
Z. Gu

Fall 2025

Embedded Systems with ARM Cortex-M Microcontrollers in

Assembly Language and C

Chapter 6

Control Flow in Assembly

1 Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language

and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

2

Three Control Structures

 Sequence Structure

 Computer executes statements (instructions), one after another, in the order listed in the program

 Selection Structure

 If-then-else

 Loop Structure

 while loop

 for loop

Sequence Structure Selection Structure Loop Structure

Combined Program Status Registers (xPSR)

3

N Z C V Q IT[7:6] T Reserved IT[5:0] Interrupt/Exception Number

Stick saturation flag for SSAT and USAT

Carry/Borrow flag

Negative or less than flag

Overflow flag

Zero flag

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Thumb state flag IT[7:0]: If-Then bits

Reserved

Review

Condition Flags

4

 Negative bit

 N = 1 if most significant bit of result is 1

 Zero bit

 Z = 1 if all bits of result are 0

 Carry bit

 For unsigned addition, C = 1 if carry takes place

 For unsigned subtraction, C = 0 (carry = not borrow) if borrow takes place

 For shift/rotation, C = last bit shifted out

 oVerflow bit

 V = 1 if adding 2 same-signed numbers produces a result with the opposite sign

 Positive + Positive = Negative, or

 Negative + negative = Positive

 Non-arithmetic operations does not touch V bit, such as MOV,AND,LSL,MUL

Reserved ISR number

Program Status Register (PSR)

ICI/IT TN Z C V Q ICI/ITGEReserved

Review

Carry and Overflow Flags w/ Arithmetic Instructions

5

Carry flag C = 1 (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true result >

2n-1)

Carry flag C = 0 (Borrow flag = 1) upon an unsigned subtraction if the answer is wrong (true

result < 0)

Overflow flag V =1 upon a signed addition or subtraction if the answer is wrong (true result > 2n-1-

1 or true result < -2n-1)

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands with

different signs; Overflow cannot occur when adding 2 operands with different signs or when

subtracting 2 operands with the same sign.
Unsigned Addition Unsigned Subtraction Signed Addition or

Subtraction

Carry flag true result > 2n-1 ➔

Carry flag=1

Borrow flag=0

(Result incorrect)

true result < 0 ➔

Carry flag=0

Borrow flag=1

(Result incorrect)

N/A

Overflow flag N/A N/A true result > 2n-1-1 or

true result < -2n-1

➔Overflow flag=1

(Result incorrect)

Review

5

Updating Condition Flags

6

 Method 1: append “S”: updates destination register, and sets flags

 ADD r0,r1,r2 → ADDS r0,r1,r2

 SUB r0,r1,r2 → SUBS r0,r1,r2

 Performs operation, writes the result into Rd, and also updates NZCV flags

 Method 2: compare instructions: sets flags only

 CMP/CMN/TEQ/TST: performs operation to update NZCV flags, but the computation

result is not saved and discarded

Updating Condition Flags

➢ Update flags
• No need to add S. No need to specify destination register.

➢ Operations are:
• CMP R1 – R2: Same as SUBS, except result discarded (not written to destination register)

• CMN R1 + R2: Same as ADDS, except result discarded

• TST R1 & R2: Same as ANDS, except result discarded

• TEQ R1 ⊕ R2: Same as EORS, except result discarded

➢ Examples:
• CMP r0, r1

• TST r2, #5

Instruction Operands Brief description Flags

CMP R1 - R2 Compare N,Z,C,V

CMN R1 + R2 Compare Negative N,Z,C,V

TST R1 & R2 Test N,Z,C

TEQ R1 ⊕ R2 Test Equivalence N,Z,C

7

Example of CMP

8

Area absolute, CODE, READONLY
 EXPORT __main
 ENTRY

__main PROC
 CMP r1, #0 ; r1 = x
 RSBLT r0, r1, #0

done B done ; deadloop, end of program

 ENDP
 END

𝑓 𝑥 = |𝑥|

RSBLT r0, r1, #0:: conditional execution of the RSB instruction with

condition code LT. If r1 < 0, then set r0 = 0 − r1 = -r1

Updating Condition Flags:

TST and TEQ

9

TST R1, R2 ; Bitwise AND

 TEQ R1, R2 ; Bitwise Exclusive OR

 Update N and Z according to the result

 Can update C during the calculation of R2 (w/ shifting such as LSL, LSR…)

 Do not affect V

 TST performs bitwise AND on R1 and R2.

