

0x2000,000E

0x2000,000D

0x2000,000C

0x2000,000B

0x2000,000A

0x2000,0009

0x2000,0008

0x2000,0007

0x2000,0006

0x2000,0005

0x2000,0004

0x2000,0003

0x2000,0002

0x2000,0001

0x2000,0000

DataAddress

A = 0x0000,0000 = 0

B = 0xFFFF,FFFF = -1

C = 0xFFFF,FFFE = -2

D = 0x0000,0002 = 2

Data memory Little-Endian

Reuse Registers

11

int A = 0; // 0x00000000
int B = -1; // 0xFFFFFFFF
int C = -2; // 0xFFFFFFFE
int D = 2; // 0x00000002

void main(void){
 A = B + C – D;
 return;
}

AREA myCode, CODE
 EXPORT __main
 ENTRY
__main PROC

LDR r2, =B ; r2 = 0x2000,0004
LDR r3, [r2] ; r3 = B = -1
LDR r4, =C ; r4 = 0x2000,0008
LDR r5, [r4] ; r5 = C = -2
LDR r6, =D ; r6 = 0x2000,000B
LDR r7, [r6] ; r7 = D = 2
ADD r1, r3, r5 ; r1 = B + C
SUB r1, r1, r7 ; r1 = B + C - D
LDR r0, =A ; r0 = 0x2000,0000
STR r1, [r0] ; Save A

 ENDP

 AREA myData, DATA
A DCD 0
B DCD -1
C DCD -2
D DCD 2

 END

Eight registers are used:

R0,r1,r2,r3,r4,r5,r6,r7

Reuse Registers

12

 AREA myCode, CODE
 EXPORT __main
 ENTRY
__main PROC

 LDR r2, =B
 LDR r3, [r2]
 LDR r4, =C
 LDR r5, [r4]
 LDR r6, =D
 LDR r7, [r6]
 ADD r1, r3, r5
 SUB r1, r1, r7
 LDR r0, =A
 STR r1, [r0]
 ENDP

 AREA myData, DATA
A DCD 0
B DCD -1
C DCD -2
D DCD 2

 END

8 registers used

Lifetime

of r3

 AREA myCode, CODE
 EXPORT __main
 ENTRY
__main PROC

 LDR r2, =B
 LDR r3, [r2]
 LDR r2, =C
 LDR r5, [r2]
 LDR r2, =D
 LDR r2, [r2]
 ADD r3, r3, r5
 SUB r3, r3, r2
 LDR r2, =A
 STR r3, [r2]
 ENDP

 AREA myData, DATA
A DCD 0
B DCD -1
C DCD -2
D DCD 2

 END

3 registers used

Reuse

r2

 AREA myCode, CODE
 EXPORT __main
 ENTRY
__main PROC

 LDR r2, =B
 LDR r3, [r2]
 LDR r2, =C
 LDR r5, [r2]
 LDR r2, =D
 LDR r7, [r2]
 ADD r3, r3, r5
 SUB r3, r3, r7
 LDR r2, =A
 STR r3, [r2]
 ENDP

 AREA myData, DATA
A DCD 0
B DCD -1
C DCD -2
D DCD 2

 END

4 registers used

Lifetime

of r2

Lifetime

of r2

The lifetime of a value in a register starts when the value is written

into the register and ends when that value is no longer needed

(either overwritten or no longer used in future instructions).

LDR r2, [r2]: loads from

memory address r2 into

register value r2. It is OK

since memory address r2

is never used again.

Example 1: Factorial Numbers

13

𝒏! =ෑ

𝒊=𝟏

𝒏

𝒊 = 𝒏 × (𝒏 − 𝟏) × (𝒏 − 𝟐)⋯× 𝟐 × 𝟏

Example 1: Factorial Numbers

14

C Program Assembly Program 1 Assembly Program 2

int main(void) {
 int result, n, i;

AREA factorial, CODE, READONLY
 EXPORT __main
 ENTRY
__main PROC

AREA factorial, CODE, READONLY
 EXPORT __main
 ENTRY
__main PROC

result = 1;
 n = 5;

MOV r1, #4 ; r1 = n
 MOV r0, #1 ; r0 = result.

