
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 6

Control Flow in Assembly

Exercises

1Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Pseudocode to Assembly

2

 Write assembly program for pseudocode, one version

without Conditional Execution instructions, one version

with Conditional Execution.

Pseudocode Assembly Program
if (r0 != r1) r2 = r2 + r2

Pseudocode Assembly Program w/Conditional
Execution

if (r0 != r1) r2 = r2 + r2

Pseudocode to Assembly

3

 Write assembly program for pseudocode.

Pseudocode Assembly Program 1
r1 = (r0 >> 4) & 15

Assembly Program Understanding

4

 What is r0 equal to after running this program:

 MOV r0, #10

 MOV r1, #7

 MOV r2, #5

 CMP r1, r2

 ADDGT r0, r0, #100

C to Assembly

5

 Write the equivalent assembly program for this piece of

code in C.

 save[] is an array of 32-bit integers. Assume that i and k

correspond to registers r1 and r2, and the base of the

array save is in r0. Write assembly code corresponding to

this C code.

C code Assembly Program
while (save[i] == k)
i += 1;

; r0 = &save[0] (base address of array)
; r1 = i (index)
; r2 = k (value to compare)
...

C to Assembly

6

 Write the equivalent assembly program for this piece of

code in C.

C code Assembly Program
for (i=0; i<8; i++){
a[i] = b[7-i];
}

; Assume r0 = base address of a, r1 = base
address of b

C to Assembly: What is wrong?

7

C Program Assembly Program

int cnt = 1;
while (cnt <= 10)
{
 // loop body
 cnt++;
}

MOV r0, #1 ; cnt = 1
loop:
 CMP r0, #10 ; Compare x0 with 10 while x0 <=10
 BEQ end ; If cnt == 10, branch to end
 ADD r0, r0, #1 ; cnt = cnt + 1
 B loop ; Repeat the loop
done:

C Program Assembly Program
int cnt = 10;
while (cnt != 0)
{
 // loop body
 cnt--;
}

MOV r0, #10 ; remaining iterations
loop:
 ; loop body
 SUB r0, r0, #1 ; cnt--; sets flags
 BNE loop ; repeat until cnt == 0 (10 times)
done:

C to Assembly

8

C Program Assembly Program
int cnt = 1;
while (cnt <= 10)
{
 // loop body
 cnt++;
}

MOV r0, #1 ; cnt = 1
loop:
 ; loop body
 ADD ??? ; cnt++
 CMP ???
 BLE ??? ; while (cnt <= 10) continue
done:

C Program Assembly Program
int cnt = 10;
while (cnt != 0)
{
 // loop body
 cnt--;
}

MOV r0, #10 ; remaining iterations
loop:
 ; loop body
 SUBS ??? ; cnt--; sets Z flag if r0=0
 BNE ??? ; repeat until cnt == 0 (10 times)
done:

C Program Assembly Program
int cnt = 10;
while (cnt > 0) {
 // loop body
 cnt--;
}

MOV r0, #10 ; remaining iterations
loop:
 ; loop body
 SUBS ???; cnt--; sets Z flag if r0=0
 BGT ??? ; repeat until cnt == 0 (10 times)
done:

C to Assembly: What is wrong?

9

C Program Assembly Program
int cnt = 10;
while (cnt > 0) {
 // loop body
 cnt--;
}

MOV r0, #10 ; remaining iterations
loop:
 ; loop body
 SUBS r0, r0, #1 ; cnt--; sets Z flag if r0=0
 BPL loop ; repeat until cnt == 0 (10 times)
done:

C to Assembly

10

C Program Assembly Program
int array[200];
int i;
for (i = 199; i >= 0; i
= i - 1) {
 array[i] = array[i]
* 8;
}

% R0 = base address of array, R1 = i
MOV R0, 0x60000000 ; base address where array
resides
MOV R1, #199 ; i = 199
…

