Embedded Systems with ARM Cortex-M Microcontrollers in
Assembly Language and C

Chapter 6
Control Flow in Assembly

Z. Gu

Fall 2025

Acknowledgement: Lecture slides based on Embedded Systems with ARM Cortex-M Microcontrollers in Assembly Language
and C, University of Maine https://web.eece.maine.edu/~zhu/book/

https://web.eece.maine.edu/~zhu/book/

Three Control Structures

» Sequence Structure

» Computer executes statements (instructions), one after another, in the order listed in the program
» Selection Structure

» If-then-else
» Loop Structure

» while loop

» for loop ¢
Statement 1 False
¢ True False
True
Statement 2 \ 4 v
Statement 1 Statement 2 Statement

v |
Statement 2 T v

v

Sequence Structure Selection Structure Loop Structure

Review

Combined Program Status Registers (XPSR)

31 30 29 28 27 26 25 24 23 22 219 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

IT[7:6] | T Reserved IT[5:0] Interrupt/Exception Number

L—P» Reserved

——JPp» Thumb state flag IT[7:0]: If-Then bits

P Stick saturation flag for SSAT and USAT

P Overflow flag

P Carry/Borrow flag

P Zero flag

P Negative or less than flag

Review

Condition Flags

Program Status Register (PSR)

N ZIC|V[Q[ICNT|T| Reserved GE Reserved ICINT ISR number
Negative --------------- signed result is negative
» Negative bit
» N = 1 if most significant bit of result is 1 y 2 oariitisit

» Zero bit
add op = overflow

» Z = 1 ifall bits of result are © Carry ------------- sub op doesn't borrow
» Carry bit last bit shifted out when shifting

» For unsigned addition,C = 1 if carry takes place oVerflow -- add/sub op = signed overflow
» For unsigned subtraction,C = @ (carry = not borrow) if borrow takes place

» For shift/rotation, C = last bit shifted out

» oVerflow bit
» V = 1 if adding 2 same-signed numbers produces a result with the opposite sign
Positive + Positive = Negative, or
Negative + negative = Positive

» Non-arithmetic operations does not touch V bit, such as MOV, AND, LSL,MUL

Review ‘

Carry and Overtlow Flags w/ Arithmetic Instructions

Carry flag C = | (Borrow flag = 0) upon an unsigned addition if the answer is wrong (true result >
2"-1)

Carry flag C = 0 (Borrow flag = I) upon an unsigned subtraction if the answer is wrong (true
result < 0)

Overflow flagV =1 upon a signed addition or subtraction if the answer is wrong (true result > 2"!-
| or true result < -2™')

Overflow may occur when adding 2 operands with the same sign, or subtracting 2 operands with
different signs; Overflow cannot occur when adding 2 operands with different signs or when
subtracting 2 operands with the same sign.

Unsigned Addition Unsigned Subtraction | Sighed Addition or
Subtractlon

Carry flag true result > 2"-1 =» true result <0 =>»
Carry flag=1 : Carry flag=0
Borrow flag=0 Borrow flag=1
(Result incorrect) (Result incorrect)
Overflow flag N/A N/A true result > 2™'-| or
true result < -2/
=» Overflow flag=I

(Result incorrect)

Updating Condition Flags

» Method 1: append “S”: updates destination register, and sets flags
» ADD r@,rl,r2 — ADDS ro,rl,r2
» SUB ro,rl,r2 — SUBS ro,rl,r2
» Performs operation, writes the result into Rd, and also updates NZCV flags

» Method 2: compare instructions: sets flags only

» CMP/CMN/TEQ/TST: performs operation to update NZCYV flags, but the computation
result is not saved and discarded

Updating Condition Flags

Instruction Operands Brief description

CMP RI - R2 Compare N,Z,C,V
CMN Rl + R2 Compare Negative N,Z,C,V
TST Rl & R2 Test N,Z,C
TEQ Rl @ R2 Test Equivalence N,Z,C

> Update flags
No need to add S. No need to specify destination register.