 Same as ANDS, except result discarded.

 Use R2 as a mask; Z=0 implies “some masked bit(s) are set, so result is non-zero” Z=1
implies “none of the masked bit(s) are set, so result is zero.” For a single-bit mask, Z=0
means “that bit in R1 is 1,” and Z=1 means “that bit is 0.”

 TEQ performs bitwise Exclusive OR on R1 and R2.

 Same as EORS, except result discarded.

 If R1 and R2 are equal, then R1⊕ R2 is 0, and Z is set to 1; otherwise Z is set to 0
(cleared).

x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

Example of TEQ

10

 Translate C code into assembly:

 TEQ r0, #‘!’ performs a test-equal by computing r0 ‘!’ and setting condition flags; Z=1 when r0 equals ‘!’.

 TEQNE r0, #‘?’ executes only if the previous Z=0 (i.e., char was not ‘!’); it tests r0 against ‘?’ and sets Z
accordingly. This achieves the logical OR without branches by conditionally running the second test only
when needed.

 Logical OR operator (||) employs short-circuit evaluation, meaning it evaluates expressions from left to right and
stops as soon as the result of the entire expression is determined. For (cond1||cond2): If cond1 evaluates to true
(non-zero), the overall result of the || operation is already known to be true, so cond2 is not evaluated. If cond1
evaluates to false (zero), the evaluation proceeds to the next operand cond2.

 ADDEQ r1, r1, #1 executes only if Z=1 after the tests, meaning char matched either ‘!’ or ‘?’.

 If r0 == ‘!’, then TEQ sets Z = 1. TEQNE is skipped, and ADDEQ is executed

 The 2nd TEQNE executes only if the first comparison failed (Z=0). If r0 == ‘?’, then TEQNE is executed and sets Z
= 1, and ADDEQ is executed

 If r0 != ‘!’ && r0 != ‘?’, then TEQ sets Z = 0, TEQNE is executed and sets Z = 0, and ADDEQ is not executed

C Code Assembly

if (char==‘!’||char==‘?’)
found++;

TEQ r0, #‘!’
TEQNE r0, #‘?’
ADDEQ r1, r1, #1

Unconditional Branch Instructions

11

 B label or BAL label
 cause a branch to label.

 BL label
 copy the address of the next instruction into r14 (lr, the link register), and

 cause a branch to label.

 BX Rm
 branch to the address held in Rm

 BLX Rm:
 copy the address of the next instruction into r14 (lr, the link register) and

 branch to the address held in Rm

Instruction Operands Brief description

B, BAL label Branch

BL label Branch with Link

BLX Rm Branch indirect with Link

BX Rm Branch indirect

Unconditional Branch Instructions:

A Simple Example

12

 A label marks the location of an instruction

 Labels help human to read the code

 In machine program, labels are converted to numeric offsets by
assembler

 Here MOVS can be replaced by MOV since the flags are not used

MOVS r1, #1
 B target ; Branch to target
 MOVS r2, #2 ; Not executed
 MOVS r3, #3 ; Not executed
 MOVS r4, #4 ; Not executed
target MOVS r5, #5

Condition Codes

 The possible condition codes are listed below:

Not Equal
Unsigned Higher or Same
Unsigned LOwer
MInus (Negative)

EQual

oVerflow Set
oVerflow Clear
Unsigned HIgher
Unsigned Lower or Same

PLus (Positive or Zero)

Signed Less Than
Signed Greater Than
Signed Less than or Equal
ALways

Signed Greater or Equal

EQ
NE
CS/HS
CC/LO

PL
VS

HI
LS
GE
LT
GT
LE
AL

MI

VC

Suffix Description

Z==0
C==1
C==0

Z==1
Flags tested

N==1
N==0
V==1
V==0
C==1 and Z==0
C==0 or Z==1
N==V
N!=V
Z==0 and N==V
Z==1 or N!=V

13

Note AL is the default and does not need to be specified

Signed vs. Unsigned Comparison

14

Op Cond (Signed) Flags Explanation Cond

(Unsigned)

Flags Explanation

R1 > R2 GT (Greater

Than)

Z=0 &
N=V

Non-zero result

and signs agree

HI (Higher) C=1 &
Z=0

No borrow and

not equal

R1 ≥ R2 GE (Greater or

Equal)