C to Assembly

11

C Program Assembly Program
//Calculate x such that 2^x=128
int pow = 1;
int x = 0;

while (pow != 128) {
pow = pow * 2;
x = x + 1;
}

; r0 = pow, r1 = x
 MOV r0, #1 ; pow = 1
 MOV r1, #0 ; x = 0

WHILE

DONE

C to Assembly

12

 For an array of 32-bit ints, each element is 4 bytes, so element
i lives at base + i*4, which is implemented as base + (i << 2)
via LSL #2 in the addressing mode

 BPL “Branch if PLus” branches when the N (negative) flag N
== 0, meaning the prior result was positive or zero

C Program Assembly Program
int array[200];
int i;

for (i = 199; i >= 0; i=i-1)
array[i] = array[i] * 8;

; R0 = array base address, R1 = i
MOV R0, 0x60000000
MOV R1, #199

FOR

C to Assembly
C Program Assembly Program
int i;
int sum = 0;
for (i = 1; i <= 22;
i++)
sum += i;

Assembly Programming

14

 Write a program that reverses the bits in a register, such

that the register containing d31,d30,d29...d1,d0 now contains

d0,d1,...d29,d30,d3.

Test for Equal

15

 Give the different methods to test if two values held in

registers r0 and r1 are equal.

Summary:

Condition Codes

16

Note AL is the default and does not need to be specified

Not Equal
Unsigned Higher or Same
Unsigned LOwer
MInus (Negative)

EQual

oVerflow Set
oVerflow Cleared
Unsigned HIgher
Unsigned Lower or Same

PLus (Positive or Zero)

Signed Less Than
Signed Greater Than
Signed Less than or Equal
ALways

Signed Greater or Equal

EQ
NE

CS/HS
CC/LO

PL
VS

HI
LS
GE
LT
GT
LE
AL

MI

VC

Suffix Description

Z=0
C=1
C=0

Z=1
Flags tested

N=1
N=0
V=1
V=0
C=1 & Z=0
C=0 or Z=1
N=V
N!=V
Z=0 & N=V
Z=1 or N!=V

Review

Conditional Instructions

17

 Write the following ARMv7 instructions:

 Add registers r3 and r6 only if N is clear (from a previous

instruction). Store the result in register r7.

 Multiply registers r7 and r12, put the results in register r3 only

if C is set and Z is clear (from a previous instruction)

 Compare registers r6 and r8 only if Z is clear (from a previous

instruction)

Assembly to C

18

 Write the equivalent C program for the following assembly code, assuming
registers and C variables are related as (x=r0, y=r1). (Variables in C are in
memory, and load/store assembly instructions are omitted here for brevity.)
For example:

Assembly Program C Program
CMP r0, #5
MOVEQ r0, #10
BLEQ fn

if (x == 5) {
 x = 10;
 fn(x);
}

Assembly Program C Program
CMP r0, #0
MOVLE r0, #0
MOVGT r0, #1

Assembly Program C rogram
CMP r0, #'A’
CMPNE r0, #'B'
MOVEQ r1, #1

Conditional Execution

19

 Rewrite the assembly program to use conditional

execution statements.

Assembly Program Assembly Program with Cond. Exec
CMP r3, #0
BEQ next
ADD r0, r0, r1
SUB r0, r0, r2
next
...

	Slide 1: Z. Gu
	Slide 2: Pseudocode to Assembly
	Slide 3: Pseudocode to Assembly
	Slide 4: Assembly Program Understanding
	Slide 5: C to Assembly
	Slide 6: C to Assembly
	Slide 7: C to Assembly: What is wrong?
	Slide 8: C to Assembly
	Slide 9: C to Assembly: What is wrong?
	Slide 10: C to Assembly
	Slide 11: C to Assembly
	Slide 12: C to Assembly
	Slide 13: C to Assembly
	Slide 14: Assembly Programming
	Slide 15: Test for Equal
	Slide 16: Summary: Condition Codes
	Slide 17: Conditional Instructions
	Slide 18: Assembly to C
	Slide 19: Conditional Execution