» Operations are:
CMP R1 - R2: Same as SUBS, except result discarded (not written to destination register)
CMN R1 + R2: Same as ADDS, except result discarded
TST R1 & R2: Same as ANDS, except result discarded
TEQ R1 @ R2: Same as EORS, except result discarded

> Examples:
CMP r0, ril
TST =r2, #5

%

xample of CMP

Area absolute, CODE, READONLY
EXPORT _ main
ENTRY

__main PROC
CMP rl, #0 ; Pl = X
RSBLT r@, rl, #0

done B done ; deadloop, end of program

ENDP
END

RSBLT rO, rl, #0:: conditional execution of the RSB instruction with
condition code LT.If rl <0,thensetr0 =0 — rl = -rl

Updating Condition Flags:
TST and TEQ

TST R1, R2 ; Bitwise AND

TEQ R1, R2 ; Bitwise Exclusive OR x|y |xANDy
0 0 0
» Update N and Z according to the result 0 | 0
» Can update C during the calculation of R2 (w/ shifting such as LSL, LSR...) | o 0
» Do not affectV T I
» TST performs bitwise AND on RI and R2.

» Same as ANDS, except result discarded.

» Use R2 as a mask; Z=0 implies “some masked bit(s) are set, so result is non-zero” Z=1 u x XOR y
implies “none of the masked bit(s) are set, so result is zero.” For a single-bit mask, Z=0 0 0 0
means “that bit in Rl is I,” and Z=1 means “that bit is 0.” 0 | |

» TEQ performs bitwise Exclusive OR on RI and R2.
» Same as EORS, except result discarded. 0 |
» If Rl and R2 are equal, then RI@ R2 is 0,and Z is set to |; otherwise Z is set to 0 | 0

(cleared).

%

xample of TE

» Translate C code into assembly:

C Code Assembly

if (char==°1’||char==?") TEQ ro, #°!’°
found++; TEQNE ro, #°?°
ADDEQ rl1, rl, #1

» TEQ r0,# performs a test-equal by computing r0 ‘!’ and setting condition flags; Z=1 when r0 equals ‘!

» TEQNE r0, #? executes only if the previous Z=0 (i.e., char was not ‘I'); it tests r0 against ‘?’ and sets Z
accordingly. This achieves the logical OR without branches by conditionally running the second test only
when needed.

» Logical OR operator (||) employs short-circuit evaluation, meaning it evaluates expressions from left to right and
stops as soon as the result of the entire expression is determined. For (condl||cond2): If cond| evaluates to true
(non-zero), the overall result of the || operation is already known to be true, so cond2 is not evaluated. If cond|
evaluates to false (zero), the evaluation proceeds to the next operand cond2.

» ADDEQ rl, rl,#| executes only if Z=1I after the tests, meaning char matched either ‘!’ or ‘?’.
» If rO ==, then TEQ sets Z = |.TEQNE is skipped,and ADDEQ is executed

» The 2" TEQNE executes only if the first comparison failed (Z=0). If rO == ‘?, then TEQNE is executed and sets Z
= |,and ADDEQ is executed

b0 e e RS S AT R ek e

Unconditional Branch Instructions

Instruction Operands Brief description
B, BAL label Branch
BL label Branch with Link
BLX Rm Branch indirect with Link
BX Rm Branch indirect

» B label or BAL label
» cause a branch to label.
» BL label

» copy the address of the next instruction into rl14 (I, the link register), and
» cause a branch to label.

» BX Rm
» branch to the address held in Rm

» BLX Rm:

» copy the address of the next instruction into r14 (I, the link register) and
» branch to the address held in Rm

Unconditional Branch Instructions:
A Simple Example

MOVS rl1, #1

B target ; Branch to target

MOVS r2, #2 ; Not executed

MOVS r3, #3 ; Not executed

MOVS r4, #4 ; Not executed
target MOVS r5, #5

A label marks the location of an instruction

v v

Labels help human to read the code

v

In machine program, labels are converted to numeric offsets by
assembler

v

Here MOVS can be replaced by MOV since the flags are not used

Condition Codes

» The possible condition codes are listed below:

EQ EQual Z==1

NE Not Equal Z==0

CS/HS Unsigned Higher or Same C==1

CC/LO Unsigned LOwer C==0

M Mlnus (Negative) N==1

PL PLus (Positive or Zero) N==0

VS oVerflow Set V==1

VC oVerflow Clear V==0

Hi Unsigned Hlgher C==1 and Z==0
LS Unsigned Lower or Same C==0 or Z==1
GE Signed Greater or Equal N==V