N=V See next page HS (Higher or

Same)

C=1 No borrow (R1

≥ R2)

R1 < R2 LT (Less Than) N≠V See next page LO (Lower) C=0 Borrow occurred

(R1 < R2)

R1 ≤ R2 LE (Less or

Equal)

Z=1 or
N≠V

Zero or

overflow

mismatch

LS (Lower or

Same)

C=0 or
Z=1

Borrow or equal

R1==R2 EQ (Equal) Z=1 Zero

R1 ≠ R2 NE (Not Equal) Z=0 Non-Zero

CMP R1, R2
perform subtraction R1 – R2, set flags without saving result

15

Condition

(signed)
N V

CMP R1, R2

returns
Meaning

GE (Greater or

Equal)
0 0 1

Result non-negative (R1 – R2 ≥ 0), no overflow →

R1 ≥ R2

GE (Greater or

Equal)
1 1 1

Result negative (R1 – R2 < 0), but overflowed so

sign is flipped → true result ≥ 0 → R1 ≥ R2

LT (Less Than) 1 0 0
Result negative (R1 – R2 < 0), no overflow → R1 <

R2

LT (Less Than) 0 1 0
Result non-negative (R1 – R2 ≥ 0), but overflowed

so sign is flipped → true result < 0 → R1 < R2

Signed Comparison Explanations

• If N = V, then GE (CMP R1, R2 returns 1)

• If N ≠ V, then LT (CMP R1, R2 returns 0)

Signed Comparison Examples (5-bit system)

16

N = 0 N = 1

V = 0

• R1 = +7 (00111)

• R2 = +3 (00011)

• R1 − R2 = +4 (00100);

• result non-negative and no signed

overflow, so N=0, V=0 ⇒ GE holds

• R1 = +3 (00011)

• R2 = +7 (00111)

• R1 − R2 = −4 (11100)

• result negative with no overflow, so

N=1, V=0 ⇒ LT holds

V = 1

• R1 = −10 (10110)

• R2 = +7 (00111)

• R1 − R2 = −17, outside range

[−16,+15]; result is 00111 (decimal

7), whose sign bit is 0 so N=0, but

signed overflow occurs so V=1 ⇒ LT

holds

• R1 = +10 (01010)

• R2 = −7 (11001)

• R1 − R2 = +17, outside range

[−16,+15]; result is 10001 (decimal

−15), whose sign bit is 1 so N=1, but

signed overflow occurs so V=1 ⇒ GE

holds

• If N = V, then GE (CMP R1, R2 returns 1)

• If N ≠ V, then LT (CMP R1, R2 returns 0)

Number Interpretation

17

 If they represent signed numbers, the latter is greater.

 (1 > -1).

 If they represent unsigned numbers, the former is greater

 (232-1 > 1).

Which is greater?

 0xFFFFFFFF or 0x00000001

Which is Greater: 0xFFFFFFFF or 0x00000001?

int32_t x, y;
x = -1;
y = 1;
if (x > y)
 ...

uint32_t x, y;
x = 4294967295;
y = 1;
if (x > y)
 ...

18

BLE: Branch if less than or equal, signed ≤

BLS: Branch if lower or same, unsigned ≤

It’s software’s responsibility to tell computer how to interpret data:

• If written in C, declare the signed vs unsigned variable

• If written in Assembly, use signed vs unsigned branch instructions

MOV r5, #0xFFFFFFFF
 MOV r6, #0x00000001
 CMP r5, r6
 BLE Then_Clause
 ...

MOV r5, #0xFFFFFFFF
 MOV r6, #0x00000001
 CMP r5, r6
 BLS Then_Clause
 ...

Conditional Branch Instructions

19

Conditional codes applied to

branch instructions

Compare Signed Unsigned

> BGT BHI

≥ BGE BHS

< BLT BLO

≤ BLE BLS

== BEQ

≠ BNE

Compare Signed Unsigned

> GT HI

≥ GE HS

< LT LO

≤ LE LS

== EQ

≠ NE

If-then Statement

20

C Program Assembly Program 1 Assembly Program 2
// a is signed integer
if (a < 0) {
 a = 0 – a;
}
x = x + 1;

; r1 = a, r2 = x
CMP r1, #0 ; Compare a with 0
BGE endif ; Go to endif if a ≥ 0
RSB r1, r1, #0 ; a = - a
endif: ADD r2, r2, #1 ; x = x + 1