MOV r1, #4 ; r1 = n

MOVS r0, r1 ; r0 = n. Also sets
flags based on r0 (so we can handle
n==0)

MOVEQ r0, #1 ; if n == 0, set r0
= 1

for (i = 1; i <= n;
i++)
 result = result * i;

MOV r2, #1 ; r2 = i = 1
loop: CMP r2, r1 ;compare r2 and n
 BGT stop ; if i > n, stop
 MUL r0, r2, r0 ; result *= i
 ADD r2, r2, #1 ; i++
 B loop

loop: SUBNES r1, r1, #1 ; if r1 !=
0: r1 = r1 - 1 (and set flags)

MULNE r0, r1, r0 ; if r1 != 0:
r0 = r1 * r0

BNE loop ; if r1 != 0,
jump to loop label

} stop: B stop
 ENDP
 END

stop: B stop
 ENDP
 END

Worked example for N = 4

15

 Assembly Program 1:

 r2 is loop counter (i) initialized to 1, r0 is running product (result) initialized to 1, r1 holds n.
Entry: r1 = 4 (input). MOV r0, #1 → r0 = 1 (initialize result). MOV r2, #1 → r2 = 1 (start i = 1).

 Loop iteration 1: CMP r2, r1 compares 1 and 4 (1 ≤ 4), so continue. MUL r0, r2, r0 → r0 = 1 * 1 = 1. ADD r2, r2, #1 → r2 = 2. B loop
branches back.

 Iteration 2: CMP r2, r1 compares 2 and 4 (2 ≤ 4), continue. MUL r0, r2, r0 → r0 = 2 * 1 = 2. ADD r2, r2, #1 → r2 = 3. B loop.

 Iteration 3: CMP r2, r1 compares 3 and 4 (3 ≤ 4), continue. MUL r0, r2, r0 → r0 = 3 * 2 = 6. ADD r2, r2, #1 → r2 = 4. B loop.

 Iteration 4: CMP r2, r1 compares 4 and 4 (4 ≤ 4), continue. MUL r0, r2, r0 → r0 = 4 * 6 = 24. ADD r2, r2, #1 → r2 = 5. B loop.

 Iteration 5 (exit test): CMP r2, r1 compares 5 and 4 (5 > 4), BGT stop taken, loop ends. Fall through to return.

 Return: MOV pc, r14 (or BX lr), function returns with r0 = 24 (which is 4!).
Final registers of interest: r0 = 24 (result), r1 = 4 (n), r2 = 5 (loop counter one past n).

 Assembly Program 2:

 r1 is loop counter initialized to 4, r0 is running product initialized to r1 = 4.

 Entry: r0=4 (input). MOVS r1,r0 → r1=4, Z=0. MOVEQ skipped.

 Loop iteration 1: SUBS r1,r1,#1 → r1=3 (Z=0). MUL r0 = r1 * r0 → r0 = 3*4 = 12. BNE true → repeat.

 Iteration 2: SUBS → r1=2. MUL → r0 = 2*12 = 24. BNE true.

 Iteration 3: SUBS → r1=1. MUL → r0 = 1*24 = 24. BNE true.

 Iteration 4: SUBS → r1=0, sets Z=1. MULNE skipped (NE false), BNE not taken, fall through to MOV pc,r14. Return r0 = 24 (which is 4!).

 Assembly Program 3 (omitted):

 r0 is running product initialized to r1 = 1, and the loop counter counts up to n.

Stop B stop

16

 “stop B stop” means an infinite loop: that repeatedly branches to the label

"stop".

 Literal translation to C is while(1);

 B is the branch instruction in ARM, which causes the program to jump to the specified

label or address.

 Here, the label and destination are both "stop". This creates a loop: where execution

never moves past this point.

 It is commonly used to halt the program or wait indefinitely, often when the program

completes or to prevent it from running into uninitialized memory.