LT Signed Less Than NI=V

GT Signed Greater Than Z==0 and N==
LE Signed Less than or Equal Z==1 or N!=V
AL AlLways

Note AL is the default and does not need to be specified

Signed vs. Unsigned Comparison

Cond (Signed) Flags Explanation Cond Flags Explanation
(Unsigned)
R1 > R2 |GT (Greater /=0 & Non-zero result |HI (Higher) |[C=1 & No borrow and
Than) N=V and signs agree Z=0 not equal
R1 > R2 |GE (Greater or | N=V See next page HS (Higher or | C=1 No borrow (R
Equal) Same) = R2)
R1 < R2 |LT (LessThan) | N2V See next page LO (Lower) C=0 Borrow occurred
(RI <R2)
R1 £ R2 |LE (Lessor Z=1 or Zero or LS (Lower or |C=0 or Borrow or equal
Equal) N#V overflow Same) Z=1
mismatch
R1==R2 | EQ (Equal) Z=1 ZLero
R1 # R2 | NE (Not Equal) Z=0 Non-Zero
_____________________________________ CMP R1, R2
> 14 perform subtraction R1 - R2, set flags without saving result

Signed Comparison Explanations

Condition Vv CMP R1, R2

Meaning

(signed) returns

GE (Greater or 0ol o | Result non-negative (Rl — R2 2 0), no overflow —

Equal) RI =2 R2

GE (Greater or | | | Result negative (Rl — R2 < 0), but overflowed so

Equal) sign is flipped — true result 20 — Rl =2 R2

LT (Less Than) | 0 0 E;sult negative (RI — R2 < 0), no overflow — RI <
Result non-negative (Rl — R2 = 0), but overflowed

LT (Less Than) 0 | 0 so sign is flipped — true result <0 — RI <R2

* If N =V, then GE (CMP RI,R2 returns [)
* If N #V, then LT (CMP RI, R2 returns 0)

Signed Comparison Examples (5-bit system)

e RI=+7(00111)

« R2=+3(00011)

* Rl —R2=+4(00100);

* result non-negative and no signed
overflow, so N=0,V=0 = GE holds

* RI =—10(10110)

« R2=+7(00111)

* Rl — R2 = —17,outside range
[—16,+15]; resultis 001 | | (decimal
7), whose sign bit is 0 so N=0, but
sighed overflow occurs soV=1 = LT
holds

RI =+3(00011)

R2=+7 (00111)

Rl — R2=—4(11100)

result negative with no overflow, so
N=1,V=0 = LT holds

RI =+10(01010)

R2=-7(11001)

Rl — R2 = +17, outside range
[—16,+15]; result is 10001 (decimal
—15), whose sign bit is | so N=1, but
sighed overflow occurs soV=I| = GE
holds

* If N =V, then GE (CMP RI,R2 returns)

> 6 * IfN #V,then LT (CMPRI,R2 returnsQ) [

Number Interpretation

Which is greater?
OXFFFFFFFF Or 0x00000001

» If they represent signed numbers, the latter is greater.
(1 > -1).

» If they represent unsigned numbers, the former is greater
(23%1 > 1).

Which is Greater: OXFFFFFFFF Or 0x000000017

It’s software’s responsibility to tell computer how to interpret data:
* If written in C, declare the signed vs unsigned variable
* If written in Assembly, use signed vs unsigned branch instructions

int32 t x, y;

X = -1;
y = 1;
if (x > y)

MOV r5, #OXFFFFFFFF
MOV r6, #0x00000001
CMP r5, ré6

BLE Then Clause

BLE: Branch if less than or equal, sighed <

uint32 t x, vy;
X = 4294967295;
y = 1;

if (x > y)

MOV r5, #OxFFFFFFFF
MOV r6, #0x00000001
CMP r5, ré6

BLS Then _Clause

Conditional Branch Instructions

Conditional codes applied to
branch instructions

Compare Signed Unsigned Compare Signed Unsigned
> GT HI > BGT BHI
> GE HS > BGE BHS
< LT LO —) < BLT BLO
< LE LS < BLE BLS
== EQ == BEQ
NE # BNE