; r1 = a, r2 = x
CMP r1, #0
RSBLT r1, r1, #0 ; a = - a if a < 0
ADD r2, r2, #1 ; x = x + 1

C Program Assembly Program 1 Assembly Program 2

// a is signed
integer
if(a <= 20 || a >=
25){
 x = 1
}

; r1 = a, r2 = x
 CMP r1, #20 ; compare a and 20
 BLE then ; go to then if a
≤ 20
 CMP r1, #25 ; compare a and 25
 BLT endif ; go to endif if a
< 25
then: MOV r2, #1 ; x = 1
Endif
; implements short circuit evaluation of
|| condition (if 1st condition is true,
2nd condition checking is skipped)

; r1 = a, r2 = x
CMP r1, #20 ; compare a and 20
MOVLE r2, #1 ; a <= 20 → x = 1
CMP r1, #25 ; compare a and 25
MOVGE r2, #1 ; a >= 25 → x = 1

; else (21 <= a <= 24) → no MOV
executed. Does not implement short
circuit evaluation. Both conditions will
always be evaluated, and r2 is possibly
assigned twice.

If-then-else

21

C Program Assembly Program 1
// a is signed integer
if (a == 1)
 x = 3;
else
 x = 4;

; r1 = a, r2 = b
 CMP r1, #1 ; compare a and 1
 BNE else ; go to else if a ≠ 1
then: MOV r2, #3 ; x = 3
B endif ; go to endif
else: MOV r2, #4 ; x = 4
endif:

For Loop

22

C Program
int i;
int sum = 0;
for(i = 0; i < 10; i++){
 sum += i;
}

MOV r0, #0 % sum = 0
MOV r1, #0 % i = 0

loop:
CMP r1, #10 % i < 10 ?
BGE done % exit if i >= 10
ADD r0, r0, r1 % sum += i
ADD r1, r1, #1 % i++
B loop

done: % : is optional after a label

Implementation 1 (Classic compare-and-branch):

C Program (equivalent)
int i = 0;
int sum = 0;

while (i < 10) {
sum += i;
i++;

}

For Loop

23

C Program
int i;
int sum = 0;
for(i = 0; i < 10; i++){
 sum += i;
}

MOV r0, #0 % sum = 0
MOV r1, #0 % i = 0

 B check
loop:
 ADD r0, r0, r1 % sum += i
 ADD r1, r1, #1 % i++
Check: CMP r1, #10 % check whether i < 10
 BLT loop % loop if i less than 10.

Implementation 2a:

C Program (equivalent)
int i = 0;
int sum = 0;

while (i < 10) {
sum += i;
i++;

}

For Loop

24

C Program
int i;
int sum = 0;
for(i = 0; i < 10; i++){
 sum += i;
}

MOV r0, #0 % sum = 0
MOV r1, #0 % i = 0

 %B check deleted
Loop:
 ADD r0, r0, r1 % sum += i
 ADD r1, r1, #1 % i++
 CMP r1, #10 % check whether i < 10
 BLT loop % loop if i less than 10.

Implementation 2b:

C Program (equivalent)
int i = 0;
int sum = 0;

do {
sum += i;
i++;

} while (i < 10);

Explanations for 2a and 2b

25

 2a and 2b implement two different loop structures:

 Version with “B check” is a pre-test loop (while/for): it tests i < 10 before the first

iteration, so the body may execute zero times if the condition is false initially

 Version without “B check” is a post-test loop (do-while): it executes the body once

before testing, then repeats while i < 10

 Because i starts at 0 and the condition is i < 10, and loop iterates from i=0 to

i=9, even though the control-flow order differs.

 If the while condition is initially true (i < 10), this program has same behavior as

previous version. But if the while condition is initially false (i >= 10), this program

executes for 1 iteration while the previous program executes for 0 iteration.