Example 2: Counting Ones in

a Word

17

Assembly Program
 AREA Count_Ones, CODE
 EXPORT __main
 ALIGN
 ENTRY
__main PROC
 ; r0 = Input = x
 ; r1 = Number of ones = counter
 LDR r0, =0xAAAAAAAA

 ; r1 = r0 >> 31
 MOV r1, r0, LSR #31

 ; r0 = r0 << 2 and change Carry
loop: MOVS r0, r0, LSL #2

 ; r1 = r1 + r0 >> 31 + Carry
 ADC r1, r1, r0, LSR #31
 BNE loop:

Stop: B stop
 ENDP
 END

b29 0b30 0

MOVS r0, r0, LSL #2 ; shift b30 into Carry

0 b310 C

MOV r1, r0, LSR #31 ; r1 = b31 of r0

0

0b0

0 b290 0

ADC r1, r1, r0, LSR #31 ; r1 = b31 + b30 + b29

Carry

Carry

r1:

r0:

r0, LSR #31

b30

Carry is not

updated

Initialization

Loop

At the end of the first loop:: r1 = b31 + b30 + b29

After LDR: r0=10101010101010101010101010101010

(Load input data into r0)

After MOV: r1=r0 >> 31 = 1 (Initialize r1 with the most

significant bit of r0. r0 logical shift right by 31 bits, take the

leftmost bit b31)

After MOVS: r0 = r0 << 2

=10101010101010101010101010101000

(Logical shift left r0 by 2 bits and update C = 0, as the last shifted

out bit b30)

After ADC: r1 = r1 + r0 >> 31 + Carry = b31 + b29 + b30 =1 +

1 + 0 = 2

2nd iteration: r1 = r1 + b28 + b27 = 2 + 1 + 0 = 3

If after MOVS, the result in r0 is zero, (no more 1’s), Z flag is set

to 1 and the loop: exits

18

Iteration Shifted r0 value

(MSB bit)

Carry bit (last

shifted out)

r1 (accumulated count) Notes

0 (init) — — b31 = 1
r1 initialized with

b31

1 b29 = 1 b30 = 0
1 (b31) + 1 (b29) + 0 (b30)

= 2

r0 shifted left by 2

bits

2 b27 = 1 b28 = 0 2 + 1 (b27) + 0 (b28) = 3

3 b25 = 1 b26 = 0 3 + 1 (b25) + 0 (b26) = 4

4 b23 = 1 b24 = 0 4 + 1 (b23) + 0 (b24) = 5

 In 0xAAAAAAAA, bits at odd positions (31, 29, 27, ..., 1) are all 1, bits at even positions (30, 28, 26, ..., 0) are
all 0.

 Carry bit is always the even bit index at each iteration.

 At each iteration, r1 accumulates 1 (highest bit, odd index) + 0 (carry bit, even index).

 The loop: ends when r0 becomes zero after the last shift, triggering the Zero flag and exiting the branch.

 The count accumulates to 16, consistent with the fact that 0xAAAAAAAA has exactly 16 ones in 32 bits.

 This program counts two bits per loop iteration, leveraging the Carry bit, and will take 16 iterations for a 32-
bit word.

Example 2: Counting Ones in a Word: Explanations

Example 2: Counting Ones in a Word: Simpler Programs

19

LDR r0, =0xAAAAAAAA ; Load input data into r0
 MOV r2, #0 ; Initialize count (r2) to 0

loop:
 MOV r1, r0, LSR #31 ; Extract leftmost bit (MSB) of r0 into r1 (0 or 1)
 ADD r2, r2, r1 ; Add extracted bit to count in r2
 MOVS r0, r0, LSL #1 ; Shift r0 left by 1 bit, update flags
 BNE loop ; If r0 != 0, repeat loop(may loop less than 32 iters)

 Algo 1: use MOV r1, r0, LSR #31 to extract the highest bit from r0 and accumulates the per-bit count. (Carry flag is
set but ignored.)

 Algo 2: use MOVS r0, r0, LSL #1 to shift left by 1 bit and update the carry flag with the bit shifted out (the leftmost
bit of the original value). Use ADC (Add with Carry) to add the carry bit to accumulator r2 without needing to
move the leftmost bit explicitly.

 Both programs count one bit per loop iteration. Algo 1 uses r1 to store the MSB of intermediate values of r0, and
Algo 2 uses C flag to store it.