[f-then Statement

C Program Assembly Program 1 Assembly Program 2
// a is signhed integer ; rl = a, r2 =Xx ; rl = a, r2 =Xx
if (a <0) { CMP ri1, #0 ; Compare a with © CMP rl, #0
a =0 - a; BGE endif ; Go to endif if a > © RSBLT rl1, rl, #0 ; a=-aif a< 0
} RSB rl1l, rl, #0 ; a = - a ADD r2, r2, #1 ; X =X + 1
X =X + 1; endif: ADD r2, r2, #1 ; x = x + 1
C Program Assembly Program 1 Assembly Program 2
// a 1is signed ; rl = a, r2 =X ; Pl = a, r2 = x
integer CMP r1, #20 ; compare a and 20 CMP rl, #20 ; compare a and 20
if(a <= 20 || a »>= BLE then ; go to then if a MOVLE r2, #1 ; a <= 20 » x = 1
25){ < 20 CMP rl, #25 ; compare a and 25
X =1 CMP rl1, #25 ; compare a and 25 MOVGE r2, #1 ;@ > 25 »>x =1
} BLT endif ; go to endif if a|; else (21 <= a <= 24) -» no MOV
< 25 executed. Does not implement short
then: MOV r2, #1 ; X =1 circuit evaluation. Both conditions will
Endif always be evaluated, and r2 is possibly

; implements short circuit evaluation of

2" condition checking is skipped)

assigned twice.

[f-then-else

C Program Assembly Program 1
// a 1is signed integer ; rl=a, r2 =050
if (a == 1) CMP rl, #1 ; compare a and 1
X = 3; BNE else ; g0 to else if a # 1
else then: MOV r2, #3 ; X =3
X = 4; B endif ; go to endif
else: MOV r2, #4 ; X = 4
endif:

For Loop

C Program (equivalent)

int i; int 1 = 0;
int sum = 0; int sum = 0;
for(i = 0; i < 10; i++){
sum += i; while (i < 10) {
} sum += i;
i++;
}

Implementation | (Classic compare-and-branch):

MOV ro, #0 % sum = ©
MOV rl, #0 % 1 =20
loop:
CMP rl, #10 % i < 10 ?
BGE done % exit if 1 >= 10
ADD ro, ro, ril % sum += 1
ADD rl, rl, #1 % i++
B loop
done: % : 1s optional after a label

For Loop

int i; int i = 0;
int sum = 0; int sum = 0;
for(i = 0; i < 10; i++){
sum += i; while (i < 10) {
} sum += i;
it++;
}

Implementation 2a:

MOV ro, #0 % sum = O
MOV rl, #0 % i =
B check
loop:
ADD r@, ro, rl % sum += 1
ADD rl1, rl, #1 % i++
Check: CMP rl1, #10 % check whether i < 10
BLT loop % loop if i less than 10.

For Loop

int i; int i = 0;
int sum = 0; int sum = 0;
for(i = 0; i < 10; i++){
sum += i; do {
} sum += i;
it++;
} while (i < 10);

Implementation 2b:

MOV ro, #o % sum = ©
MOV rl, #0 % i =0
%B check deleted
Loop:
ADD r@, r@, rl % sum += 1
ADD rl, rl, #1 % i++
CMP rl1, #10 % check whether 1 < 10
BLT loop % loop if i less than 10.

Explanations for 2a and 2b

» 2a and 2b implement two different loop structures:

» Version with “B check” is a pre-test loop (while/for): it tests i < |10 before the first
iteration, so the body may execute zero times if the condition is false initially

» Version without “B check” is a post-test loop (do-while): it executes the body once
before testing, then repeats while i < 10
» Because i starts at 0 and the condition is i < 10,and loop iterates from i=0 to
i=9, even though the control-flow order differs.

» If the while condition is initially true (i < |0), this program has same behavior as
previous version. But if the while condition is initially false (i >= 10), this program
executes for | iteration while the previous program executes for 0 iteration.