For Loop

26

C Program
int i;
int sum = 0;
for(i = 0; i < 10; i++){
 sum += i;
}

MOV r0, #0 % sum = 0
 MOV r1, #10 % loop count = 10
 MOV r2, #0 % i = 0
loop:
 ADD r0, r0, r2 % sum += i
 ADD r2, r2, #1 % i++
 SUBS r1, r1, #1 % --count, set flags
 BNE loop % repeat until loop
count==0

Implementation 3 (Count-down with SUBS/BNE):

C Program (equivalent)
int sum = 0; // r0
int count = 10; // r1
int i = 0; // r2

while (count != 0) {
 sum += i;
 i += 1;
 count -= 1;
}

SUBS r1, r1, #1
Is equivalent to:
SUB r1, r1, #1
CMP r1, #0

For Loop

27

C Program
int i;
int sum = 0;
for(i = 0; i < 10; i++){
 sum += i;
}

MOV r0, #0 % sum = 0
 MOV r1, #0 % i = 0
loop:
 CMP r1, #10 % set flags from i-10
 ADDLT r0, r0, r1 % if i<10: sum += i
 ADDLT r1, r1, #1 % if i<10: i++
 BLT loop % if i<10: loop

Implementation 4 (Use conditional execution):

C Program (equivalent)
int i = 0;
int sum = 0;

while (i < 10) {
sum += i;
i++;

}

Condition Codes

 The possible condition codes are listed below:

28

Note AL is the default and does not need to be specified

Not equal
Unsigned higher or same
Unsigned lower
Negative

Equal

Overflow
No overflow
Unsigned higher
Unsigned lower or same

Positive or Zero

Signed Less than
Signed Greater than
Signed Less than or equal
Always

Signed Greater or equal

EQ
NE
CS/HS
CC/LO

PL
VS

HI
LS
GE
LT
GT
LE
AL

MI

VC

Suffix Description

Z=0
C=1
C=0

Z=1
Flags tested

N=1
N=0
V=1
V=0
C=1 & Z=0
C=0 or Z=1
N=V
N!=V
Z=0 & N=V
Z=1 or N!=V

Conditional Execution

29

Add instruction Condition Flag tested

ADDEQ r3, r2, r1 Add if EQual Add if Z = 1

ADDNE r3, r2, r1 Add if Not Equal Add if Z = 0

ADDHS r3, r2, r1 Add if Unsigned Higher or Same Add if C = 1

ADDLO r3, r2, r1 Add if Unsigned LOwer Add if C = 0

ADDMI r3, r2, r1 Add if Minus (Negative) Add if N = 1

ADDPL r3, r2, r1 Add if PLus (Positive or Zero) Add if N = 0

ADDVS r3, r2, r1 Add if oVerflow Set Add if V = 1

ADDVC r3, r2, r1 Add if oVerflow Clear Add if V = 0

ADDHI r3, r2, r1 Add if Unsigned HIgher Add if C = 1 & Z = 0

ADDLS r3, r2, r1 Add if Unsigned Lower or Same Add if C = 0 or Z = 1

ADDGE r3, r2, r1 Add if Signed Greater or Equal Add if N = V

ADDLT r3, r2, r1 Add if Signed Less Than Add if N != V

ADDGT r3, r2, r1 Add if Signed Greater Than Add if Z = 0 & N = V

ADDLE r3, r2, r1 Add if Signed Less than or Equal Add if Z = 1 or N = !V

Conditional Execution Examples

30

C Program Assembly Program

// a, x are signed integers
int32_t a, y
if (a <= 0)
 y = -1;
else
 y = 1;

; r0 = a, r1 = y
CMP r0, #0
MOVLE r1, #-1 ; executed if LE
MOVGT r1, #1 ; executed if GT

if(a <= 20 || a >= 25){
 y = 1;
}

CMP r0, #20 ; compare a and 20
MOVLE r1, #1 ; y=1 if less or equal
CMP r0, #25 ; CMP if greater than
MOVGE r1, #1 ; y=1 if greater or equal

if (a==1 || a==7 || a==11)
 y = 1;
else
 y = -1;

CMP r0, #1
CMPNE r0, #7 ; executed if r0 != 1
CMPNE r0, #11 ; executed if r0 != 1
 ; and r0 != 7
MOVEQ r1, #1
MOVNE r1, #-1

LE:Signed Less than or Equal

GT:Signed Greater Than

NE: Not Equal

EQ: Equal

Thought Experiments

31

 This version does not work, since we cannot use any condition code ?? in

MOV??

 This version is incorrect, since only the last “CMP r0, #11” sets the Z flag,

overwriting flags set by previous two CMP instructions.