LDR r0, =0xAAAAAAAA ; Load input data into r0
 MOV r2, #0 ; Initialize bit count accumulator (r2) to 0

loop:
 MOVS r0, r0, LSL #1 ; Shift left by 1 bit, carry gets old MSB
 ADC r2, r2, #0 ; Add carry (0 + carry) to r2
 BNE loop ; Loop while r0 != 0 (Zero flag clear)

Algo 1

Algo 2

Quiz

20

 Q: In Algo 1 and Algo 2, can we change MOVS r0, r0, LSL #1 to MOV r0, r0,

LSL #1?

 ANS: No, since the C carry flag, which captures the leftmost bit shifted out, is needed

for bit counting

 Q: In Algo 1, can we change MOV r1, r0, LSR #31 to MOVS r1, r0, LSR #31

 ANS: Yes, MOVS sets flags, but they are not used by later instsructions.

 Q: In Algo 2, can we change ADC r2, r2, #0 to ADD r2, r2, #0?

 ANS: No, ADC (Add with Carry) adds two operands plus the carry flag. ADD only

adds the two operands without considering the carry flag

Example 3: Finding

Max of an Array

21

// Initialize max and location
 maxLocation = 0;
 maxValue = array[0];

// loop: through the array
 for (i = 0; i < arraySize; i++) {
 if (array[i] > maxValue) {
 maxValue = array[i];
 maxLocation = i;
 }
 }

22

Example 3: Finding Max of an Array

C Program Assembly Program
int array[10] = {-1, 5, 3, 8, 10, 23, 6, 5,
2, -10};

int size = 10;

AREA myData, DATA
 ALIGN
array DCD -1,5,3,8,10,23,6,5,2,-10
size DCD 10

int main(void) {
 int i, maxLocation, maxValue;

AREA findMax, CODE
 EXPORT __main
 ALIGN
 ENTRY
__main PROC
 ; Identify the array size
 LDR r3, =size
 LDR r3, [r3] ; array size
 SUB r3, r3, #1

// Initialize max and location
 maxLocation = 0;
 maxValue = array[0];

; Initialize max value and location
 LDR r4, =array
 LDR r0, [r4] ; r0 = default max
 MOV r1, #0 ; r1 = max location

// loop: through the array
 for (i = 0; i < size; i++){
 if (array[i] > maxValue) {
 maxValue = array[i];
 maxLocation = i;
 }
 }

; loop: over the array
 MOV r2, #0 ; loop: index i
loop: CMP r2, r3 ; compare i & size
 BGE stop ; stop if i ≥ size
 LDR r5, [r4,r2,LSL #2] ; array[i]
 CMP r5, r0 ; compare with max
 MOVGT r0, r5 ; update max value
 MOVGT r1, r2 ; update location
 ADD r2, r2, #1 ; update index i
 B loop:

while(1); //dead loop:
}

stop B stop ; dead loop:
 ENDP
 END

Quiz

23

 Instruction LDR r5, [r4,r2,LSL #2] has the form:

 LDR <destination register>, [<base register>, <index register>, LSL #<shift

amount>]

 Address=value in r4+(value in r2×22)

 The memory address is calculated by taking the value in the <base register> (here r4)

plus the value in the <index register> (here r2) shifted left (logical shift left, LSL) by a

certain number of bits (#2 means shifted by 2 bits, or multiplied by 4).

 Q: why do we perform r2×22 here?

 ANS:

	Slide 1: Z. Gu
	Slide 2: Basic Control Structures
	Slide 3: History
	Slide 4: Importance of Structured Programming
	Slide 5: Software Design Strategy: Top-Down Design
	Slide 6: Top-Down Design Example
	Slide 7: Top-Down Design Example
	Slide 8: Top-Down Design Example
	Slide 9: Top-Down Design Example: Counting digits
	Slide 10: Reuse Registers
	Slide 11: Reuse Registers
	Slide 12: Reuse Registers
	Slide 13: Example 1: Factorial Numbers
	Slide 14: Example 1: Factorial Numbers
	Slide 15: Worked example for N = 4
	Slide 16: Stop B stop
	Slide 17: Example 2: Counting Ones in a Word
	Slide 18: Example 2: Counting Ones in a Word: Explanations
	Slide 19: Example 2: Counting Ones in a Word: Simpler Programs
	Slide 20: Quiz
	Slide 21: Example 3: Finding Max of an Array
	Slide 22: Example 3: Finding Max of an Array
	Slide 23: Quiz