For Loop

int i;
int sum = 0;

for(i = 90; i < 10; i++){

C Program (equivalent)

int sum = 0; // ro
int count = 10; // rl
int i = 0; // r2

while (count != @) {

sum += 1i;
} sum += 1ij
i+=1;
count -= 1;
}
Implementation 3 (Count-down with SUBS/BNE):
MOV ro, #0 % sum = ©
MOV rl, #10 % loop count = 10
MOV r2, #0o % 1 =20
loop:
ADD re, ro, r2 % sum += 1
ADD r2, r2, #1 % 1++
SUBS ri, rl, #1 % --count, set flags
BNE loop % repeat until loop
count==0

SUBS ri1, rl, #1
Is equivalent to:
SUB rl1l, rl, #1
CMP rl1, #0

For Loop

C Program (equivalent)

int i; int i = 0;
int sum = 0; int sum = 0;
for(i = 0; i < 10; i++){
sum += i; while (i < 10) {
} sum += i;
it++;
}

Implementation 4 (Use conditional execution):

MOV ro, #0 % sum = ©
MOV rl, #0 % i =0

loop:
CMP rl, #10 % set flags from i-10
ADDLT re, ro, ri % if i<10: sum += i
ADDLT ri1, ri, #1 % if i<10: i++
BLT loop % if i<1e: loop

Condition Codes

» The possible condition codes are listed below:

EQ Equal Z=1

NE Not equal Z=0

CS/HS Unsigned higher or same C=1

CC/LO Unsigned lower C=0

M1 Negative N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsignhed higher C=1 & Z=0
LS Unsigned lower or same C=0 or Z=1
GE Signed Greater or equal N=V

LT Signhed Less than N!=V

GT Signed Greater than Z=0 & N=V
LE Signhed Less than or equal |[Z=1 or N!=
AL Always

Note AL is the default and does not need to be specified

Conditional |

(]

xXecution

Add instruction Condition Flag tested

ADDEQ r3, r2, rl |Add if EQual Add if Zz = 1

ADDNE r3, r2, rl |Add if Not Equal Add if Zz = ©

ADDHS r3, r2, rl |Add if Unsigned Higher or Same Add if C = 1

ADDLO r3, r2, rl1 |Add if Unsigned LOwer Add if C = @

ADDMI r3, r2, rl |Add if Minus (Negative) Add if N = 1

ADDPL r3, r2, rl |Add if PLus (Positive or Zero) Add if N = @

ADDVS r3, r2, rl |Add if oVerflow Set Add if V =1

ADDVC r3, r2, rl |Add if oVerflow Clear Add if V = ©

ADDHI r3, r2, rl |Add if Unsigned HIgher Add if C =1 & Z =0
ADDLS r3, r2, rl |Add if Unsigned Lower or Same Add if C=0 or Z =1
ADDGE r3, r2, rl |Add if Signed Greater or Equal Add if N =V

ADDLT r3, r2, rl |Add if Signed Less Than Add if N I=V

ADDGT r3, r2, rl |Add if Signed Greater Than Add if Z = 0 & N =V
ADDLE r3, r2, rl |Add if Signed Less than or Equal |Add if Z =1 or N = 1V

.« . — . —
Conditional Execution Examples
C Program Assembly Program
int32 t a, vy CMP ro, #0
if (a <= 0) MOVLE rl1, #-1
y = -1; MOVGT rl1, #1
else
y = 1;
if(a <= 20 || a >= 25){ CMP ro, #20
y = 1; MOVLE rl1, #1
} CMP ro, #25
MOVGE r1, #1
if (a==1 || a==7 || a==11) CMP ro, #1
y = 1; CMPNE ro, #7 ; executed if ro !=1
else CMPNE ro, #11 ; executed if ro != 1
y = -1; ; and re =7
MOVEQ ri1, #1 LE :Signed Less than or Equal
MOVNE r1, #-1 GT:Signed Greater Than

__ NE: Not Equal

EQ: Equal

()

Thought Experiments

» This version does not work, since we cannot use any condition code ?? in
MOV??

CMP re, #20
CMPGT ro, #25

MOV?? rl, #1

» This version is incorrect, since only the last “CMP r@, #11” sets the Z flag,

overwriting flags set by previous two CMP instructions.