CMP r0, #20 ; compare a and 20
CMPGT r0, #25 ; CMP if greater
than
MOV?? r1, #1 ; Does not work.
cannot use any condition code here

CMP r0, #1
CMP r0, #7
CMP r0, #11

MOVEQ r1, #1
MOVNE r1, #-1

Explanations for Compound Boolean Expression

32

 Compound condition (a==1 || a==7 || a==11):
 CMP r0, #1
 CMPNE r0, #7 ; executed if r0 != 1
 CMPNE r0, #11 ; executed if r0 != 7
 MOVEQ r1, #1
 MOVNE r1, #-1

 CMP r0, #1 compares a with 1 and sets Z=1 if equal, else Z=0.

 CMPNE r0, #7 runs only if the previous compare was not equal, and if it runs, it refreshes
the flags by comparing a with 7.

 CMPNE r0, #11 runs only if a was not 1 and not 7, and if it runs, it compares a with 11 to
set Z accordingly.

 MOVEQ r1, #1 executes only when Z=1 from any of the comparisons, so y becomes 1 if a
matched 1, 7, or 11.

 MOVNE r1, #-1 executes only when Z=0 after all relevant compares, so y becomes -1 when
none of the values matched.

Conditional Execution Examples Con’t

33

C Program Assembly Program w/ Branching Assembly Program w/ Conditional Execution

int32_t x, y;
……
if (x + y < 0)
 x = 0;
else
 x = 1;

% r0 = x, r1 = y
 ADDS r0, r0, r1
 BPL PosOrZ
 MOV r0, #0
 B done
PosOrZ MOV r0, #1
done

ADDS r0, r0, r1
MOVMI r0, #0 ;return 0 if N = 1
MOVPL r0, #1 ;return 1 if N = 0

uint32_t x, y;
……
while (x != y) {
 if (x > y)
 x = x – y;
 else
 y = y – x;
}

gcd CMP r0, r1
 BEQ end ; if x = y, done
 BLO less ; x < y
 SUB r0, r0, r1 ; x = x – y
 B gcd
less SUB r1, r1, r0 ; y = y – x
 B gcd
End

gcd CMP r0, r1
 SUBHI r0, r0, r1
 SUBLO r1, r1, r0
 BNE gcd

Combination

34

 Except that it does not change the status flags, CBZ R1,label is

equivalent to:

 CMP R1, #0

 BEQ label

 Except that it does not change the status flags, CBNZ R1,label is

equivalent to:

 CMP R1, #0

 BNE label

Instruction Operands Brief description

CBZ R1, label Compare and Branch if Zero

CBNZ R1, label Compare and Branch if Non Zero

Break vs. Continue

35

Example code for break Example code for continue

for(int i = 0; i < 5; i++){
 if (i == 2) break;
 printf(“%d, ”, i)
}

for(int i = 0; i < 5; i++){
 if (i == 2) continue;
 printf(“%d, ”, i)
}

Output: 0, 1 Output: 0, 1, 3, 4

Break Example

36

C Program Assembly Program 1 Assembly Program 2

// Find string length
char str[] = "hello";
int len = 0;

for(; ;) {
 if (*str == '\0')
 break;
 str++;
 len++;
}

;r0 = string memory address
;r1 = string length
 ADR r0, str
 MOV r1, #0
Loop: LDRB r2, [r0]
 CBNZ r2, notZero
 B endloop
notZero: ADD r0, r0, #1 ; str++
; to let r0 point to the next
char. This works since each char
is 1 byte (need to increment by 4
if it was an integer array)
 ADD r1, r1, #1 ; len++
 B loop
endloop:

;r0 = string memory address
;r1 = string length
 ADR r0, str
 MOV r1, #0
Loop: LDRB r2, [r0]
 CBZ r2, endloop
 ADD r0, r0, #1
 ADD r1, r1, #1
 B loop
endloop:

Break Example

37

C Program Assembly Program

// Count characters that are not
'l' until the null terminator
char str[] = "hello";
int count = 0;

for (; ;) {
 if (*str == '\0')
 break;
 if (*str == 'l')
 continue;

 count++;
 str++;
}

; r0 = string address (str)
; r1 = count = 0
 ADR r0, str
 MOV r1, #0
Loop: LDRB r2, [r0]
 CBZ r2, endloop ; if '\0' => break

 CMP r2, #’l’ ; if char == 'l'

 ADD r1, r1, #1 ; count++

 ADD r0, r0, #1 ; str++
 B loop
endloop:

Break and Continue Example

38

C Program Assembly Program 3

// Count characters that are not
'l' until the null terminator
char str[] = "hello";
int count = 0;

for (; ;) {
 if (*str == '\0')
 break;

 count++;
 str++;
}

; r0 = string address (str)
; r1 = count = 0
 ADR r0, str
 MOV r1, #0
Loop: LDRB r2, [r0]
 CBZ r2, endloop ; if '\0' => break

 CMP r2, #’l’ ; if char == 'l'
 BEQ contLoop ; continue and skip count++

 ADD r1, r1, #1 ; count++

contLoop: ADD r0, r0, #1 ; str++
 B loop
endloop:

IT (If-Then) instruction

39

 On smaller ARM cores (Cortex-M0), not all data instructions support condition suffixes directly; instead you
must use an IT instruction (Thumb-2) or branches.

 "IT" (If-Then) instruction in the ARM Thumb-2 instruction set (16 bits) allows conditional execution of up to
four instructions based on a condition flag (like EQ, NE, etc.).

 IT{x{y{z}}} {cond}, where x, y, and z specify the existence of the optional second, third, and fourth
conditional instruction respectively. x, y, and z are either T (Then) or E (Else). T = execute the following
instruction if condition is True; E = execute the following instruction if condition is False
 IT — 1 following instruction (If)

 ITT — 2 following instructions (If-Then)

 ITE — 2 following instructions (If-Else)

 ITTE, ITEEE, etc. — up to 4 instructions total

ITTE NE ; If-Then-Then-Else

 ANDNE r0,r0,r1 ; executed if Not Equal

 ADDNE r2,r2,#1 ; executed if Not Equal

 MOVEQ r2,r3 ; executed if Equal

ITT AL ; AL (Always) condition executes two 16-bit

instructions unconditionally; the last ADD is outside the IT block.

 ADDAL r0,r0,r1 ; 16-bit ADD, not ADDS

 SUBAL r2,r2,#1 ; 16-bit SUB, not SUB

 ADD r0,r0,r1 ; expands into 32-bit ADD, and is not in IT block

ITT EQ ; Executes both instructions only if Equal condition is

true

 MOVEQ r0,r1

 BEQ dloop ; branch at end of IT block is permitted

ITT EQ ; Executes both instructions only

if Equal condition is true

 MOVEQ r0,r1

 ADDEQ r0,r0,#1

You do not need to write IT instructions in your code.

The assembler generates them for you automatically

according to the conditions specified.

Summary: Condition Codes

40

Note AL is the default and does not need to be specified

Not Equal
Unsigned Higher or Same
Unsigned LOwer
MInus (Negative)

EQual

oVerflow Set
oVerflow Cleared
Unsigned HIgher
Unsigned Lower or Same

PLus (Positive or Zero)

