Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 6
Control Flow in Assembly
Exercises

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Pseudocode to Assembly

» Write assembly program for pseudocode, one version
without Conditional Execution instructions, one version
with Conditional Execution.

Pseudocode Assembly Program

if (re != rl1) r2

r2 + r2

Pseudocode Assembly Program w/Conditional

Execution

r2 + r2

if (r@ !=r1) r2

Pseudocode to Assembly

» Write assembly program for pseudocode.

Pseudocode Assembly Program 1
ri = (re > 4) & 15

Assembly Program Understanding

» What is rO equal to after running this program:
» MOV r0,#10

» MOV rl,#7

» MOV r2,#5

» CMPrl,r2

» ADDGT r0, r0,#100

C to Assembly

» Write the equivalent assembly program for this piece of
code in C.

» save[] is an array of 32-bit integers. Assume that i and k
correspond to registers r| and r2, and the base of the

array save is in r0. Write assembly code corresponding to
this C code.

while (save[i] == k) |; r@ = &save[0] (base address of array)
i+= 1; ; rl =i (index)
; r2 =k (value to compare)

C to Assembly

» Write the equivalent assembly program for this piece of
code in C.

C code Assembly Program

for (i=0; i<8; i++){|; Assume r@ = base address of a, rl = base
al[i] = b[7-1]; address of b

}

C to Assembly: What is wrong?

int cnt = 1; MOV ro, #1 ; cnt =1

while (cnt <= 10) |loop:

{ CMP ro, #10 ; Compare x0 with 10 while x0 <=10
// loop body BEQ end ; If cnt == 10, branch to end
cnt++; ADD r@, ro, #1 ; cnt = cnt + 1

} B loop ; Repeat the loop

done:

int cnt = 10; MOV ro, #10 ; remaining iterations

while (cnt != 0) |loop:

{ ; loop body
// loop body SUB ro, ro, #1 ; cnt--; sets flags
cnt--; BNE 1loop ; repeat until cnt == @ (10 times)

} done:

C to Assembly

|int cnt = 1; | MOV ro, #1 sent =21]
while (cnt <= 10) |loop:
{ ; loop body
// loop body ADD ??? ; cnt++
cnt++; CMP ???
} BLE ??? ; while (cnt <= 10) continue
done:
int cnt = 10; MOV ro, #160 ; remaining iterations
while (cnt != @) |loop:
{ ; loop body
// loop body SUBS ??? ; cnt--; sets Z flag if ro=0
cnt--; BNE ??°? ; repeat until cnt == 0 (10 times)
} done:
int cnt = 10; MOV ro, #10 ; remaining iterations
while (cnt > @) { | loop:
// loop body ;5 loop body
cnt--; SUBS ???; cnt--; sets Z flag if ro=0
} BGT »??? ; repeat until cnt == 0 (10 times)
. done s
p—8

C to Assembly: What is wrong?

int cnt = 10; MOV ro, #10 ; remaining iterations
while (cnt > @) { |loop:
// loop body ; loop body
cnt--; SUBS ro, ro, #1 ; cnt--; sets Z flag if ro=0
} BPL 1loop ; repeat until cnt == 0 (10 times)
done:

C to Assembly

C Program Assembly Program

int array[200]; % RO = base address of array, R1 =1
int i; MOV RO, Ox60000000 ; base address where array
for (i = 199; i >= 0; i|resides
=i-1)¢{ MOV R1, #199 ; i = 199
array[i] = array[i]
* 8

C to Assembly

C Program Assembly Program

//Calculate x such that 2~x=128 |; r@ = pow, rl = X

int pow = 1; MOV ro, #1 ; pow = 1
int x = 9; MOV rl, # ; X = O
while (pow != 128) { WHILE

pow = pow * 2;
X =X + 1;

}
DONE

C to Assembly

C Program Assembly Program
int array[200]; ; RO = array base address, Rl = 1
int i; MOV RO, 0Ox60000000

MOV R1, #199
for (i = 199; i »>= 0; i=i-1)
array[i] = array[i] * 8; FOR

» For an array of 32-bit ints, each element is 4 bytes, so element
i lives at base + i*4, which is implemented as base + (i << 2)
via LSL #2 in the addressing mode

» BPL“Branch if PLus” branches when the N (negative) flag N
== 0, meaning the prior result was positive or zero

C to Assembly

int 1i;
int sum = O;
for (i = 1; i <= 22;
i++)
sum += 1i;

Assembly Programming

» Write a program that reverses the bits in a register, such
that the register containing d31,d30,d29...d1,dO0 now contains
d0,dl,...d29,d30,d3.

Test for Equal

» Give the different methods to test if two values held in
registers r0 and rl are equal.

M

D Review

Summary:

Condition Codes
EQ EQual Z=1
NE Not Equal Z=0

CS/HS |Unsigned Higher or Same C=1

CC/LO |Unsigned LOwer C=0
MI MInus (Negative) N=1
PL PLus (Positive or Zero) N=0
VS oVerflow Set V=1
VC oVerflow Cleared V=0
HI Unsigned HIgher C=1 & Z=0
LS Unsigned Lower or Same C=0 or Z=1
GE Signed Greater or Equal N=V
LT Signed Less Than NI=V
GT Signed Greater Than Z=0 & N=V
LE Signed Less than or Equal |Z=1 or Nl!=
AL ALways

Note AL is the default and does not need to be specified

Conditional Instructions

» Write the following ARMv7 instructions:

» Add registers r3 and ré only if N is clear (from a previous
instruction). Store the result in register r7/.

» Multiply registers r7 and rl2, put the results in register r3 only
if C is set and Z is clear (from a previous instruction)

» Compare registers ré6 and r8 only if Z is clear (from a previous
instruction)

Assembly to C

» Write the equivalent C program for the following assembly code, assuming
registers and C variables are related as (x=r0, y=rl). (Variables in C are in
memory, and load/store assembly instructions are omitted here for brevity.)
For example:

Assembly Program C Program

CMP ro, #5 if (x == 5) {
MOVEQ ro, #10 X = 10;
BLEQ fn fn(x);

}
CMP ro, #0

MOVLE ro, #0
MOVGT ro, #1

Assembly Program C rogram

CMP ro, #'A’
CMPNE ro, #'B’
MOVEQ rl, #1

(]

Conditional Execution

» Rewrite the assembly program to use conditional
execution statements.

Assembly Program Assembly Program with Cond. Exec
CMP r3, #0
BEQ next

ADD ro, ro, ril
SUB ro, ro, r2
next

	Slide 1: Z. Gu
	Slide 2: Pseudocode to Assembly
	Slide 3: Pseudocode to Assembly
	Slide 4: Assembly Program Understanding
	Slide 5: C to Assembly
	Slide 6: C to Assembly
	Slide 7: C to Assembly: What is wrong?
	Slide 8: C to Assembly
	Slide 9: C to Assembly: What is wrong?
	Slide 10: C to Assembly
	Slide 11: C to Assembly
	Slide 12: C to Assembly
	Slide 13: C to Assembly
	Slide 14: Assembly Programming
	Slide 15: Test for Equal
	Slide 16: Summary: Condition Codes
	Slide 17: Conditional Instructions
	Slide 18: Assembly to C
	Slide 19: Conditional Execution