CMP ro, #1
CMP ro, #7
CMP ro, #11

MOVEQ ri, #1
MOVNE ri1, #-1

Explanations for Compound Boolean Expression

» Compound condition (a==1 || a==7 || a==11):
» CMP ro, #1
» CMPNE rO, #7 ; executed if ro !=1
» CMPNE ro, #11 ; executed if ro != 7
» MOVEQ rl, #1
» MOVNE rl1, #-1
» CMP r0,#I| compares a with | and sets Z=1 if equal, else Z=0.

» CMPNE r0, #7 runs only if the previous compare was not equal, and if it runs, it refreshes
the flags by comparing a with 7.

» CMPNE rO, #1 | runs only if a was not | and not 7, and if it runs, it compares a with |1 to
set Z accordingly.

» MOVEQ rl, #| executes only when Z=1| from any of the comparisons, so y becomes | if a
matched I, 7,0r |1.

» MOVNE rl, #-1 executes only when Z=0 after all relevant compares, so y becomes -1 when
none of the values matched.

Conditional |

(]

xecution Examples

C Program

Assembly Program w/ Branching

Assembly Program w/ Conditional Execution

int32 t x, y;

ADDS r@, ro, ril

ADDS ro, ro, ril
MOVMI ro, #0

if (x +y < 0) BPL PosOrz MOVPL ro, #1
X = 0; MOV ro, #0
else B done
X = 1; PosOrZ MOV ro, #1
done
uint32_ t x, vy; gcd CMP ro, rl gcd CMP ro, rl
...... BEQ end SUBHI ro, ro, ri
while (x !=y) { BLO less SUBLO rl1, ri1, ro
if (x > y) SUB ro, ro, ril BNE gcd
X =X -Y; B gcd
else less SUB rl, ri, ro
y =y - X; B gcd
} End

Combination

CBz R1, label Compare and Branch if Zero

CBNZ R1, label Compare and Branch if Non Zero

» Except that it does not change the status flags, CBZ R1, label is
equivalent to:

CMP R1, #0
BEQ label
» Except that it does not change the status flags, CBNZ R1, label is
equivalent to:
CMP R1, #0
BNE label

Break vs. Contingpe

Example code for break Example code for continue

for(int 1 = 0; 1 < 5; i++){
if (i == 2) continue;
printf(“%d, *, i)

¥

for(int 1 = 0; 1 < 5; i++){
if (i == 2) break;
printf(“%d, *, i)

¥

Output: 0, 1 Output: 0, 1, 3, 4

C Program Assembly Program 1 Assembly Program 2
// Find string length ;r@ = string memory address ;r@ = string memory address
char str[] = "hello"; ;rl = string length ;rl = string length
int len = 0; ADR re, str ADR re, str
MOV rl, #0 MOV rl, #0
for(; ;) A Loop: LDRB r2, [ro] Loop: LDRB r2, [ro]
if (*str == '\0") CBNZ r2, notZero CBZ r2, endloop
break; B endloop ADD ro, ro, #1
str++; notZero: ADD r@, ro, #1 ; str++ ADD rl1, rl, #1
len++; ; to let re point to the next B loop
} char. This works since each char|endloop:
is 1 byte (need to increment by 4
if it was an integer array)
ADD r1, rl, #1 ; len++
B loop
endloop:

Break Example

C Program Assembly Program

// Count characters that are not|; r@e = string address (str)
"l' until the null terminator ; rl = count = ©
char str[] = "hello"; ADR reo, str
int count = 0; MOV rl1, #0
Loop: LDRB r2, [ro]
for (; ;) { CBZ r2, endloop ; 1f "\@' => break
if (*str == '"\0'")
break; CMP r2, #°1° ; if char == '1"
if (*str == '1")
continue; ADD r1, rl1, #1 ; count++
count++; ADD ro, ro, #1 ; str++
str++; B loop
} endloop:

Break and Continue Example

C Program Assembly Program 3

// Count characters that are not|; r@e = string address (str)

"l' until the null terminator ; rl = count = ©
char str[] = "hello"; ADR reo, str
int count = 0; MOV rl1, #0
Loop: LDRB r2, [ro]
for (; ;) { CBZ r2, endloop ; 1f "\@' => break
if (*str == '"\0'")
break; CMP r2, #°1° ; if char == '1'
BEQ contLoop ; continue and skip count++
count++;
str++; ADD rl1, rl, #1 ; count++
}
contLoop: ADD ro, ro, #1 ; Str++
B loop
endloop:

IT (If-Then) instruction

according to the conditions specified.