Signed Less Than
Signed Greater Than
Signed Less than or Equal
ALways

Signed Greater or Equal

EQ
NE

CS/HS
CC/LO

PL
VS

HI
LS
GE
LT
GT
LE
AL

MI

VC

Suffix Description

Z=0
C=1
C=0

Z=1
Flags tested

N=1
N=0
V=1
V=0
C=1 & Z=0
C=0 or Z=1
N=V
N!=V
Z=0 & N=V
Z=1 or N!=V

Summary: Branch Instructions

41

Instruction Description Flags tested

Unconditional

Branch

B label Branch to label

Conditional

Branch

BEQ label Branch if EQual Z = 1

BNE label Branch if Not Equal Z = 0

BCS/BHS label Branch if unsigned Higher or Same C = 1

BCC/BLO label Branch if unsigned LOwer C = 0

BMI label Branch if MInus (Negative) N = 1

BPL label Branch if PLus (Positive or Zero) N = 0

BVS label Branch if oVerflow Set V = 1

BVC label Branch if oVerflow Clear V = 0

BHI label Branch if unsigned HIgher C = 1 & Z = 0

BLS label Branch if unsigned Lower or Same C = 0 or Z = 1

BGE label Branch if signed Greater or Equal N = V

BLT label Branch if signed Less Than N != V

BGT label Branch if signed Greater Than Z = 0 & N = V

BLE label Branch if signed Less than or Equal Z = 1 or N = !V

Summary: Conditionally Executed

42

Add instruction Condition Flag tested

ADDEQ r3, r2, r1 Add if EQual Add if Z = 1

ADDNE r3, r2, r1 Add if Not Equal Add if Z = 0

ADDHS r3, r2, r1 Add if Unsigned Higher or Same Add if C = 1

ADDLO r3, r2, r1 Add if Unsigned LOwer Add if C = 0

ADDMI r3, r2, r1 Add if Minus (Negative) Add if N = 1

ADDPL r3, r2, r1 Add if PLus (Positive or Zero) Add if N = 0

ADDVS r3, r2, r1 Add if oVerflow Set Add if V = 1

ADDVC r3, r2, r1 Add if oVerflow Clear Add if V = 0

ADDHI r3, r2, r1 Add if Unsigned HIgher Add if C = 1 & Z = 0

ADDLS r3, r2, r1 Add if Unsigned Lower or Same Add if C = 0 or Z = 1

ADDGE r3, r2, r1 Add if Signed Greater or Equal Add if N = V

ADDLT r3, r2, r1 Add if Signed Less Than Add if N != V

ADDGT r3, r2, r1 Add if Signed Greater Than Add if Z = 0 & N = V

ADDLE r3, r2, r1 Add if Signed Less than or Equal Add if Z = 1 or N = !V

Summary: Condition Codes

43

 Condition Codes:

 EQ/NE: Z=1 / Z=0 (Equal/Not Equal)

 LT/GE: N≠V / N=V (Signed Less Than/Greater Equal)

 GT/LE: Z=0 & N=V / Z=1 or N≠V (Signed Greater/Less Equal)

 LO/HS: C=0 / C=1 (Unsigned Lower/Higher Same)

 HI/LS: C=1 & Z=0 / C=0 or Z=1 (Unsigned Higher/Lower Same)

 Flag Setting Instructions:

 CMP: R1 - R2 (result discarded)

 TST: R1 & R2 (result discarded)

 TEQ: R1 ⊕ R2 (result discarded)

 CMN: R1 + R2 (result discarded)

References

44

 Lecture 27. Branch instructions

 https://www.youtube.com/watch?v=_QKD7f1cmRI&list=PLRJhV4hUhIymmp5CCeIFPy

xbknsdcXCc8&index=27

 Lecture 28. Conditional Execution

 https://www.youtube.com/watch?v=9hlxG8L5-

G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28

https://www.youtube.com/watch?v=_QKD7f1cmRI&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=27
https://www.youtube.com/watch?v=_QKD7f1cmRI&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=27
https://www.youtube.com/watch?v=_QKD7f1cmRI&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=27
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28

	Slide 1: Z. Gu
	Slide 2: Three Control Structures
	Slide 3: Combined Program Status Registers (xPSR)
	Slide 4: Condition Flags
	Slide 5: Carry and Overflow Flags w/ Arithmetic Instructions
	Slide 6: Updating Condition Flags
	Slide 7: Updating Condition Flags
	Slide 8: Example of CMP
	Slide 9: Updating Condition Flags: TST and TEQ
	Slide 10: Example of TEQ
	Slide 11: Unconditional Branch Instructions
	Slide 12: Unconditional Branch Instructions: A Simple Example
	Slide 13: Condition Codes
	Slide 14: Signed vs. Unsigned Comparison
	Slide 15: Signed Comparison Explanations
	Slide 16: Signed Comparison Examples (5-bit system)
	Slide 17: Number Interpretation
	Slide 18: Which is Greater: 0xFFFFFFFF or 0x00000001?
	Slide 19: Conditional Branch Instructions
	Slide 20: If-then Statement
	Slide 21: If-then-else
	Slide 22: For Loop
	Slide 23: For Loop
	Slide 24: For Loop
	Slide 25: Explanations for 2a and 2b
	Slide 26: For Loop
	Slide 27: For Loop
	Slide 28: Condition Codes
	Slide 29: Conditional Execution
	Slide 30: Conditional Execution Examples
	Slide 31: Thought Experiments
	Slide 32: Explanations for Compound Boolean Expression
	Slide 33: Conditional Execution Examples Con’t
	Slide 34: Combination
	Slide 35: Break vs. Continue
	Slide 36: Break Example
	Slide 37: Break Example
	Slide 38: Break and Continue Example
	Slide 39: IT (If-Then) instruction
	Slide 40: Summary: Condition Codes
	Slide 41: Summary: Branch Instructions
	Slide 42: Summary: Conditionally Executed
	Slide 43: Summary: Condition Codes
	Slide 44: References