You do not need to write IT instructions in your code.
The assembler generates them for you automatically

» On smaller ARM cores (Cortex-M0), not all data instructions support condition suffixes directly; instead you
must use an IT instruction (Thumb-2) or branches.

» "IT" (If-Then) instruction in the ARM Thumb-2 instruction set (16 bits) allows conditional execution of up to
four instructions based on a condition flag (like EQ, NE, etc.).

» IT{x{y{z}}} {cond}, where X, y, and z specify the existence of the optional second, third, and fourth
conditional instruction respectively. X,y,and z are either T (Then) or E (Else).T = execute the following
instruction if condition is True; E = execute the following instruction if condition is False

» IT — I following instruction (If)

» ITT — 2 following instructions (If-Then)

» ITE — 2 following instructions (If-Else)

» ITTE,ITEEE, etc. — up to 4 instructions total

if Equal condition is true
MOVEQ rO,rl
ADDEQ rO0,r0,#1

ITTENE ;If-Then-Then-Else ITT EQ ;Executes both instructions only if Equal condition is
ANDNE r0,rO,r| ; executed if Not Equal true

ADDNE r2,r2,#| ;executed if Not Equal MOVEQ rO,rl

MOVEQ r2,r3 ;executed if Equal BEQ dloop ;branch at end of IT block is permitted

ITT EQ ;Executes both instructions only ITT AL ;AL (Always) condition executes two |6-bit

instructions unconditionally; the last ADD is outside the IT block.
ADDAL r0,rO,rl ; 16-bit ADD, not ADDS
SUBAL r2,r2,#1 ; 16-bit SUB, not SUB
ADD rO,rO,rl ;expands into 32-bit ADD, and is notin IT block

Summary: Condition Codes

EQ EQual Z=1
NE Not Equal Z=0

CS/HS |Unsigned Higher or Same C=1

CC/LO |Unsigned LOwer C=0
MI MInus (Negative) N=1
PL PLus (Positive or Zero) N=0
VS oVerflow Set V=1
VC oVerflow Cleared V=0
HI Unsigned HIgher C=1 & Z=0
LS Unsigned Lower or Same C=0 or Z=1
GE Signed Greater or Equal N=V
LT Signed Less Than NI=V
GT Signed Greater Than Z=0 & N=V
LE Signed Less than or Equal |Z=1 or Nl!=
AL ALways

Note AL is the default and does not need to be specified

Summary: Branch Instructions

S Tinstruction | Description | Flags tested

Unconditional [ERAJZL Branch to label
Branch

BEQ Label Branch if EQual Z =1
BNE Label Branch if Not Equal Z =0
BCS/BHS Llabel Branch if unsigned Higher or Same C =1
BCC/BLO Label Branch if unsigned LOwer cC=20
BMI Label Branch if Mlnus (Negative) N=1
BPL Label Branch if PLus (Positive or Zero) N=2o
Conditional BVS Label Branch if oVerflow Set V=1
Branch BVC Llabel Branch if oVerflow Clear V=20
BHI Label Branch if unsigned Hlgher C=1&2Z=20
BLS Label Branch if unsigned Lower or Same C = @ or Z = 1
BGE Label Branch if signed Greater or Equal N=V
BLT Label Branch if signed Less Than N I=V
BGT Label Branch if signed Greater Than Z=0&N-=V
BLE Label Branch if signed Less thanor Equal Z =1 or N = 1V

Summary: Conditionally

xecuted

(]

Add instruction Condition Flag tested

ADDEQ r3, r2, rl |Add if EQual Add if Zz = 1

ADDNE r3, r2, rl |Add if Not Equal Add if Zz = ©

ADDHS r3, r2, rl |Add if Unsigned Higher or Same Add if C = 1

ADDLO r3, r2, rl1 |Add if Unsigned LOwer Add if C = @

ADDMI r3, r2, rl |Add if Minus (Negative) Add if N = 1

ADDPL r3, r2, rl |Add if PLus (Positive or Zero) Add if N = @

ADDVS r3, r2, rl |Add if oVerflow Set Add if V =1

ADDVC r3, r2, rl |Add if oVerflow Clear Add if V = ©

ADDHI r3, r2, rl |Add if Unsigned HIgher Add if C =1 & Z =0
ADDLS r3, r2, rl |Add if Unsigned Lower or Same Add if C=0 or Z =1
ADDGE r3, r2, rl |Add if Signed Greater or Equal Add if N =V

ADDLT r3, r2, rl |Add if Signed Less Than Add if N I=V

ADDGT r3, r2, rl |Add if Signed Greater Than Add if Z = 0 & N =V
ADDLE r3, r2, rl |Add if Signed Less than or Equal |Add if Z =1 or N = 1V

Summary: Condition Codes

» Condition Codes:
» EQ/NE: Z=1 / Z=0 (Equal/Not Equal)
» LT/GE:N#V / N=V (Signed Less Than/Greater Equal)
» GT/LE:Z=0 & N=V / Z=1 or N#V (Signed Greater/Less Equal)
» LO/HS: C=0/ C=1 (Unsigned Lower/Higher Same)
» HI/LS: C=1 & Z=0/ C=0 or Z=1I (Unsigned Higher/Lower Same)

» Flag Setting Instructions:
» CMP:RI - R2 (result discarded)
» TST:RI & R2 (result discarded)
» TEQ:RI @ R2 (result discarded)
» CMN:RI + R2 (result discarded)

References

» Lecture 27.Branch instructions
» https://www.youtube.com/watchlv=_QKD7flcmRI&list=PLR]hV4hUhlymmp5CCelFPy
xbknsdcXCc8&index=27
» Lecture 28. Conditional Execution

» https://www.youtube.com/watch?v=9%hIxG8L5-
G4&list=PLR]hV4hUhlymmp5CCelFPyxbknsdcXCc8&index=28

https://www.youtube.com/watch?v=_QKD7f1cmRI&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=27
https://www.youtube.com/watch?v=_QKD7f1cmRI&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=27
https://www.youtube.com/watch?v=_QKD7f1cmRI&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=27
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28
https://www.youtube.com/watch?v=9hlxG8L5-G4&list=PLRJhV4hUhIymmp5CCeIFPyxbknsdcXCc8&index=28

	Slide 1: Z. Gu
	Slide 2: Three Control Structures
	Slide 3: Combined Program Status Registers (xPSR)
	Slide 4: Condition Flags
	Slide 5: Carry and Overflow Flags w/ Arithmetic Instructions
	Slide 6: Updating Condition Flags
	Slide 7: Updating Condition Flags
	Slide 8: Example of CMP
	Slide 9: Updating Condition Flags: TST and TEQ
	Slide 10: Example of TEQ
	Slide 11: Unconditional Branch Instructions
	Slide 12: Unconditional Branch Instructions: A Simple Example
	Slide 13: Condition Codes
	Slide 14: Signed vs. Unsigned Comparison
	Slide 15: Signed Comparison Explanations
	Slide 16: Signed Comparison Examples (5-bit system)
	Slide 17: Number Interpretation
	Slide 18: Which is Greater: 0xFFFFFFFF or 0x00000001?
	Slide 19: Conditional Branch Instructions
	Slide 20: If-then Statement
	Slide 21: If-then-else
	Slide 22: For Loop
	Slide 23: For Loop
	Slide 24: For Loop
	Slide 25: Explanations for 2a and 2b
	Slide 26: For Loop
	Slide 27: For Loop
	Slide 28: Condition Codes
	Slide 29: Conditional Execution
	Slide 30: Conditional Execution Examples
	Slide 31: Thought Experiments
	Slide 32: Explanations for Compound Boolean Expression
	Slide 33: Conditional Execution Examples Con’t
	Slide 34: Combination
	Slide 35: Break vs. Continue
	Slide 36: Break Example
	Slide 37: Break Example
	Slide 38: Break and Continue Example
	Slide 39: IT (If-Then) instruction
	Slide 40: Summary: Condition Codes
	Slide 41: Summary: Branch Instructions
	Slide 42: Summary: Conditionally Executed
	Slide 43: Summary: Condition Codes
	Slide 44: References

